fbpx
Wikipedia

Stalactite

A stalactite (UK: /ˈstæləkˌtt/, US: /stəˈlæktt/; from Ancient Greek σταλακτός (stalaktós) 'dripping', from σταλάσσειν (stalássein) 'to drip')[1] is a mineral formation that hangs from the ceiling of caves, hot springs, or man-made structures such as bridges and mines. Any material that is soluble and that can be deposited as a colloid, or is in suspension, or is capable of being melted, may form a stalactite. Stalactites may be composed of lava, minerals, mud, peat, pitch, sand, sinter, and amberat (crystallized urine of pack rats).[2][3] A stalactite is not necessarily a speleothem, though speleothems are the most common form of stalactite because of the abundance of limestone caves.[2][4]

Image showing the six most common speleothems with labels. Enlarge to view labels.

The corresponding formation on the floor of the cave is known as a stalagmite. Mnemonics have been developed for which word refers to which type of formation; one is that stalactite has a C for "ceiling", and stalagmite has a G for "ground".[5] Another example is that stalactites "hang on Tight" and stalagmites "Might grow up" – with emphasis on the "T" and "M" linked to similar sounding words.

Formation and type edit

 
Demonstration of drip stone formation in a lab. The blue color is due to the addition of cupric ions (Cu2+) to the mother solution.

Limestone stalactites edit

The most common stalactites are speleothems, which occur in limestone caves. They form through deposition of calcium carbonate and other minerals, which is precipitated from mineralized water solutions. Limestone is the chief form of calcium carbonate rock which is dissolved by water that contains carbon dioxide, forming a calcium bicarbonate solution in caverns.[6] The chemical formula for this reaction is:[7]

CaCO3(s) + H2O(l) + CO2(aq) → Ca(HCO3)2(aq)

This solution travels through the rock until it reaches an edge and if this is on the roof of a cave it will drip down. When the solution comes into contact with air the chemical reaction that created it is reversed and particles of calcium carbonate are deposited. The reversed reaction is:[7]

Ca(HCO3)2(aq)CaCO3(s) + H2O(l) + CO2(aq)

An average growth rate is 0.13 mm (0.0051 inches) a year. The quickest growing stalactites are those formed by a constant supply of slow dripping water rich in calcium carbonate (CaCO3) and carbon dioxide (CO2), which can grow at 3 mm (0.12 inches) per year.[8][9] The drip rate must be slow enough to allow the CO2 to degas from the solution into the cave atmosphere, resulting in deposition of CaCO3 on the stalactite. Too fast a drip rate and the solution, still carrying most of the CaCO3, falls to the cave floor where degassing occurs and CaCO3 is deposited as a stalagmite.

All limestone stalactites begin with a single mineral-laden drop of water. When the drop falls, it deposits the thinnest ring of calcite. Each subsequent drop that forms and falls deposits another calcite ring. Eventually, these rings form a very narrow (≈4 to 5 mm diameter), hollow tube commonly known as a "soda straw" stalactite. Soda straws can grow quite long, but are very fragile. If they become plugged by debris, water begins flowing over the outside, depositing more calcite and creating the more familiar cone-shaped stalactite.

Stalactite formation generally begins over a large area, with multiple paths for the mineral rich water to flow. As minerals are dissolved in one channel slightly more than other competing channels, the dominant channel begins to draw more and more of the available water, which speeds its growth, ultimately resulting in all other channels being choked off. This is one reason why formations tend to have minimum distances from one another. The larger the formation, the greater the interformation distance.

