fbpx
Wikipedia

IEEE 1394

IEEE 1394 is an interface standard for a serial bus for high-speed communications and isochronous real-time data transfer. It was developed in the late 1980s and early 1990s by Apple in cooperation with a number of companies, primarily Sony and Panasonic. Apple called the interface FireWire. It is also known by the brand names i.LINK (Sony), and Lynx (Texas Instruments).

IEEE 1394 Interface


Type Serial
Production history
Designer Apple (1394a/b), IEEE P1394 Working Group, Sony, Panasonic, etc.
Designed 1986; 37 years ago (1986)[1]
Manufacturer Various
Produced 1994–current
Superseded by Thunderbolt (and USB 3.0 for consumer use)
General specifications
Length 4.5 meters maximum
Width 1
Hot pluggable Yes
Daisy chain Yes, up to 63 devices
Audio signal No
Video signal No
Pins 4, 6, 9
Electrical
Max. voltage 30 V
Max. current 1.5 A
Data
Data signal Yes
Bitrate 400–3200 Mbit/s (50–400 MB/s)

The copper cable used in its most common implementation can be up to 4.5 metres (15 ft) long. Power and data is carried over this cable, allowing devices with moderate power requirements to operate without a separate power supply. FireWire is also available in Cat 5 and optical fiber versions.

The 1394 interface is comparable to USB. USB was developed subsequently and gained much greater market share. USB requires a host controller whereas IEEE 1394 is cooperatively managed by the connected devices.[2]

History and development

 
The 6-conductor and 4-conductor alpha FireWire 400 socket
 
A 9-pin FireWire 800 connector
 
The alternative Ethernet-style cabling used by 1394c
 
4-conductor (left) and 6-conductor (right) FireWire 400 alpha connectors
 
A PCI expansion card that contains four FireWire 400 connectors.

FireWire is Apple's name for the IEEE 1394 High Speed Serial Bus. Its development was initiated by Apple[1] in 1986,[3] and developed by the IEEE P1394 Working Group, largely driven by contributions from Sony (102 patents), Apple (58 patents), and Panasonic (46 patents), in addition to contributions made by engineers from Philips, LG Electronics, Toshiba, Hitachi, Canon,[4] INMOS/SGS Thomson (now STMicroelectronics),[5] and Texas Instruments.

IEEE 1394 is a serial bus architecture for high-speed data transfer. FireWire is a serial bus, meaning that information is transferred one bit at a time. Parallel buses utilize a number of different physical connections, and as such are usually more costly and typically heavier.[6] IEEE 1394 fully supports both isochronous and asynchronous applications.

Apple intended FireWire to be a serial replacement for the parallel SCSI bus, while providing connectivity for digital audio and video equipment. Apple's development began in the late 1980s, later presented to the IEEE,[7] and was completed in January 1995. In 2007, IEEE 1394 was a composite of four documents: the original IEEE Std. 1394–1995, the IEEE Std. 1394a-2000 amendment, the IEEE Std. 1394b-2002 amendment, and the IEEE Std. 1394c-2006 amendment. On June 12, 2008, all these amendments as well as errata and some technical updates were incorporated into a superseding standard, IEEE Std. 1394–2008.[8]

Apple first included onboard FireWire in some of its 1999 Macintosh models (though it had been a build-to-order option on some models since 1997), and most Apple Macintosh computers manufactured in the years 2000 through 2011 included FireWire ports. However, in February 2011 Apple introduced the first commercially available computer with Thunderbolt. Apple released its last computers with FireWire in 2012. By 2014, Thunderbolt had become a standard feature across Apple's entire line of computers (later with the exception of the 12-inch MacBook introduced in 2015, which featured only a sole USB-C port) effectively becoming the spiritual successor to FireWire in the Apple ecosystem. Apple's last products with FireWire, the Thunderbolt Display and 2012 13-inch MacBook Pro, were discontinued in 2016. Apple still sells a Thunderbolt to FireWire Adapter, which provides one FireWire 800 port.[9] A separate adapter is required to use it with Thunderbolt 3.

Sony's implementation of the system, i.LINK, used a smaller connector with only four signal conductors, omitting the two conductors that provide power for devices in favor of a separate power connector. This style was later added into the 1394a amendment.[7] This port is sometimes labeled S100 or S400 to indicate speed in Mbit/s.

The system was commonly used to connect data storage devices and DV (digital video) cameras, but was also popular in industrial systems for machine vision and professional audio systems. Many users preferred it over the more common USB 2.0 for its then greater effective speed and power distribution capabilities. Benchmarks show that the sustained data transfer rates are higher for FireWire than for USB 2.0, but lower than USB 3.0. Results are marked on Apple Mac OS X but more varied on Microsoft Windows.[10][11]

Patent considerations

Implementation of IEEE 1394[12] is said to require use of 261 issued international patents[4] held by ten[5] corporations. Use of these patents requires licensing; use without license generally constitutes patent infringement.[13] Companies holding IEEE 1394 IP formed a patent pool with MPEG LA, LLC as the license administrator, to whom they licensed patents. MPEG LA sublicenses these patents to providers of equipment implementing IEEE 1394. Under the typical patent pool license, a royalty of US$0.25 per unit is payable by the manufacturer upon the manufacture of each 1394 finished product;[13] no royalties are payable by users.

The last of the patents, MY 120654 by Sony, expired on November 30, 2020. As of November 30, 2020, the following are patent holders of the IEEE 1394 standard, as listed in the patent pool managed by MPEG LA.[4]

A person or company may review the actual 1394 Patent Portfolio License upon request to MPEG LA.[14] MPEG LA does not provide assurance of protection to licensees beyond its own patents. At least one formerly licensed patent is known to have been removed from the pool,[4] and other hardware patents exist that reference IEEE 1394.[15]

The 1394 High Performance Serial Bus Trade Association (the 1394 TA) was formed to aid the marketing of IEEE 1394. Its bylaws prohibit dealing with intellectual property issues.[16] The 1394 Trade Association operates on an individual no cost membership basis to further enhancements to 1394 standards. The Trade Association also is the library source for all 1394 documentation and standards available.

