fbpx
Wikipedia

Isotopes of iron

Naturally occurring iron (26Fe) consists of four stable isotopes: 5.845% of 54Fe (possibly radioactive with a half-life over 4.4×1020 years),[4] 91.754% of 56Fe, 2.119% of 57Fe and 0.286% of 58Fe. There are 24 known radioactive isotopes, the most stable of which are 60Fe (half-life 2.6 million years) and 55Fe (half-life 2.7 years).

Isotopes of iron (26Fe)
Main isotopes[1] Decay
abun­dance half-life (t1/2) mode pro­duct
54Fe 5.85% stable
55Fe synth 2.73 y ε 55Mn
56Fe 91.8% stable
57Fe 2.12% stable
58Fe 0.28% stable
59Fe synth 44.6 d β 59Co
60Fe trace 2.6×106 y β 60Co
Standard atomic weight Ar°(Fe)

Much of the past work on measuring the isotopic composition of Fe has centered on determining 60Fe variations due to processes accompanying nucleosynthesis (i.e., meteorite studies) and ore formation. In the last decade however, advances in mass spectrometry technology have allowed the detection and quantification of minute, naturally occurring variations in the ratios of the stable isotopes of iron. Much of this work has been driven by the Earth and planetary science communities, although applications to biological and industrial systems are beginning to emerge.[5]

List of isotopes edit

Nuclide
[n 1]
Z N Isotopic mass (Da)
[n 2][n 3]
Half-life
[n 4]
Decay
mode

[n 5]
Daughter
isotope

[n 6]
Spin and
parity
[n 7][n 4]
Natural abundance (mole fraction)
Excitation energy Normal proportion Range of variation
45Fe 26 19 45.01458(24)# 1.89(49) ms β+ (30%) 45Mn 3/2+#
2p (70%) 43Cr
46Fe 26 20 46.00081(38)# 9(4) ms
[12(+4-3) ms]
β+ (>99.9%) 46Mn 0+
β+, p (<.1%) 45Cr
47Fe 26 21 46.99289(28)# 21.8(7) ms β+ (>99.9%) 47Mn 7/2−#
β+, p (<.1%) 46Cr
48Fe 26 22 47.98050(8)# 44(7) ms β+ (96.41%) 48Mn 0+
β+, p (3.59%) 47Cr
49Fe 26 23 48.97361(16)# 70(3) ms β+, p (52%) 48Cr (7/2−)
β+ (48%) 49Mn
50Fe 26 24 49.96299(6) 155(11) ms β+ (>99.9%) 50Mn 0+
β+, p (<.1%) 49Cr
51Fe 26 25 50.956820(16) 305(5) ms β+ 51Mn 5/2−
52Fe 26 26 51.948114(7) 8.275(8) h β+ 52mMn 0+
52mFe 6.81(13) MeV 45.9(6) s β+ 52Mn (12+)#
53Fe 26 27 52.9453079(19) 8.51(2) min β+ 53Mn 7/2−
53mFe 3040.4(3) keV 2.526(24) min IT 53Fe 19/2−
54Fe 26 28 53.9396090(5) Observationally Stable[n 8] 0+ 0.05845(35) 0.05837–0.05861
54mFe 6526.9(6) keV 364(7) ns 10+
55Fe 26 29 54.9382934(7) 2.737(11) y EC 55Mn 3/2−
56Fe[n 9] 26 30 55.9349363(5) Stable 0+ 0.91754(36) 0.91742–0.91760
57Fe 26 31 56.9353928(5) Stable 1/2− 0.02119(10) 0.02116–0.02121
58Fe 26 32 57.9332744(5) Stable 0+ 0.00282(4) 0.00281–0.00282
59Fe 26 33 58.9348755(8) 44.495(9) d β 59Co 3/2−
60Fe 26 34 59.934072(4) 2.6×106 y β 60Co 0+ trace
61Fe 26 35 60.936745(21) 5.98(6) min β 61Co 3/2−,5/2−
61mFe 861(3) keV 250(10) ns 9/2+#
62Fe 26 36 61.936767(16) 68(2) s β 62Co 0+
63Fe 26 37 62.94037(18) 6.1(6) s β 63Co (5/2)−
64Fe 26 38 63.9412(3) 2.0(2) s β 64Co 0+
65Fe 26 39 64.94538(26) 1.3(3) s β 65Co 1/2−#
65mFe 364(3) keV 430(130) ns (5/2−)
66Fe 26 40 65.94678(32) 440(40) ms β (>99.9%) 66Co 0+
β, n (<.1%) 65Co
67Fe 26 41 66.95095(45) 394(9) ms β (>99.9%) 67Co 1/2−#
β, n (<.1%) 66Co
67mFe 367(3) keV 64(17) µs (5/2−)
68Fe 26 42 67.95370(75) 187(6) ms β (>99.9%) 68Co 0+
β, n 67Co
69Fe 26 43 68.95878(54)# 109(9) ms β (>99.9%) 69Co 1/2−#
β, n (<.1%) 68Co
70Fe 26 44 69.96146(64)# 94(17) ms 0+
71Fe 26 45 70.96672(86)# 30# ms
[>300 ns]
7/2+#
72Fe 26 46 71.96962(86)# 10# ms
[>300 ns]
0+
This table header & footer:
  1. ^ mFe – Excited nuclear isomer.
  2. ^ ( ) – Uncertainty (1σ) is given in concise form in parentheses after the corresponding last digits.
  3. ^ # – Atomic mass marked #: value and uncertainty derived not from purely experimental data, but at least partly from trends from the Mass Surface (TMS).
  4. ^ a b # – Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).
  5. ^ Modes of decay:
  6. ^ Bold symbol as daughter – Daughter product is stable.
  7. ^ ( ) spin value – Indicates spin with weak assignment arguments.
  8. ^ Believed to decay by β+β+ to 54Cr with a half-life of over 4.4×1020 a[4]
  9. ^ Lowest mass per nucleon of all nuclides; End product of stellar nucleosynthesis
  • Atomic masses of the stable nuclides (54Fe, 56Fe, 57Fe, and 58Fe) are given by the AME2012 atomic mass evaluation. The one standard deviation errors are given in parentheses after the corresponding last digits.[6]