Pillars edit

 
Pillars in the Caves of Nerja, Spain

The same water drops that fall from the tip of a stalactite deposit more calcite on the floor below, eventually resulting in a rounded or cone-shaped stalagmite. Unlike stalactites, stalagmites never start out as hollow "soda straws". Given enough time, these formations can meet and fuse to create a speleothem of calcium carbonate known as a pillar, column, or stalagnate.[10]

Lava stalactites edit

Another type of stalactite is formed in lava tubes while molten and fluid lava is still active inside.[11] The mechanism of formation is the deposition of molten dripping material on the ceilings of caves, however with lava stalactites formation happens very quickly in only a matter of hours, days, or weeks, whereas limestone stalactites may take up to thousands of years. A key difference with lava stalactites is that once the lava has ceased flowing, so too will the stalactites cease to grow. This means that if the stalactite were to be broken it would never grow back.[2]

The generic term lavacicle has been applied to lava stalactites and stalagmites indiscriminately and evolved from the word icicle.[2]

Like limestone stalactites, they can leave lava drips onto the floor that turn into lava stalagmites and may eventually fuse with the corresponding stalactite to form a column.

Shark tooth stalactites edit

 
Shark tooth stalactites

The shark tooth stalactite is broad and tapering in appearance. It may begin as a small driblet of lava from a semi-solid ceiling, but then grows by accreting layers as successive flows of lava rise and fall in the lava tube, coating and recoating the stalactite with more material. They can vary from a few millimeters to over a meter in length.[12]

Splash stalactites edit

As lava flows through a tube, material will be splashed up on the ceiling and ooze back down, hardening into a stalactite. This type of formation results in an irregularly-shaped stalactite, looking somewhat like stretched taffy[clarification needed]. Often they may be of a different color than the original lava that formed the cave.[12]

Tubular lava stalactites edit

When the roof of a lava tube is cooling, a skin forms that traps semi-molten material inside. Trapped gases expansion forces lava to extrude out through small openings that result in hollow, tubular stalactites analogous to the soda straws formed as depositional speleothems in solution caves. The longest known is almost 2 meters in length. These are common in Hawaiian lava tubes and are often associated with a drip stalagmite that forms below as material is carried through the tubular stalactite and piles up on the floor beneath. Sometimes the tubular form collapses near the distal end, most likely when the pressure of escaping gases decreased and still-molten portions of the stalactites deflated and cooled. Often these tubular stalactites acquire a twisted, vermiform appearance as bits of lava crystallize and force the flow in different directions. These tubular lava helictites may also be influenced by air currents through a tube and point downwind.[12]

Ice stalactites edit

 
Ice stalactites on the gutter of a house
 
Ice stalactites on a frozen beach in Bete Grise, Michigan

A common stalactite found seasonally or year round in many caves is the ice stalactite, commonly referred to as icicles, especially on the surface.[13] Water seepage from the surface will penetrate into a cave and if temperatures are below freezing, the water will form stalactites. They can also be formed by the freezing of water vapor.[14] Similar to lava stalactites, ice stalactites form very quickly within hours or days. Unlike lava stalactites however, they may grow back as long as water and temperatures are suitable.

Ice stalactites can also form under sea ice when saline water is introduced to ocean water. These specific stalactites are referred to as brinicles.

Ice stalactites may also form corresponding stalagmites below them and given time may grow together to form an ice column.

Concrete stalactites edit

 
Concrete stalactites
 
Calthemite soda straw stalactites under a concrete slab

Stalactites can also form on concrete, and on plumbing where there is a slow leak and where there are calcium, magnesium or other ions in the water supply, although they form much more rapidly there than in the natural cave environment. These secondary deposits, such as stalactites, stalagmites, flowstone and others, which are derived from the lime, mortar or other calcareous material in concrete, outside of the "cave" environment, can not be classified as "speleothems" due to the definition of the term.[9] The term "calthemite" is used to encompass these secondary deposits which mimic the shapes and forms of speleothems outside the cave environment.[15]

The way stalactites form on concrete is due to different chemistry than those that form naturally in limestone caves and is due of the presence of calcium oxide in cement. Concrete is made from aggregate, sand and cement. When water is added to the mix, the calcium oxide in the cement reacts with water to form calcium hydroxide (Ca(OH)2). The chemical formula for this is:[7]