Technical specifications

FireWire can connect up to 63 peripherals in a tree or daisy-chain topology[17] (as opposed to Parallel SCSI's electrical bus topology). It allows peer-to-peer device communication — such as communication between a scanner and a printer — to take place without using system memory or the CPU. FireWire also supports multiple host controllers per bus. It is designed to support plug and play and hot swapping. The copper cable it uses in its most common implementation can be up to 4.5 metres (15 ft) long and is more flexible than most parallel SCSI cables. In its six-conductor or nine-conductor variations, it can supply up to 45 watts of power per port at up to 30 volts,[18] allowing moderate-consumption devices to operate without a separate power supply.

FireWire devices implement the ISO/IEC 13213 configuration ROM model for device configuration and identification, to provide plug-and-play capability. All FireWire devices are identified by an IEEE EUI-64 unique identifier in addition to well-known codes indicating the type of device and the protocols it supports.

FireWire devices are organized at the bus in a tree topology. Each device has a unique self-ID. One of the nodes is elected root node and always has the highest ID. The self-IDs are assigned during the self-ID process, which happens after each bus resets. The order in which the self-IDs are assigned is equivalent to traversing the tree depth-first, post-order.

FireWire is capable of safely operating critical systems due to the way multiple devices interact with the bus and how the bus allocates bandwidth to the devices. FireWire is capable of both asynchronous and isochronous transfer methods at once. Isochronous data transfers are transfers for devices that require continuous, guaranteed bandwidth.[6] In an aircraft, for instance, isochronous devices include control of the rudder, mouse operations and data from pressure sensors outside the aircraft. All these elements require constant, uninterrupted bandwidth. To support both elements, FireWire dedicates a certain percentage to isochronous data and the rest to asynchronous data. In IEEE 1394, 80% of the bus is reserved for isochronous cycles, leaving asynchronous data with a minimum of 20% of the bus.[19]

Encoding scheme

FireWire uses Data/Strobe encoding (D/S encoding).[20] In D/S encoding, two non-return-to-zero (NRZ) signals are used to transmit the data with high reliability. The NRZ signal sent is fed with the clock signal through an XOR gate, creating a strobe signal.[20] This strobe is then put through another XOR gate along with the data signal to reconstruct the clock.[20] This in turn acts as the bus's phase-locked loop for synchronization purposes.[20]

Arbitration

The process of the bus deciding which node gets to transmit data at what time is known as arbitration.[21] Each arbitration round lasts about 125 microseconds.[21] During the round, the root node (device nearest the processor) sends a cycle start packet.[21] All nodes requiring data transfer respond, with the closest node winning.[21] After the node is finished, the remaining nodes take turns in order. This repeats until all the devices have used their portion of the 125 microseconds, with isochronous transfers having priority.[21]

Standards and versions

The previous standards and its three published amendments are now incorporated into a superseding standard, IEEE 1394-2008.[8] The features individually added give a good history on the development path.

FireWire 400 (IEEE 1394-1995)

The original release of IEEE 1394-1995[22] specified what is now known as FireWire 400. It can transfer data between devices at 100, 200, or 400 Mbit/s half-duplex[23] data rates (the actual transfer rates are 98.304, 196.608, and 393.216 Mbit/s, i.e., 12.288, 24.576 and 49.152 MB/s respectively).[7] These different transfer modes are commonly referred to as S100, S200, and S400.

Cable length is limited to 4.5 metres (14.8 ft), although up to 16 cables can be daisy chained using active repeaters; external hubs or internal hubs are often present in FireWire equipment. The S400 standard limits any configuration's maximum cable length to 72 metres (236 ft). The 6-conductor connector is commonly found on desktop computers and can supply the connected device with power.

The 6-conductor powered connector, now referred to as an alpha connector, adds power output to support external devices. Typically a device can pull about 7 to 8 watts from the port; however, the voltage varies significantly from different devices.[24] Voltage is specified as unregulated and should nominally be about 25 volts (range 24 to 30). Apple's implementation on laptops is typically related to battery power and can be as low as 9 V.[24]

Improvements (IEEE 1394a-2000)

An amendment, IEEE 1394a, was released in 2000,[25] which clarified and improved the original specification. It added support for asynchronous streaming, quicker bus reconfiguration, packet concatenation, and a power-saving suspend mode.

IEEE 1394a offers a couple of advantages over the original IEEE 1394–1995. 1394a is capable of arbitration accelerations, allowing the bus to accelerate arbitration cycles to improve efficiency. It also allows for arbitrated short bus reset, in which a node can be added or dropped without causing a big drop in isochronous transmission.[19]

1394a also standardized the 4-conductor alpha connector developed by Sony and trademarked as i.LINK, already widely in use on consumer devices such as camcorders, most PC laptops, a number of PC desktops, and other small FireWire devices. The 4-conductor connector is fully data-compatible with 6-conductor alpha interfaces but lacks power connectors.

 
FireWire 800 port (center)

FireWire 800 (IEEE 1394b-2002)

 
A 9-conductor bilingual connector

IEEE 1394b-2002[26] introduced FireWire 800 (Apple's name for the 9-conductor S800 bilingual version of the IEEE 1394b standard). This specification and corresponding products allow a transfer rate of 786.432 Mbit/s full-duplex via a new encoding scheme termed beta mode. It is backwards compatible with the slower rates and 6-conductor alpha connectors of FireWire 400. However, while the IEEE 1394a and IEEE 1394b standards are compatible, FireWire 800's connector, referred to as a beta connector, is different from FireWire 400's alpha connectors, making legacy cables incompatible. A bilingual cable allows the connection of older devices to the newer port. In 2003, Apple was the first to introduce commercial products with the new connector.

The full IEEE 1394b specification supports data rates up to 3200 Mbit/s (i.e., 400 MB/s) over beta-mode or optical connections up to 100 metres (330 ft) in length. Standard Category 5e unshielded twisted pair supports 100 metres (330 ft) at S100. The original 1394 and 1394a standards used data/strobe (D/S) encoding (renamed to alpha mode) with the cables, while 1394b added a data encoding scheme called 8b/10b referred to as beta mode.