Iron-54 edit

54Fe is observationally stable, but theoretically can decay to 54Cr, with a half-life of more than 4.4×1020 years via double electron capture (εε).[4]

Iron-56 edit

56Fe is the isotope with the lowest mass per nucleon, 930.412 MeV/c2, though not the isotope with the highest nuclear binding energy per nucleon, which is nickel-62.[7] However, because of the details of how nucleosynthesis works, 56Fe is a more common endpoint of fusion chains inside extremely massive stars and is therefore more common in the universe, relative to other metals, including 62Ni, 58Fe and 60Ni, all of which have a very high binding energy.

Iron-57 edit

57Fe is widely used in Mössbauer spectroscopy and the related nuclear resonance vibrational spectroscopy due to the low natural variation in energy of the 14.4 keV nuclear transition.[8] The transition was famously used to make the first definitive measurement of gravitational redshift, in the 1960 Pound–Rebka experiment.[9]

Iron-58 edit

Iron-58 can be used to combat anemia and low iron absorption, to metabolically track iron-controlling human genes, and for tracing elements in nature.[10][11] Iron-58 is also an assisting reagent in the synthesis of superheavy elements.[11]

Iron-60 edit

Iron-60 is an iron isotope with a half-life of 2.6 million years,[12][13] but was thought until 2009 to have a half-life of 1.5 million years. It undergoes beta decay to cobalt-60, which then decays with a half-life of about 5 years to stable nickel-60. Traces of iron-60 have been found in lunar samples.