CaO
(s)
+ H
2
O
(l)
Ca(OH)
2

(aq)

Over time, any rainwater that penetrates cracks in set (hard) concrete will carry any free calcium hydroxide in solution to the edge of the concrete. Stalactites can form when the solution emerges on the underside of the concrete structure where it is suspended in the air, for example, on a ceiling or a beam. When the solution comes into contact with air on the underside of the concrete structure, another chemical reaction takes place. The solution reacts with carbon dioxide in the air and precipitates calcium carbonate.[7]

Ca(OH)
2

(aq)
+ CO
2

(g)
CaCO
3

(s)
+ H
2
O
(l)

When this solution drops down it leaves behind particles of calcium carbonate and over time these form into a stalactite. They are normally a few centimeters long and with a diameter of approximately 4 to 5 mm (0.16 to 0.20 inches).[7] The growth rate of stalactites is significantly influenced by supply continuity of Ca2+
saturated solution and the drip rate. A straw shaped stalactite which has formed under a concrete structure can grow as much as 2 mm per day in length, when the drip rate is approximately 11 minutes between drops.[15] Changes in leachate solution pH can facilitate additional chemical reactions, which may also influence calthemite stalactite growth rates.[15]

Records edit

The White Chamber in the Jeita Grotto's upper cavern in Lebanon contains an 8.2 m (27 ft) limestone stalactite which is accessible to visitors and is claimed to be the longest stalactite in the world.[citation needed] Another such claim is made for a 20 m (66 ft) limestone stalactite that hangs in the Chamber of Rarities in the Gruta Rei do Mato (Sete Lagoas, Minas Gerais, Brazil).[citation needed] However, cavers have often encountered longer stalactites during their explorations. One of the longest stalactites viewable by the general public is in Pol an Ionain (Doolin Cave), County Clare, Ireland, in a karst region known as The Burren; what makes it more impressive is the fact that the stalactite is held on by a section of calcite less than 0.3 m2 (3.2 sq ft).[16]

Etymology edit

Stalactites are first mentioned (though not by name) by the Roman natural historian Pliny in a text which also mentions stalagmites and columns and refers to their formation by the dripping of water. The term "stalactite" was coined in the 17th century by the Danish Physician Ole Worm,[17] who coined the word from the Greek word σταλακτός (stalaktos, "dripping") and the Greek suffix -ίτης (-ites, connected with or belonging to).[18]