Beta mode is based on 8b/10b (from Gigabit Ethernet, also used for many other protocols). 8b/10b encoding involves expanding an 8-bit data word into 10 bits, with the extra bits after the 5th and 8th data bits.[27] The partitioned data is sent through a Running Disparity calculator function.[27] The Running Disparity calculator attempts to keep the number of 1s transmitted equal to 0s,[28] thereby assuring a DC-balanced signal. Then, the different partitions are sent through a 5b/6b encoder for the 5-bit partition and a 3b/4b encoder for the 3-bit partition. This gives the packet the ability to have at least two 1s, ensuring synchronization of the PLL at the receiving end to the correct bit boundaries for reliable transfer.[28] An additional function of the coding scheme is to support the arbitration for bus access and general bus control. This is possible due to the surplus symbols afforded by the 8b/10b expansion. (While 8-bit symbols can encode a maximum of 256 values, 10-bit symbols permit the encoding of up to 1024.) Symbols invalid for the current state of the receiving PHY indicate data errors.

FireWire S800T (IEEE 1394c-2006)

IEEE 1394c-2006 was published on June 8, 2007.[29] It provided a major technical improvement, namely new port specification that provides 800 Mbit/s over the same 8P8C (Ethernet) connectors with Category 5e cable, which is specified in IEEE 802.3 clause 40 (gigabit Ethernet over copper twisted pair) along with a corresponding automatic negotiation that allows the same port to connect to either IEEE Std 1394 or IEEE 802.3 (Ethernet) devices.

Though the potential for a combined Ethernet and FireWire 8P8C port is intriguing[citation needed], as of November 2008, no products or chipsets include this capability.

FireWire S1600 and S3200

In December 2007, the 1394 Trade Association announced that products would be available before the end of 2008 using the S1600 and S3200 modes that, for the most part, had already been defined in 1394b and were further clarified in IEEE Std. 1394–2008.[8] The 1.572864 Gbit/s and 3.145728 Gbit/s devices use the same 9-conductor beta connectors as the existing FireWire 800 and are fully compatible with existing S400 and S800 devices. It competes with USB 3.0.[30]

S1600 (Symwave[31]) and S3200 (Dap Technology[32]) development units have been made, however because of FPGA technology DapTechnology targeted S1600 implementations first with S3200 not becoming commercially available until 2012.

Steve Jobs declared FireWire dead in 2008.[33] As of 2012, there were few S1600 devices released, with a Sony camera being the only notable user.[34]

Future enhancements (including P1394d)

A project named IEEE P1394d was formed by the IEEE on March 9, 2009 to add single mode fiber as an additional transport medium to FireWire.[35] The project was withdrawn in 2013.[36]

Other future iterations of FireWire were expected to increase speed to 6.4 Gbit/s and additional connectors such as the small multimedia interface.[37][citation needed]

Operating system support

Full support for IEEE 1394a and 1394b is available for Microsoft Windows, FreeBSD,[38] Linux,[39][40] Apple Mac OS 8.6 through Mac OS 9,[41] NetBSD, and Haiku.

In Windows XP, a degradation in performance of 1394 devices may have occurred with installation of Service Pack 2. This was resolved in Hotfix 885222[42] and in SP3. Some FireWire hardware manufacturers also provide custom device drivers that replace the Microsoft OHCI host adapter driver stack, enabling S800-capable devices to run at full 800 Mbit/s transfer rates on older versions of Windows (XP SP2 w/o Hotfix 885222) and Windows Vista. At the time of its release, Microsoft Windows Vista supported only 1394a, with assurances that 1394b support would come in the next service pack.[43] Service Pack 1 for Microsoft Windows Vista has since been released, however the addition of 1394b support is not mentioned anywhere in the release documentation.[44][45][46] The 1394 bus driver was rewritten for Windows 7 to provide support for higher speeds and alternative media.[47]

In Linux, support was originally provided by libraw1394 making direct communication between user space and IEEE 1394 buses.[48] Subsequently, a new kernel driver stack, nicknamed JuJu, has been implemented.[49]

Cable TV system support

Under FCC Code 47 CFR 76.640 section 4, subsections 1 and 2, Cable TV providers (in the US, with digital systems) must, upon request of a customer, have provided a high-definition capable cable box with a functional FireWire interface. This applied only to customers leasing high-definition capable cable boxes from their cable provider after April 1, 2004.[50] The interface can be used to display or record Cable TV, including HDTV programming.[51] In June 2010, the FCC issued an order that permitted set-top boxes to include IP-based interfaces in place of FireWire.[52][53]

Comparison with USB

While both technologies provide similar end results, there are fundamental differences between USB and FireWire. USB requires the presence of a host controller, typically a PC, which connects point to point with the USB device. This allows for simpler (and lower-cost) peripherals, at the cost of lowered functionality of the bus. Intelligent hubs are required to connect multiple USB devices to a single USB host controller. By contrast, FireWire is essentially a peer-to-peer network (where any device may serve as the host or client), allowing multiple devices to be connected on one bus.[54]

The FireWire host interface supports DMA and memory-mapped devices, allowing data transfers to happen without loading the host CPU with interrupts and buffer-copy operations.[10][55] Additionally, FireWire features two data buses for each segment of the bus network, whereas, until USB 3.0, USB featured only one. This means that FireWire can have communication in both directions at the same time (full-duplex), whereas USB communication prior to 3.0 can only occur in one direction at any one time (half-duplex).[citation needed]

While USB 2.0 expanded into the fully backwards-compatible USB 3.0 and 3.1 (using the same main connector type), FireWire used a different connector between 400 and 800 implementations.

Common applications

Consumer automobiles

IDB-1394 Customer Convenience Port (CCP) was the automotive version of the 1394 standard.[56]

Consumer audio and video

IEEE 1394 was the High-Definition Audio-Video Network Alliance (HANA) standard connection interface for A/V (audio/visual) component communication and control.[57] HANA was dissolved in September 2009 and the 1394 Trade Association assumed control of all HANA-generated intellectual property.