In phases of the meteorites Semarkona and Chervony Kut, a correlation between the concentration of 60Ni, the granddaughter isotope of 60Fe, and the abundance of the stable iron isotopes could be found, which is evidence for the existence of 60Fe at the time of formation of the Solar System. Possibly the energy released by the decay of 60Fe contributed, together with the energy released by decay of the radionuclide 26Al, to the remelting and differentiation of asteroids after their formation 4.6 billion years ago. The abundance of 60Ni present in extraterrestrial material may also provide further insight into the origin of the Solar System and its early history.

Iron-60 found in fossilised bacteria in sea floor sediments suggest there was a supernova in the vicinity of the Solar System approximately 2 million years ago.[14][15] Iron-60 is also found in sediments from 8 million years ago.[16]

In 2019, researchers found interstellar 60Fe in Antarctica, which they relate to the Local Interstellar Cloud.[17]

References edit

  1. ^ Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae.
  2. ^ "Standard Atomic Weights: Iron". CIAAW. 1993.
  3. ^ Prohaska, Thomas; Irrgeher, Johanna; Benefield, Jacqueline; Böhlke, John K.; Chesson, Lesley A.; Coplen, Tyler B.; Ding, Tiping; Dunn, Philip J. H.; Gröning, Manfred; Holden, Norman E.; Meijer, Harro A. J. (2022-05-04). "Standard atomic weights of the elements 2021 (IUPAC Technical Report)". Pure and Applied Chemistry. doi:10.1515/pac-2019-0603. ISSN 1365-3075.
  4. ^ a b c Bikit, I.; Krmar, M.; Slivka, J.; Vesković, M.; Čonkić, Lj.; Aničin, I. (1998). "New results on the double β decay of iron". Physical Review C. 58 (4): 2566–2567. Bibcode:1998PhRvC..58.2566B. doi:10.1103/PhysRevC.58.2566.
  5. ^ N. Dauphas; O. Rouxel (2006). "Mass spectrometry and natural variations of iron isotopes". Mass Spectrometry Reviews. 25 (4): 515–550. Bibcode:2006MSRv...25..515D. doi:10.1002/mas.20078. PMID 16463281.
  6. ^ Wang, M.; Audi, G.; Wapstra, A.H.; Kondev, F.G.; MacCormick, M.; Xu, X.; Pfeiffer, B. (2012). "The Ame2012 atomic mass evaluation". Chinese Physics C. 36 (12): 1603–2014. Bibcode:2012ChPhC..36....3M. doi:10.1088/1674-1137/36/12/003. hdl:11858/00-001M-0000-0010-23E8-5. S2CID 250839471.
  7. ^ Fewell, M. P. (1995). "The atomic nuclide with the highest mean binding energy". American Journal of Physics. 63 (7): 653. Bibcode:1995AmJPh..63..653F. doi:10.1119/1.17828.
  8. ^ R. Nave. "Mossbauer Effect in Iron-57". HyperPhysics. Georgia State University. Retrieved 2009-10-13.
  9. ^ Pound, R. V.; Rebka Jr. G. A. (April 1, 1960). "Apparent weight of photons". Physical Review Letters. 4 (7): 337–341. Bibcode:1960PhRvL...4..337P. doi:10.1103/PhysRevLett.4.337.
  10. ^ "Iron-58 Metal Isotope". American Elements. Retrieved 2023-06-28.
  11. ^ a b Vasiliev, Petr. "Iron-58, Iron-58 Isotope, Enriched Iron-58, Iron-58 Metal". www.buyisotope.com. Retrieved 2023-06-28.
  12. ^ Rugel, G.; Faestermann, T.; Knie, K.; Korschinek, G.; Poutivtsev, M.; Schumann, D.; Kivel, N.; Günther-Leopold, I.; Weinreich, R.; Wohlmuther, M. (2009). "New Measurement of the 60Fe Half-Life". Physical Review Letters. 103 (7): 72502. Bibcode:2009PhRvL.103g2502R. doi:10.1103/PhysRevLett.103.072502. PMID 19792637.
  13. ^ . scienceticker. 27 August 2009. Archived from the original on 3 February 2018. Retrieved 22 May 2010.
  14. ^ Belinda Smith (Aug 9, 2016). "Ancient bacteria store signs of supernova smattering". Cosmos.
  15. ^ Peter Ludwig; et al. (Aug 16, 2016). "Time-resolved 2-million-year-old supernova activity discovered in Earth's microfossil record". PNAS. 113 (33): 9232–9237. arXiv:1710.09573. Bibcode:2016PNAS..113.9232L. doi:10.1073/pnas.1601040113. PMC 4995991. PMID 27503888.
  16. ^ Colin Barras (Oct 14, 2017). "Fires may have given our evolution a kick-start". New Scientist. 236 (3147): 7. Bibcode:2017NewSc.236....7B. doi:10.1016/S0262-4079(17)31997-8.
  17. ^ Koll, Dominik; et., al. (2019). "Interstellar 60Fe in Antarctica". Physical Review Letters. 123 (7): 072701. Bibcode:2019PhRvL.123g2701K. doi:10.1103/PhysRevLett.123.072701. hdl:1885/298253. PMID 31491090. S2CID 201868513.