Photo gallery edit

See also edit

References edit

  1. ^ . Oxford Dictionary. Archived from the original on August 1, 2021. Retrieved 2021-08-01 – via Lexico.com.
  2. ^ a b c d Larson, Charles (1993). An Illustrated Glossary of Lava Tube Features, Bulletin 87, Western Speleological Survey. p. 56.
  3. ^ Hicks, Forrest L. (1950). "Formation and mineralogy of stalactites and stalagmites" (PDF). 12: 63–72. Retrieved 2013-07-08. {{cite journal}}: Cite journal requires |journal= (help)
  4. ^ "How Caves Form". Nova (American TV series). Retrieved 2013-07-01.
  5. ^ (PDF). Archived from the original (PDF) on 2017-02-11. Retrieved 2019-05-03.{{cite web}}: CS1 maint: archived copy as title (link)
  6. ^ C. Michael Hogan. 2010. Calcium. eds. A.Jorgensen, C. Cleveland. Encyclopedia of Earth. National Council for Science and the Environment.
  7. ^ a b c d e Braund, Martin; Reiss, Jonathan (2004), Learning Science Outside the Classroom, Routledge, pp. 155–156, ISBN 0-415-32116-6
  8. ^ Kramer, Stephen P.; Day, Kenrick L. (1995), Caves, Carolrhoda Books (published 1994), p. 23, ISBN 978-0-87614-447-3
  9. ^ a b Hill, C A, and Forti, P, (1986, 1997). Cave Minerals of the World, 1st & 2nd editions. [Huntsville, Alabama: National Speleological Society Inc.]
  10. ^ "Pillars". showcaves.com.
  11. ^ Baird, A.K. (1982). "Basaltic "stalactite" mineralogy and chemistry, Kilauea". 4 (4). Geological Society of America Bulletin, abstracts with programs: 146–147. {{cite journal}}: Cite journal requires |journal= (help)
  12. ^ a b c Bunnell, Dave (2008). Caves of Fire: Inside America's Lava Tubes. p. 124.
  13. ^ Keiffer, Susan (2010). "Ice stalactite dynamics". Retrieved 2013-07-08.
  14. ^ Lacelle, Denis (2009). "Formation of seasonal ice bodies and associated cryogenic carbonates in Cavene De L'Ours, Que' Bec, Canada: Kinetic isotope effects and pseudo-biogenic crystal structures" (PDF). Journal of Cave and Karst Studies. pp. 48–62. Retrieved 2013-07-08.
  15. ^ a b c Smith, G K. (2016). "Calcite straw stalactites growing from concrete structures". Cave and Karst Science 43(1), pp4-10.
  16. ^ "Caves With The Longest Stalactite". Retrieved 2008-06-11.
  17. ^ Olao Worm, Museum Wormianum. ... (Amsterdam ("Amstelodami"), (the Netherlands): Louis & Daniel Elzevier, 1655), pages 50-52.
  18. ^ See: Online Etymology Dictionary
  • Dripstone in time-lapse ("Tropfsteine im Zeitraffer") - Schmidkonz, B.; Wittke, G.; Chemie Unserer Zeit, 2006, 40, 246. doi:10.1002/ciuz.200600370

External links edit

  • "Speleothems (Cave Formations) – Wind Cave National Park (U.S. National Park Service)". www.nps.gov. Retrieved 5 January 2020.
  • The Virtual Cave's page on stalactites
  • Stalactites by Enrique Zeleny, Wolfram Demonstrations Project.