Military and aerospace vehicles

SAE Aerospace standard AS5643 originally released in 2004 and reaffirmed in 2013 establishes IEEE-1394 standards as a military and aerospace databus network in those vehicles. AS5643 is utilized by several large programs, including the F-35 Lightning II, the X-47B UCAV aircraft, AGM-154 weapon and JPSS-1 polar satellite for NOAA. AS5643 combines existing 1394-2008 features like looped topology with additional features like transformer isolation and time synchronization, to create deterministic double and triple fault-tolerant data bus networks.[58][59][60]

General networking

FireWire can be used for ad hoc (terminals only, no routers except where a FireWire hub is used) computer networks. Specifically, RFC 2734 specifies how to run IPv4 over the FireWire interface, and RFC 3146 specifies how to run IPv6.

Mac OS X, Linux, and FreeBSD include support for networking over FireWire.[61] Windows 95, Windows 98, Windows Me,[62] Windows XP and Windows Server 2003 include native support for IEEE 1394 networking.[63] Windows 2000 does not have native support but may work with third party drivers. A network can be set up between two computers using a single standard FireWire cable, or by multiple computers through use of a hub. This is similar to Ethernet networks with the major differences being transfer speed, conductor length, and the fact that standard FireWire cables can be used for point-to-point communication.

On December 4, 2004, Microsoft announced that it would discontinue support for IP networking over the FireWire interface in all future versions of Microsoft Windows.[64] Consequently, support for this feature is absent from Windows Vista and later Windows releases.[65][66] Microsoft rewrote their 1394 driver in Windows 7[67] but networking support for FireWire is not present. Unibrain offers free FireWire networking drivers for Windows called ubCore,[68] which support Windows Vista and later versions.

Some models of the PlayStation 2 console had an i.LINK-branded 1394 connector. This was used for networking until the release of an Ethernet adapter late in the console's lifespan, but very few software titles supported the feature.[citation needed]

IIDC

IIDC (Instrumentation & Industrial Digital Camera) is the FireWire data format standard for live video, and is used by Apple's iSight A/V camera. The system was designed for machine vision systems[69] but is also used for other computer vision applications and for some webcams. Although they are easily confused since they both run over FireWire, IIDC is different from, and incompatible with, the ubiquitous AV/C (Audio Video Control) used to control camcorders and other consumer video devices.[70]

DV

Digital Video (DV) is a standard protocol used by some digital camcorders. All DV cameras that recorded to tape media had a FireWire interface (usually a 4-conductor). All DV ports on camcorders only operate at the slower 100 Mbit/s speed of FireWire. This presents operational issues if the camcorder is daisy chained from a faster S400 device or via a common hub because any segment of a FireWire network cannot support multiple speed communication.[71]

Labeling of the port varied by manufacturer, with Sony using either its i.LINK trademark or the letters DV. Many digital video recorders have a DV-input FireWire connector (usually an alpha connector) that can be used to record video directly from a DV camcorder (computer-free). The protocol also accommodates remote control (play, rewind, etc.) of connected devices, and can stream time code from a camera.

USB is unsuitable for the transfer of the video data from tape because tape by its very nature does not support variable data rates. USB relies heavily on processor support and this was not guaranteed to service the USB port in time. The later move away from tape towards solid-state memory or disc media (e.g., SD Cards, optical disks or hard drives) has facilitated moving to USB transfer because file-based data can be moved in segments as required.

Frame grabbers

IEEE 1394 interface is commonly found in frame grabbers, devices that capture and digitize an analog video signal; however, IEEE 1394 is facing competition from the Gigabit Ethernet interface (citing speed and availability issues).[72]

iPod and iPhone synchronization and charging

iPods released prior to the iPod with Dock Connector used IEEE 1394a ports for transferring music files and charging, but in 2003, the FireWire port in iPods was succeeded by Apple's dock connector and IEEE 1394 to 30-pin connector cables were made. Apple Inc. dropped support for FireWire cables starting with iPod nano (4th Generation),[73] iPod touch (2nd Generation), and iPhone in favor of USB cables.

Security issues

Devices on a FireWire bus can communicate by direct memory access (DMA), where a device can use hardware to map internal memory to FireWire's physical memory space. The SBP-2 (Serial Bus Protocol 2) used by FireWire disk drives uses this capability to minimize interrupts and buffer copies. In SBP-2, the initiator (controlling device) sends a request by remotely writing a command into a specified area of the target's FireWire address space. This command usually includes buffer addresses in the initiator's FireWire Physical Address Space, which the target is supposed to use for moving I/O data to and from the initiator.[74]

On many implementations, particularly those like PCs and Macs using the popular OHCI, the mapping between the FireWire physical memory space and device physical memory is done in hardware, without operating system intervention. While this enables high-speed and low-latency communication between data sources and sinks without unnecessary copying (such as between a video camera and a software video recording application, or between a disk drive and the application buffers), this can also be a security or media rights-restriction risk if untrustworthy devices are attached to the bus and initiate a DMA attack. One of the applications known to exploit this to gain unauthorized access to running Windows, Mac OS and Linux computers is the spyware FinFireWire.[75] For this reason, high-security installations typically either use newer machines that map a virtual memory space to the FireWire physical memory space (such as a Power Mac G5, or any Sun workstation), disable relevant drivers at operating system level,[76] disable the OHCI hardware mapping between FireWire and device memory, physically disable the entire FireWire interface, or opt to not use FireWire or other hardware like PCMCIA, PC Card, ExpressCard or Thunderbolt, which expose DMA to external components.

An unsecured FireWire interface can be used to debug a machine whose operating system has crashed, and in some systems for remote-console operations. Windows natively supports this scenario of kernel debugging,[77] although newer Windows Insider Preview builds no longer include the ability out of the box.[78] On FreeBSD, the dcons driver provides both, using gdb as debugger. Under Linux, firescope[79] and fireproxy[80] exist.