Isotope masses from:

  • Audi, Georges; Bersillon, Olivier; Blachot, Jean; Wapstra, Aaldert Hendrik (2003), "The NUBASE evaluation of nuclear and decay properties", Nuclear Physics A, 729: 3–128, Bibcode:2003NuPhA.729....3A, doi:10.1016/j.nuclphysa.2003.11.001

Isotopic compositions and standard atomic masses from:

  • de Laeter, John Robert; Böhlke, John Karl; De Bièvre, Paul; Hidaka, Hiroshi; Peiser, H. Steffen; Rosman, Kevin J. R.; Taylor, Philip D. P. (2003). "Atomic weights of the elements. Review 2000 (IUPAC Technical Report)". Pure and Applied Chemistry. 75 (6): 683–800. doi:10.1351/pac200375060683.
  • Wieser, Michael E. (2006). "Atomic weights of the elements 2005 (IUPAC Technical Report)". Pure and Applied Chemistry. 78 (11): 2051–2066. doi:10.1351/pac200678112051.
  • "News & Notices: Standard Atomic Weights Revised". International Union of Pure and Applied Chemistry. 19 October 2005.

Half-life, spin, and isomer data selected from:

Further reading edit

isotopes, iron, naturally, occurring, iron, 26fe, consists, four, stable, isotopes, 54fe, possibly, radioactive, with, half, life, over, 1020, years, 56fe, 57fe, 58fe, there, known, radioactive, isotopes, most, stable, which, 60fe, half, life, million, years, . Naturally occurring iron 26Fe consists of four stable isotopes 5 845 of 54Fe possibly radioactive with a half life over 4 4 1020 years 4 91 754 of 56Fe 2 119 of 57Fe and 0 286 of 58Fe There are 24 known radioactive isotopes the most stable of which are 60Fe half life 2 6 million years and 55Fe half life 2 7 years Isotopes of iron 26Fe Main isotopes 1 Decayabun dance half life t1 2 mode pro duct54Fe 5 85 stable55Fe synth 2 73 y e 55Mn56Fe 91 8 stable57Fe 2 12 stable58Fe 0 28 stable59Fe synth 44 6 d b 59Co60Fe trace 2 6 106 y b 60CoStandard atomic weight Ar Fe 55 845 0 002 2 55 845 0 002 abridged 3 viewtalkeditMuch of the past work on measuring the isotopic composition of Fe has centered on determining 60Fe variations due to processes accompanying nucleosynthesis i e meteorite studies and ore formation In the last decade however advances in mass spectrometry technology have allowed the detection and quantification of minute naturally occurring variations in the ratios of the stable isotopes of iron Much of this work has been driven by the Earth and planetary science communities although applications to biological and industrial systems are beginning to emerge 5 Contents 1 List of isotopes 2 Iron 54 3 Iron 56 4 Iron 57 5 Iron 58 6 Iron 60 7 References 8 Further readingList of isotopes editNuclide n 1 Z N Isotopic mass Da n 2 n 3 Half life n 4 Decaymode n 5 Daughterisotope n 6 Spin andparity n 7 n 4 Natural abundance mole fraction Excitation energy Normal proportion Range of variation45Fe 26 19 45 01458 24 1 89 49 ms b 30 45Mn 3 2 2p 70 43Cr46Fe 26 20 46 00081 38 9 4 ms 12 4 3 ms b gt 99 9 46Mn 0 b p lt 1 45Cr47Fe 26 21 46 99289 28 21 8 7 ms b gt 99 9 47Mn 7 2 b p lt 1 46Cr48Fe 26 22 47 98050 8 44 7 ms b 96 41 48Mn 0 b p 3 59 47Cr49Fe 26 23 48 97361 16 70 3 ms b p 52 48Cr 7 2 b 48 49Mn50Fe 26 24 49 96299 6 155 11 ms