stalactite, elongate, mineral, formation, found, cave, floor, stalagmite, stalactite, from, ancient, greek, σταλακτός, stalaktós, dripping, from, σταλάσσειν, stalássein, drip, mineral, formation, that, hangs, from, ceiling, caves, springs, made, structures, su. For the elongate mineral formation found on a cave floor see Stalagmite A stalactite UK ˈ s t ae l e k ˌ t aɪ t US s t e ˈ l ae k t aɪ t from Ancient Greek stalaktos stalaktos dripping from stalassein stalassein to drip 1 is a mineral formation that hangs from the ceiling of caves hot springs or man made structures such as bridges and mines Any material that is soluble and that can be deposited as a colloid or is in suspension or is capable of being melted may form a stalactite Stalactites may be composed of lava minerals mud peat pitch sand sinter and amberat crystallized urine of pack rats 2 3 A stalactite is not necessarily a speleothem though speleothems are the most common form of stalactite because of the abundance of limestone caves 2 4 Image showing the six most common speleothems with labels Enlarge to view labels The corresponding formation on the floor of the cave is known as a stalagmite Mnemonics have been developed for which word refers to which type of formation one is that stalactite has a C for ceiling and stalagmite has a G for ground 5 Another example is that stalactites hang on Tight and stalagmites Might grow up with emphasis on the T and M linked to similar sounding words Contents 1 Formation and type 1 1 Limestone stalactites 1 1 1 Pillars 1 2 Lava stalactites 1 2 1 Shark tooth stalactites 1 2 2 Splash stalactites 1 2 3 Tubular lava stalactites 1 3 Ice stalactites 1 4 Concrete stalactites 2 Records 3 Etymology 4 Photo gallery 5 See also 6 References 7 External linksFormation and type edit nbsp Demonstration of drip stone formation in a lab The blue color is due to the addition of cupric ions Cu2 to the mother solution Limestone stalactites edit The most common stalactites are speleothems which occur in limestone caves They form through deposition of calcium carbonate and other minerals which is precipitated from mineralized water solutions Limestone is the chief form of calcium carbonate rock which is dissolved by water that contains carbon dioxide forming a calcium bicarbonate solution in caverns 6 The chemical formula for this reaction is 7 CaCO3 s H2O l CO2 aq Ca HCO3 2 aq dd This solution travels through the rock until it reaches an edge and if this is on the roof of a cave it will drip down When the solution comes into contact with air the chemical reaction that created it is reversed and particles of calcium carbonate are deposited The reversed reaction is 7 Ca HCO3 2 aq CaCO3 s H2O l CO2 aq dd An average growth rate is 0 13 mm 0 0051 inches a year The quickest growing stalactites are those formed by a constant supply of slow dripping water rich in calcium carbonate CaCO3 and carbon dioxide CO2 which can grow at 3 mm 0 12 inches per year 8 9 The drip rate must be slow enough to allow the CO2 to degas from the solution into the cave atmosphere resulting in deposition of CaCO3 on the stalactite Too fast a drip rate and the solution still carrying most of the CaCO3 falls to the cave floor where degassing occurs and CaCO3 is deposited as a stalagmite All limestone stalactites begin with a single mineral laden drop of water When the drop falls it deposits the thinnest ring of calcite Each subsequent drop that forms and falls deposits another calcite ring Eventually these rings form a very narrow 4 to 5 mm diameter hollow tube commonly known as a soda straw stalactite Soda straws can grow quite long but are very fragile If they become plugged by debris water begins flowing over the outside depositing more calcite and creating the more familiar cone shaped stalactite Stalactite formation generally begins over a large area with multiple paths for the mineral rich water to flow As minerals are dissolved in one channel slightly more than other competing channels the dominant channel begins to draw more and more of the available water which speeds its growth ultimately resulting in all other channels being choked off This is one reason why formations tend to have minimum distances from one another The larger the formation the greater the interformation distance Pillars edit nbsp Pillars in the Caves of Nerja SpainThe same water drops that fall from the tip of a stalactite deposit more calcite on the floor below eventually resulting in a rounded or cone shaped stalagmite Unlike stalactites stalagmites never start out as hollow soda straws Given enough time these formations can meet and fuse to create a speleothem of calcium carbonate known as a pillar column or stalagnate 10 Lava stalactites edit Another type of stalactite is formed in lava tubes while molten and fluid lava is still active inside 11 The mechanism of formation is the deposition of molten dripping material on the ceilings of caves however with lava stalactites formation happens very quickly in