See also

References

  1. ^ a b . 1394ta.org. Archived from the original on 2017-02-09. Retrieved 2017-03-07. The 1394 digital link standard was conceived in 1986 by technologists at Apple Computer
  2. ^ Yaghmour, Karim; Masters, Jon; Ben-Yossef, Gilad; Gerum, Philippe (2008-08-15). Building embedded Linux systems. O'Reilly Media, Inc. p. 70. ISBN 978-0-596-52968-0. Retrieved 2012-01-08.
  3. ^ . 1394 Trade Association. Archived from the original on 2014-04-04.
  4. ^ a b c d "Attachment 1 List of Patents in the 1394 Patent Portfolio" (PDF). Retrieved 2021-01-03.
  5. ^ a b "MPEG LA - 1394 Licensors".
  6. ^ a b "IEEE Standard 1394a - Thunderbolt". Retrieved 2016-06-14.
  7. ^ a b c Teener, Michael J. "What is Firewire?". Retrieved 2008-07-14.[self-published source?]
  8. ^ a b c "IEEE Standard for a High-Performance Serial Bus". IEEE STD. 1394-2008. 2008-10-21. doi:10.1109/IEEESTD.2008.4659233. ISBN 978-0-7381-5771-9.
  9. ^ "Apple Thunderbolt to FireWire Adapter". Retrieved 2019-12-19.
  10. ^ a b . Usb-ware.com. Archived from the original on 2007-03-16. Retrieved 2010-01-25.
  11. ^ Schmid, Patrick (2004-04-02). "Go External: FireWire 800". Tom's Hardware. Retrieved 2020-10-17.
  12. ^ . Archived from the original on 2017-10-08. Retrieved 2011-12-03.
  13. ^ a b "MPEG LA - 1394 FAQ".
  14. ^ "MPEG LA - 1394 License Agreement Express (hardcopy)".
  15. ^ "Google Patent search "IEEE 1394"".
  16. ^ . Archived from the original on 2011-11-04.
  17. ^ . cablelabs.com. Archived from the original on 2011-09-27.
  18. ^ "IEEE 1394 Tutorial". Retrieved 2019-08-27.
  19. ^ a b (PDF). I/ONE. Archived from the original (PDF) on 2007-01-07.
  20. ^ a b c d "IEEE 1394 (AKA 'FireWire' & 'iLink')" (PDF). Retrieved 2012-09-01.
  21. ^ a b c d e . Tindel.net. Archived from the original on 2012-04-26. Retrieved 2012-09-01.
  22. ^ IEEE p1394 Working Group (1996-08-30). IEEE Std 1394-1995 High Performance Serial Bus (PDF). IEEE. doi:10.1109/IEEESTD.1996.81049. ISBN 1-55937-583-3.
  23. ^ Davis, Larry. "Firewire Bus". interfacebus.com. Retrieved 2016-06-20.
  24. ^ a b "FireWire Developer Note". Developer.apple.com. 2008-04-28. Retrieved 2010-01-25.
  25. ^ IEEE p1394a Working Group (2000-06-30). IEEE Std 1394a-2000 High Performance Serial Bus — Amendment 1. IEEE. doi:10.1109/IEEESTD.2000.91614. ISBN 0-7381-1958-X. P1394a Draft 5.0[permanent dead link] available.
  26. ^ IEEE p1394b Working Group (2002-12-14). IEEE Std 1394b-2002 High Performance Serial Bus — Amendment 2. IEEE. ISBN 0-7381-3253-5.[permanent dead link]
  27. ^ a b "Encoder/Decoder". Iram.cs.berkeley.edu. 1997-12-17. Retrieved 2012-09-01.
  28. ^ a b Haden, Rhys (2007-06-30). "CP3070 Principles of Data Communications". Rhyshaden.com. Retrieved 2012-09-01.
  29. ^ "High Performance Serial Bus — Amendment 3". IEEE STD 1394c-2006. 2007-06-08. doi:10.1109/IEEESTD.2006.371044. ISBN 978-0-7381-5237-0.
  30. ^ "1394 Trade Association Announces 3.2 Gigabit per Second Speed for FireWire". 1394 Trade Association. 2007-12-12. Retrieved 2008-08-03.
  31. ^ (PDF). symwave.com. Archived from the original (PDF) on 6 March 2016. Retrieved 14 January 2022.{{cite web}}: CS1 maint: archived copy as title (link)
  32. ^ . DapTechnology. 2009-11-23. Archived from the original on 2012-05-17. Retrieved 2012-09-01.
  33. ^ Arthur, Charles (2008-10-17). "Steve Jobs explains why FireWire is dead". TheGuardian.com. Retrieved 2016-06-14.
  34. ^ Henehan, Burke (2012-01-06). "FireWire at 4Gbps-Impact on industrial apps". EE Times. Retrieved 2016-06-14.
  35. ^ "P1394d - IEEE Standard for a High-Performance Serial Bus - Amendment: IEEE 1394 Single-mode Fiber Fiber Physical Medium (PMD) Specification". IEEE Standards. IEEE. Retrieved 8 October 2012.
  36. ^ "IEEE-SA - Standards Board Approvals - March 2013". Retrieved 2016-06-14.
  37. ^ Baxter, Les (2007-11-01). "New developments in IEEE 1394 (a.k.a. FireWire)". Lightwave. Retrieved 2007-12-19.
  38. ^ "FreeBSD firewire(4) man page". Freebsd.org. 2006-04-01. Retrieved 2010-01-25.
  39. ^ "Linux FireWire wiki". Ieee1394.wiki.kernel.org. 2009-08-22. Retrieved 2010-01-25.
  40. ^ "Linux Unified Target wiki". linux-iscsi.org. 2012-07-21. Retrieved 2012-08-12.