b gt 99 9 50Mn 0 b p lt 1 49Cr51Fe 26 25 50 956820 16 305 5 ms b 51Mn 5 2 52Fe 26 26 51 948114 7 8 275 8 h b 52mMn 0 52mFe 6 81 13 MeV 45 9 6 s b 52Mn 12 53Fe 26 27 52 9453079 19 8 51 2 min b 53Mn 7 2 53mFe 3040 4 3 keV 2 526 24 min IT 53Fe 19 2 54Fe 26 28 53 9396090 5 Observationally Stable n 8 0 0 05845 35 0 05837 0 0586154mFe 6526 9 6 keV 364 7 ns 10 55Fe 26 29 54 9382934 7 2 737 11 y EC 55Mn 3 2 56Fe n 9 26 30 55 9349363 5 Stable 0 0 91754 36 0 91742 0 9176057Fe 26 31 56 9353928 5 Stable 1 2 0 02119 10 0 02116 0 0212158Fe 26 32 57 9332744 5 Stable 0 0 00282 4 0 00281 0 0028259Fe 26 33 58 9348755 8 44 495 9 d b 59Co 3 2 60Fe 26 34 59 934072 4 2 6 106 y b 60Co 0 trace61Fe 26 35 60 936745 21 5 98 6 min b 61Co 3 2 5 2 61mFe 861 3 keV 250 10 ns 9 2 62Fe 26 36 61 936767 16 68 2 s b 62Co 0 63Fe 26 37 62 94037 18 6 1 6 s b 63Co 5 2 64Fe 26 38 63 9412 3 2 0 2 s b 64Co 0 65Fe 26 39 64 94538 26 1 3 3 s b 65Co 1 2 65mFe 364 3 keV 430 130 ns 5 2 66Fe 26 40 65 94678 32 440 40 ms b gt 99 9 66Co 0 b n lt 1 65Co67Fe 26 41 66 95095 45 394 9 ms b gt 99 9 67Co 1 2 b n lt 1 66Co67mFe 367 3 keV 64 17 µs 5 2 68Fe 26 42 67 95370 75 187 6 ms b gt 99 9 68Co 0 b n 67Co69Fe 26 43 68 95878 54 109 9 ms b gt 99 9 69Co 1 2 b n lt 1 68Co70Fe 26 44 69 96146 64 94 17 ms 0 71Fe 26 45 70 96672 86 30 ms gt 300 ns 7 2 72Fe 26 46 71 96962 86 10 ms gt 300 ns 0 This table header amp footer view mFe Excited nuclear isomer Uncertainty 1s is given in concise form in parentheses after the corresponding last digits Atomic mass marked value and uncertainty derived not from purely experimental data but at least partly from trends from the Mass Surface TMS a b Values marked are not purely derived from experimental data but at least partly from trends of neighboring nuclides TNN Modes of decay EC Electron captureIT Isomeric transitionn Neutron emissionp Proton emission Bold symbol as daughter Daughter product is stable spin value Indicates spin with weak assignment arguments Believed to decay by b b to 54Cr with a half life of over 4 4 1020 a 4 Lowest mass per nucleon of all nuclides End product of stellar nucleosynthesis Atomic masses of the stable nuclides 54Fe 56Fe 57Fe and 58Fe are given by the AME2012 atomic mass evaluation The one standard deviation errors are given in parentheses after the corresponding last digits 6 Iron 54 edit54Fe is observationally stable but theoretically can decay to 54Cr with a half life of more than 4 4 1020 years via double electron capture ee 4 Iron 56 editMain article Iron 56 56Fe is the isotope with the lowest mass per nucleon 930 412 MeV c2 though not the isotope with the highest nuclear binding energy per nucleon which is nickel 62 7 However because of the details of how nucleosynthesis works 56Fe is a more common endpoint of fusion chains inside extremely massive stars and is therefore more common in the universe relative to other metals including 62Ni 58Fe and 60Ni all of which have a very high binding energy Iron 57 edit57Fe is widely used in Mossbauer spectroscopy and the related nuclear resonance vibrational spectroscopy due to the low