only a matter of hours days or weeks whereas limestone stalactites may take up to thousands of years A key difference with lava stalactites is that once the lava has ceased flowing so too will the stalactites cease to grow This means that if the stalactite were to be broken it would never grow back 2 The generic term lavacicle has been applied to lava stalactites and stalagmites indiscriminately and evolved from the word icicle 2 Like limestone stalactites they can leave lava drips onto the floor that turn into lava stalagmites and may eventually fuse with the corresponding stalactite to form a column Shark tooth stalactites edit nbsp Shark tooth stalactitesThe shark tooth stalactite is broad and tapering in appearance It may begin as a small driblet of lava from a semi solid ceiling but then grows by accreting layers as successive flows of lava rise and fall in the lava tube coating and recoating the stalactite with more material They can vary from a few millimeters to over a meter in length 12 Splash stalactites edit As lava flows through a tube material will be splashed up on the ceiling and ooze back down hardening into a stalactite This type of formation results in an irregularly shaped stalactite looking somewhat like stretched taffy clarification needed Often they may be of a different color than the original lava that formed the cave 12 Tubular lava stalactites edit When the roof of a lava tube is cooling a skin forms that traps semi molten material inside Trapped gases expansion forces lava to extrude out through small openings that result in hollow tubular stalactites analogous to the soda straws formed as depositional speleothems in solution caves The longest known is almost 2 meters in length These are common in Hawaiian lava tubes and are often associated with a drip stalagmite that forms below as material is carried through the tubular stalactite and piles up on the floor beneath Sometimes the tubular form collapses near the distal end most likely when the pressure of escaping gases decreased and still molten portions of the stalactites deflated and cooled Often these tubular stalactites acquire a twisted vermiform appearance as bits of lava crystallize and force the flow in different directions These tubular lava helictites may also be influenced by air currents through a tube and point downwind 12 Ice stalactites edit nbsp Ice stalactites on the gutter of a house nbsp Ice stalactites on a frozen beach in Bete Grise MichiganA common stalactite found seasonally or year round in many caves is the ice stalactite commonly referred to as icicles especially on the surface 13 Water seepage from the surface will penetrate into a cave and if temperatures are below freezing the water will form stalactites They can also be formed by the freezing of water vapor 14 Similar to lava stalactites ice stalactites form very quickly within hours or days Unlike lava stalactites however they may grow back as long as water and temperatures are suitable Ice stalactites can also form under sea ice when saline water is introduced to ocean water These specific stalactites are referred to as brinicles Ice stalactites may also form corresponding stalagmites below them and given time may grow together to form an ice column Concrete stalactites edit nbsp Concrete stalactites nbsp Calthemite soda straw stalactites under a concrete slabMain article Calthemite Stalactites can also form on concrete and on plumbing where there is a slow leak and where there are calcium magnesium or other ions in the water supply although they form much more rapidly there than in the natural cave environment These secondary deposits such as stalactites stalagmites flowstone and others which are derived from the lime mortar or other calcareous material in concrete outside of the cave environment can not be classified as speleothems due to the definition of the term 9 The term calthemite is used to encompass these secondary deposits which mimic the shapes and forms of speleothems outside the cave environment 15 The way stalactites form on concrete is due to different chemistry than those that form naturally in limestone caves and is due of the presence of calcium oxide in cement Concrete is made from aggregate sand and cement When water is added to the mix the calcium oxide in the cement reacts with water to form calcium hydroxide Ca OH 2 The chemical formula for this is 7 CaO s H2 O l Ca OH 2 aq dd Over time any rainwater that penetrates cracks in set hard concrete will carry any free calcium hydroxide in solution to the edge of the concrete Stalactites can form when the solution emerges on the underside of the concrete structure where it is suspended in the air for example on a ceiling or a beam When the solution comes into contact with air on the underside of the concrete structure another chemical reaction takes place The solution reacts with carbon dioxide in the air and precipitates calcium carbonate 7 Ca OH 2 aq CO2 g CaCO3 s H2 O l dd When this solution drops