  41. ^ . Docs.info.apple.com. Archived from the original on 2008-12-30. Retrieved 2010-01-25.
  42. ^ "Performance of 1394 devices may decrease after you install Windows XP Service Pack 2". Support.microsoft.com. 2006-06-01. Retrieved 2010-01-25.
  43. ^ "Microsoft to support 1394b standard". EETimes.com. Retrieved 2010-01-25.
  44. ^ . Technet2.microsoft.com. Archived from the original on 2008-05-17. Retrieved 2010-01-25.
  45. ^ . Technet2.microsoft.com. Archived from the original on 2008-04-30. Retrieved 2010-01-25.
  46. ^ . Technet2.microsoft.com. Archived from the original on 2008-05-11. Retrieved 2010-01-25.
  47. ^ "1394 Bus Driver in Windows 7". Microsoft.com. 2009-06-24. Retrieved 2010-01-25.
  48. ^ "Package: libraw1394-8 (1.3.0-4)". Retrieved 2010-09-12.
  49. ^ "Juju Migration". Retrieved 2012-10-10.
  50. ^ (PDF). Archived from the original (PDF) on 2010-05-27. Retrieved 2010-01-25.
  51. ^ rcliff. "How-To: Mac OS X Firewire HDTV recording". AVS Forum. Retrieved 2010-01-25.
  52. ^ Requests for Waiver of Section 76.640(b)(4)(ii) of the Commission's Rules (PDF), Federal Communications Commission, 2010-06-18, retrieved 2016-06-14
  53. ^ "FCC Douses FireWire Requirement For Set-Tops With IP". Multichannel News. Retrieved 2016-06-14.
  54. ^ (PDF), Qimaging, archived from the original (PDF) on 2010-10-11, retrieved 2016-06-14
  55. ^ . Directron.com. Archived from the original on 2012-09-04. Retrieved 2012-09-01.
  56. ^ . 2006-10-06. Archived from the original on 2006-10-06. Retrieved 2016-06-14.{{cite web}}: CS1 maint: unfit URL (link)
  57. ^ . Hanaalliance.org. Archived from the original on 2010-01-29. Retrieved 2010-01-25.
  58. ^ B.V., Richard Mourn, DAPTechnology (2013-02-05). "IEEE-1394 and AS5643 bring deterministic networking to high reliability Mil-Aero designs". Retrieved 2016-06-14.
  59. ^ "AS5643: IEEE-1394b Interface Requirements for Military and Aerospace Vehicle Applications - SAE International". Retrieved 2016-06-14.
  60. ^ Mourn, Richard (2011-09-07). "UAVs leverage IEEE-1394b data buses for success". EE Times. Retrieved 2016-06-14.
  61. ^ "FreeBSD 7.1 fwip(4) man page". Freebsd.org. 2005-07-16. Retrieved 2010-01-25.
  62. ^ "Windows Millennium Edition (Me) Support for IP over IEEE 1394 Bus". Support.microsoft.com. 2007-01-27. Retrieved 2012-09-01.
  63. ^ "Using IEEE 1394 (FireWire) Devices with Windows XP". Support.microsoft.com. 2007-12-01. Retrieved 2010-01-25.
  64. ^ "Discontinued Support for IP over 1394". Microsoft.com. 2004-12-08. Retrieved 2010-01-25.
  65. ^ "IP networking over the IEEE 1394 bus is not supported in Windows Vista and in all later versions of Windows". Support.microsoft.com. 2007-11-28. Retrieved 2010-01-25.
  66. ^ "New Networking Features in Windows Server 2008, Windows Vista, and Windows 7". Technet.microsoft.com. Retrieved 2010-01-25.
  67. ^ "1394 Bus Driver in Windows 7". Microsoft.com. 2009-06-18. Retrieved 2012-09-01.
  68. ^ "ubCore 1394 Firewire drivers". Unibrain.com. Retrieved 2012-09-01.
  69. ^ "libdc1394: IIDC/DCAM specifications". Damien.douxchamps.net. Retrieved 2010-01-25.
  70. ^ . Microsoft Developer Network. Archived from the original on 2009-05-26. Retrieved 2009-10-14.
  71. ^ IEEE 1394a specification.
  72. ^ "How to Establish VGA to Firewire Connection". Epiphan.com. Retrieved 2012-09-01.
  73. ^ "iPod nano: Charging the battery". Retrieved 2013-09-14.
  74. ^ "Tool Physically Hacks Windows — Security/Vulnerabilities — DarkReading". DarkReading. Retrieved 2010-01-25.
  75. ^ "Tactical IT Intrusion Portfolio: FINFIREWIRE" (PDF) (PDF). Gamma International. 2011-12-08. Retrieved 2014-04-28.
  76. ^ "Blocking the SBP-2 Driver to Reduce 1394 DMA Threats to BitLocker". Microsoft. 2011-03-04. Retrieved 2011-03-15.
  77. ^ "Setting Up Kernel-Mode Debugging over a 1394 Cable Manually". docs.microsoft.com. 2017-05-23. Retrieved 2017-09-02.
  78. ^ "KD 1394 Work-Around". blogs.msdn.microsoft.com. 2016-08-11. Retrieved 2017-09-02.
  79. ^ "Andi Kleen: [ANNOUNCE] firescope for i386/x86-64 released". LKML. 2006-04-04. Retrieved 2010-01-25.
  80. ^ "Bernhard Kaindl's fireproxy forwards the gdb remote protocol to FireWire. It allows reading and writing remote memory by gdb". Ieee1394.wiki.kernel.org. 2009-11-07. Retrieved 2010-01-25.