natural variation in energy of the 14 4 keV nuclear transition 8 The transition was famously used to make the first definitive measurement of gravitational redshift in the 1960 Pound Rebka experiment 9 Iron 58 editIron 58 can be used to combat anemia and low iron absorption to metabolically track iron controlling human genes and for tracing elements in nature 10 11 Iron 58 is also an assisting reagent in the synthesis of superheavy elements 11 Iron 60 editIron 60 is an iron isotope with a half life of 2 6 million years 12 13 but was thought until 2009 to have a half life of 1 5 million years It undergoes beta decay to cobalt 60 which then decays with a half life of about 5 years to stable nickel 60 Traces of iron 60 have been found in lunar samples In phases of the meteorites Semarkona and Chervony Kut a correlation between the concentration of 60Ni the granddaughter isotope of 60Fe and the abundance of the stable iron isotopes could be found which is evidence for the existence of 60Fe at the time of formation of the Solar System Possibly the energy released by the decay of 60Fe contributed together with the energy released by decay of the radionuclide 26Al to the remelting and differentiation of asteroids after their formation 4 6 billion years ago The abundance of 60Ni present in extraterrestrial material may also provide further insight into the origin of the Solar System and its early history Iron 60 found in fossilised bacteria in sea floor sediments suggest there was a supernova in the vicinity of the Solar System approximately 2 million years ago 14 15 Iron 60 is also found in sediments from 8 million years ago 16 In 2019 researchers found interstellar 60Fe in Antarctica which they relate to the Local Interstellar Cloud 17 References edit Kondev F G Wang M Huang W J Naimi S Audi G 2021 The NUBASE2020 evaluation of nuclear properties PDF Chinese Physics C 45 3 030001 doi 10 1088 1674 1137 abddae Standard Atomic Weights Iron CIAAW 1993 Prohaska Thomas Irrgeher Johanna Benefield Jacqueline Bohlke John K Chesson Lesley A Coplen Tyler B Ding Tiping Dunn Philip J H Groning Manfred Holden Norman E Meijer Harro A J 2022 05 04 Standard atomic weights of the elements 2021 IUPAC Technical Report Pure and Applied Chemistry doi 10 1515 pac 2019 0603 ISSN 1365 3075 a b c Bikit I Krmar M Slivka J Veskovic M Conkic Lj Anicin I 1998 New results on the double b decay of iron Physical Review C 58 4 2566 2567 Bibcode 1998PhRvC 58 2566B doi 10 1103 PhysRevC 58 2566 N Dauphas O Rouxel 2006 Mass spectrometry and natural variations of iron isotopes Mass Spectrometry Reviews 25 4 515 550 Bibcode 2006MSRv 25 515D doi 10 1002 mas 20078 PMID 16463281 Wang M Audi G Wapstra A H Kondev F G MacCormick M Xu X Pfeiffer B 2012 The Ame2012 atomic mass evaluation Chinese Physics C 36 12 1603 2014 Bibcode 2012ChPhC 36 3M doi 10 1088 1674 1137 36 12 003 hdl 11858 00 001M 0000 0010 23E8 5 S2CID 250839471 Fewell M P 1995 The atomic nuclide with the highest mean binding energy American Journal of Physics 63 7 653 Bibcode 1995AmJPh 63 653F doi 10 1119 1 17828 R Nave