down it leaves behind particles of calcium carbonate and over time these form into a stalactite They are normally a few centimeters long and with a diameter of approximately 4 to 5 mm 0 16 to 0 20 inches 7 The growth rate of stalactites is significantly influenced by supply continuity of Ca2 saturated solution and the drip rate A straw shaped stalactite which has formed under a concrete structure can grow as much as 2 mm per day in length when the drip rate is approximately 11 minutes between drops 15 Changes in leachate solution pH can facilitate additional chemical reactions which may also influence calthemite stalactite growth rates 15 Records editThe White Chamber in the Jeita Grotto s upper cavern in Lebanon contains an 8 2 m 27 ft limestone stalactite which is accessible to visitors and is claimed to be the longest stalactite in the world citation needed Another such claim is made for a 20 m 66 ft limestone stalactite that hangs in the Chamber of Rarities in the Gruta Rei do Mato Sete Lagoas Minas Gerais Brazil citation needed However cavers have often encountered longer stalactites during their explorations One of the longest stalactites viewable by the general public is in Pol an Ionain Doolin Cave County Clare Ireland in a karst region known as The Burren what makes it more impressive is the fact that the stalactite is held on by a section of calcite less than 0 3 m2 3 2 sq ft 16 Etymology editStalactites are first mentioned though not by name by the Roman natural historian Pliny in a text which also mentions stalagmites and columns and refers to their formation by the dripping of water The term stalactite was coined in the 17th century by the Danish Physician Ole Worm 17 who coined the word from the Greek word stalaktos stalaktos dripping and the Greek suffix iths ites connected with or belonging to 18 Photo gallery edit nbsp Stalactites at the Puerto Princesa Underground River Palawan Philippines nbsp Mineralized water drop forming at bottom of stalactites nbsp Stalactites of the type called soda straws from the Choranche caves in the Vercors France nbsp Tubular lava stalactites nbsp A tubular lava helictiteSee also editStalagmite Lavacicle Rusticle Karst Icicle Bottlebrush Stalactite coated with pool spar BrinicleReferences edit stalactite Oxford Dictionary Archived from the original on August 1 2021 Retrieved 2021 08 01 via Lexico com a b c d Larson Charles 1993 An Illustrated Glossary of Lava Tube Features Bulletin 87 Western Speleological Survey p 56 Hicks Forrest L 1950 Formation and mineralogy of stalactites and stalagmites PDF 12 63 72 Retrieved 2013 07 08 a href Template Cite journal html title Template Cite journal cite journal a Cite journal requires journal help How Caves Form Nova American TV series Retrieved 2013 07 01 Archived copy PDF Archived from the original PDF on 2017 02 11 Retrieved 2019 05 03 a href Template Cite web html title Template Cite web cite web a CS1 maint archived copy as title link C Michael Hogan 2010 Calcium eds A Jorgensen C Cleveland Encyclopedia of Earth National Council for Science and the Environment a b c d e Braund Martin Reiss Jonathan 2004 Learning Science Outside the Classroom Routledge pp 155 156 ISBN 0 415 32116 6 Kramer Stephen P Day Kenrick L 1995 Caves Carolrhoda Books published 1994 p 23 ISBN 978 0 87614 447 3 a b Hill C A and Forti P 1986 1997 Cave Minerals of the World 1st amp 2nd editions Huntsville Alabama National Speleological Society Inc Pillars showcaves com Baird A K 1982 Basaltic stalactite mineralogy and chemistry Kilauea 4 4 Geological Society of America Bulletin abstracts with programs 146 147 a href Template Cite journal html title Template Cite journal cite journal a Cite journal requires journal help a b c Bunnell Dave 2008 Caves of Fire Inside America s Lava Tubes p 124 Keiffer Susan 2010 Ice stalactite dynamics Retrieved 2013 07 08 Lacelle Denis 2009 Formation of seasonal ice bodies and associated cryogenic carbonates in Cavene De L Ours Que Bec Canada Kinetic isotope effects and pseudo biogenic crystal structures PDF Journal of Cave and Karst Studies pp 48 62 Retrieved 2013 07 08 a b c Smith G K 2016 Calcite straw stalactites growing from concrete structures Cave and Karst Science 43 1 pp4 10 Caves With The Longest Stalactite Retrieved 2008 06 11 Olao Worm Museum Wormianum Amsterdam Amstelodami the Netherlands Louis amp Daniel Elzevier 1655 pages 50 52 See Online Etymology Dictionary Dripstone in time lapse Tropfsteine im Zeitraffer Schmidkonz B Wittke G Chemie Unserer Zeit 2006 40 246 doi 10 1002 ciuz 200600370External links edit Speleothems Cave Formations Wind Cave National Park U S National Park Service www nps gov Retrieved 5 January 2020 The Virtual Cave s page on stalactites Stalactites by Enrique Zeleny Wolfram Demonstrations Project nbsp Wikimedia Commons has media related to Stalactites Retrieved from https en wikipedia org w index php title Stalactite amp oldid 1183608032 Lava stalactites, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.