Further reading

  • INCITS T10 Project 1467D (2004). Information technology—Serial Bus Protocol 3 (SBP-3). ANSI INCITS. ANSI INCITS 375-2004.
  • Anderson, Don (1999). FireWire System Architecture. MindShare, Inc. ISBN 0-201-48535-4.
  • "IEEE Standard for a High-Performance Serial Bus". IEEE STD. 1394-2008. 2008-10-21. doi:10.1109/IEEESTD.2008.4659233. ISBN 978-0-7381-5771-9.

External links

ieee, 1394, firewire, redirects, here, other, uses, firewire, disambiguation, interface, standard, serial, high, speed, communications, isochronous, real, time, data, transfer, developed, late, 1980s, early, 1990s, apple, cooperation, with, number, companies, . FireWire redirects here For other uses see Firewire disambiguation IEEE 1394 is an interface standard for a serial bus for high speed communications and isochronous real time data transfer It was developed in the late 1980s and early 1990s by Apple in cooperation with a number of companies primarily Sony and Panasonic Apple called the interface FireWire It is also known by the brand names i LINK Sony and Lynx Texas Instruments IEEE 1394 InterfaceTypeSerialProduction historyDesignerApple 1394a b IEEE P1394 Working Group Sony Panasonic etc Designed1986 37 years ago 1986 1 ManufacturerVariousProduced1994 currentSuperseded byThunderbolt and USB 3 0 for consumer use General specificationsLength4 5 meters maximumWidth1Hot pluggableYesDaisy chainYes up to 63 devicesAudio signalNoVideo signalNoPins4 6 9ElectricalMax voltage30 VMax current1 5 ADataData signalYesBitrate400 3200 Mbit s 50 400 MB s The copper cable used in its most common implementation can be up to 4 5 metres 15 ft long Power and data is carried over this cable allowing devices with moderate power requirements to operate without a separate power supply FireWire is also available in Cat 5 and optical fiber versions The 1394 interface is comparable to USB USB was developed subsequently and gained much greater market share USB requires a host controller whereas IEEE 1394 is cooperatively managed by the connected devices 2 Contents 1 History and development 2 Patent considerations 3 Technical specifications 3 1 Encoding scheme 3 2 Arbitration 4 Standards and versions 4 1 FireWire 400 IEEE 1394 1995 4 1 1 Improvements IEEE 1394a 2000 4 2 FireWire 800 IEEE 1394b 2002 4 3 FireWire S800T IEEE 1394c 2006 4 4 FireWire S1600 and S3200 4 5 Future enhancements including P1394d 5 Operating system support 6 Cable TV system support 7 Comparison with USB 8 Common applications 8 1 Consumer automobiles 8 2 Consumer audio and video 8 3 Military and aerospace vehicles 8 4 General networking 8 5 IIDC 8 6 DV 8 7 Frame grabbers 8 8 iPod and iPhone synchronization and charging 9 Security issues 10 See also 11 References 12 Further reading 13 External linksHistory and development Edit The 6 conductor and 4 conductor alpha FireWire 400 socket A 9 pin FireWire 800 connector The alternative Ethernet style cabling used by 1394c 4 conductor left and 6 conductor right FireWire 400 alpha connectors A PCI expansion card that contains four FireWire 400 connectors FireWire is Apple s name for the IEEE 1394 High Speed Serial Bus Its development was initiated by Apple 1 in 1986 3 and developed by the IEEE P1394 Working Group largely driven by contributions from Sony 102 patents Apple 58 patents and Panasonic 46 patents in addition to contributions made by engineers from Philips LG Electronics Toshiba Hitachi Canon 4 INMOS SGS Thomson now STMicroelectronics 5 and Texas Instruments IEEE 1394 is a serial bus architecture for high speed data transfer FireWire is a serial bus meaning that information is transferred one bit at a time Parallel buses utilize a number of different physical connections and as such are usually more costly and typically heavier 6 IEEE 1394 fully supports both isochronous and asynchronous applications Apple intended FireWire to be a serial replacement for the parallel SCSI bus while providing connectivity for digital audio and video equipment Apple s development began in the late 1980s later presented to the IEEE 7 and was completed in January 1995 In 2007 IEEE 1394 was a composite of four documents the original IEEE Std 1394 1995 the IEEE Std 1394a 2000 amendment the IEEE Std 1394b 2002 amendment and the IEEE Std 1394c 2006 amendment On June 12 2008 all these amendments as well as errata and some technical updates were incorporated into a superseding standard IEEE Std 1394 2008 8 Apple first included onboard FireWire in some of its 1999 Macintosh models though it had been a build to order option on some models since 1997 and most Apple Macintosh computers manufactured in the years 2000 through 2011 included FireWire ports However in February 2011 Apple introduced the first commercially available computer with Thunderbolt Apple released its last computers with FireWire in 2012 By 2014 Thunderbolt had become a standard feature across Apple s entire line of computers later with the exception of the 12 inch MacBook introduced in 2015 which featured only a sole USB C port effectively becoming the spiritual successor to FireWire in the Apple ecosystem Apple s last products with FireWire the Thunderbolt Display and 2012 13 inch MacBook Pro were discontinued in 2016 Apple still sells a Thunderbolt to FireWire Adapter which provides one FireWire 800 port 9 A separate adapter is required to use it with Thunderbolt 3 Sony s implementation of the system i LINK used a smaller connector with only four signal conductors omitting the two conductors that provide power for devices in favor of a separate power connector This style was later added into the 1394a amendment 7 This port is sometimes labeled S100 or S400 to indicate speed in Mbit s The system was commonly used to connect data storage devices and DV digital video cameras but was also popular in industrial systems for machine vision and professional audio systems Many users preferred it over the more common USB 2 0 for its then greater effective speed and power distribution capabilities Benchmarks show that the sustained data transfer rates are higher for FireWire than for USB 2 0 but lower than USB 3 0 Results are marked on Apple Mac OS X but more varied on Microsoft Windows 10 11 Patent considerations EditImplementation of IEEE 1394 12 is said to require use of 261 issued international patents 4 held by ten 5 corporations Use of these patents requires licensing use without license generally constitutes patent infringement 13 Companies holding IEEE 1394 IP formed a patent pool with MPEG LA LLC as the license administrator to whom they licensed patents MPEG LA sublicenses these patents to providers of equipment implementing IEEE 1394 Under the typical patent pool license a royalty of US 0 25 per unit is payable by the manufacturer upon the manufacture of each 1394 finished product 13 no royalties are payable by users The last of the patents MY 120654 by Sony expired on November 30 2020 As of November 30 2020 update the following are patent holders of the IEEE 1394 standard as listed in the patent pool managed by MPEG LA 4 Company Total patentsSony 102Apple Inc 58Panasonic 46Philips 43LG Electronics 11Toshiba 10Hitachi 4Canon Inc 1Compaq 1Samsung Electronics 1A person or company may review the actual 1394 Patent Portfolio License upon request