Mossbauer Effect in Iron 57 HyperPhysics Georgia State University Retrieved 2009 10 13 Pound R V Rebka Jr G A April 1 1960 Apparent weight of photons Physical Review Letters 4 7 337 341 Bibcode 1960PhRvL 4 337P doi 10 1103 PhysRevLett 4 337 Iron 58 Metal Isotope American Elements Retrieved 2023 06 28 a b Vasiliev Petr Iron 58 Iron 58 Isotope Enriched Iron 58 Iron 58 Metal www buyisotope com Retrieved 2023 06 28 Rugel G Faestermann T Knie K Korschinek G Poutivtsev M Schumann D Kivel N Gunther Leopold I Weinreich R Wohlmuther M 2009 New Measurement of the 60Fe Half Life Physical Review Letters 103 7 72502 Bibcode 2009PhRvL 103g2502R doi 10 1103 PhysRevLett 103 072502 PMID 19792637 Eisen mit langem Atem scienceticker 27 August 2009 Archived from the original on 3 February 2018 Retrieved 22 May 2010 Belinda Smith Aug 9 2016 Ancient bacteria store signs of supernova smattering Cosmos Peter Ludwig et al Aug 16 2016 Time resolved 2 million year old supernova activity discovered in Earth s microfossil record PNAS 113 33 9232 9237 arXiv 1710 09573 Bibcode 2016PNAS 113 9232L doi 10 1073 pnas 1601040113 PMC 4995991 PMID 27503888 Colin Barras Oct 14 2017 Fires may have given our evolution a kick start New Scientist 236 3147 7 Bibcode 2017NewSc 236 7B doi 10 1016 S0262 4079 17 31997 8 Koll Dominik et al 2019 Interstellar 60Fe in Antarctica Physical Review Letters 123 7 072701 Bibcode 2019PhRvL 123g2701K doi 10 1103 PhysRevLett 123 072701 hdl 1885 298253 PMID 31491090 S2CID 201868513 Isotope masses from Audi Georges Bersillon Olivier Blachot Jean Wapstra Aaldert Hendrik 2003 The NUBASE evaluation of nuclear and decay properties Nuclear Physics A 729 3 128 Bibcode 2003NuPhA 729 3A doi 10 1016 j nuclphysa 2003 11 001Isotopic compositions and standard atomic masses from de Laeter John Robert Bohlke John Karl De Bievre Paul Hidaka Hiroshi Peiser H Steffen Rosman Kevin J R Taylor Philip D P 2003 Atomic weights of the elements Review 2000 IUPAC Technical Report Pure and Applied Chemistry 75 6 683 800 doi 10 1351 pac200375060683 Wieser Michael E 2006 Atomic weights of the elements 2005 IUPAC Technical Report Pure and Applied Chemistry 78 11 2051 2066 doi 10 1351 pac200678112051 News amp Notices Standard Atomic Weights Revised International Union of Pure and Applied Chemistry 19 October 2005 Half life spin and isomer data selected from Audi Georges Bersillon Olivier Blachot Jean Wapstra Aaldert Hendrik 2003 The NUBASE evaluation of nuclear and decay properties Nuclear Physics A 729 3 128 Bibcode 2003NuPhA 729 3A doi 10 1016 j nuclphysa 2003 11 001 National Nuclear Data Center NuDat 2 x database Brookhaven National Laboratory Holden Norman E 2004 11 Table of the Isotopes In Lide David R ed CRC Handbook of Chemistry and Physics 85th ed Boca Raton Florida CRC Press ISBN 978 0 8493 0485 9 Further reading editJ M Nielsen 1960 The Radiochemistry of Iron PDF National Academy of Sciences National Research Council Retrieved from https en wikipedia org w index php title Isotopes of iron amp oldid 1205320777 Iron 58, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.