to MPEG LA 14 MPEG LA does not provide assurance of protection to licensees beyond its own patents At least one formerly licensed patent is known to have been removed from the pool 4 and other hardware patents exist that reference IEEE 1394 15 The 1394 High Performance Serial Bus Trade Association the 1394 TA was formed to aid the marketing of IEEE 1394 Its bylaws prohibit dealing with intellectual property issues 16 The 1394 Trade Association operates on an individual no cost membership basis to further enhancements to 1394 standards The Trade Association also is the library source for all 1394 documentation and standards available Technical specifications EditFireWire can connect up to 63 peripherals in a tree or daisy chain topology 17 as opposed to Parallel SCSI s electrical bus topology It allows peer to peer device communication such as communication between a scanner and a printer to take place without using system memory or the CPU FireWire also supports multiple host controllers per bus It is designed to support plug and play and hot swapping The copper cable it uses in its most common implementation can be up to 4 5 metres 15 ft long and is more flexible than most parallel SCSI cables In its six conductor or nine conductor variations it can supply up to 45 watts of power per port at up to 30 volts 18 allowing moderate consumption devices to operate without a separate power supply FireWire devices implement the ISO IEC 13213 configuration ROM model for device configuration and identification to provide plug and play capability All FireWire devices are identified by an IEEE EUI 64 unique identifier in addition to well known codes indicating the type of device and the protocols it supports FireWire devices are organized at the bus in a tree topology Each device has a unique self ID One of the nodes is elected root node and always has the highest ID The self IDs are assigned during the self ID process which happens after each bus resets The order in which the self IDs are assigned is equivalent to traversing the tree depth first post order FireWire is capable of safely operating critical systems due to the way multiple devices interact with the bus and how the bus allocates bandwidth to the devices FireWire is capable of both asynchronous and isochronous transfer methods at once Isochronous data transfers are transfers for devices that require continuous guaranteed bandwidth 6 In an aircraft for instance isochronous devices include control of the rudder mouse operations and data from pressure sensors outside the aircraft All these elements require constant uninterrupted bandwidth To support both elements FireWire dedicates a certain percentage to isochronous data and the rest to asynchronous data In IEEE 1394 80 of the bus is reserved for isochronous cycles leaving asynchronous data with a minimum of 20 of the bus 19 Encoding scheme Edit FireWire uses Data Strobe encoding D S encoding 20 In D S encoding two non return to zero NRZ signals are used to transmit the data with high reliability The NRZ signal sent is fed with the clock signal through an XOR gate creating a strobe signal 20 This strobe is then put through another XOR gate along with the data signal to reconstruct the clock 20 This in turn acts as the bus s phase locked loop for synchronization purposes 20 Arbitration Edit The process of the bus deciding which node gets to transmit data at what time is known as arbitration 21 Each arbitration round lasts about 125 microseconds 21 During the round the root node device nearest the processor sends a cycle start packet 21 All nodes requiring data transfer respond with the closest node winning 21 After the node is finished the remaining nodes take turns in order This repeats until all the devices have used their portion of the 125 microseconds with isochronous transfers having priority 21 Standards and versions EditThe previous standards and its three published amendments are now incorporated into a superseding standard IEEE 1394 2008 8 The features individually added give a good history on the development path FireWire 400 IEEE 1394 1995 Edit The original release of IEEE 1394 1995 22 specified what is now known as FireWire 400 It can transfer data between devices at 100 200 or 400 Mbit s half duplex 23 data rates the actual transfer rates are 98 304 196 608 and 393 216 Mbit s i e 12 288 24 576 and 49 152 MB s respectively 7 These different transfer modes are commonly referred to as S100 S200 and S400 Cable length is limited to 4 5 metres 14 8 ft although up to 16 cables can be daisy chained using active repeaters external hubs or internal hubs are often present in FireWire equipment The S400 standard limits any configuration s maximum cable length to 72 metres 236 ft The 6 conductor connector is commonly found on desktop computers and can supply the connected device with power The 6 conductor powered connector now referred to as an alpha connector adds power output to support external devices Typically a device can pull about 7 to 8 watts from the port however the voltage varies significantly from different devices 24 Voltage is specified as unregulated and should nominally be about 25 volts range 24 to 30 Apple s implementation on laptops is typically related to battery power and can be as low as 9 V 24 Improvements IEEE 1394a 2000 Edit An amendment IEEE 1394a was released in 2000 25 which clarified and improved the original specification It added support for asynchronous streaming quicker bus reconfiguration packet concatenation and a power saving suspend mode IEEE 1394a offers a couple of advantages over the original IEEE 1394 1995 1394a is capable of arbitration accelerations allowing the bus to accelerate arbitration cycles to improve efficiency It also allows for arbitrated short bus reset in which a node can be added or dropped without causing a big drop in isochronous transmission 19 1394a also standardized the 4 conductor alpha connector developed by Sony and trademarked as i LINK already widely in use on consumer devices such as camcorders most PC laptops a number of PC desktops and other small FireWire devices The 4 conductor connector is fully data compatible with 6 conductor alpha interfaces but lacks power connectors FireWire 800 port center FireWire 800 IEEE 1394b 2002 Edit A 9 conductor bilingual connector IEEE 1394b 2002 26 introduced FireWire 800 Apple s name for the 9 conductor S800 bilingual version of the IEEE 1394b standard This specification and corresponding products allow a transfer rate of 786 432 Mbit s full duplex via a new encoding scheme termed beta mode It is backwards compatible with the slower rates and 6 conductor alpha connectors of FireWire 400 However while the IEEE 1394a and IEEE 1394b standards are compatible FireWire 800 s connector referred to as a beta connector is different from FireWire 400 s alpha connectors making legacy cables incompatible A bilingual cable allows the connection of older devices to the newer port In 2003 Apple was the first to introduce commercial products with the new connector The full IEEE 1394b specification supports data rates up to 3200 Mbit s i e 400 MB s over beta mode or optical connections up to 100 metres 330 ft in length Standard Category 5e unshielded twisted pair supports 100 metres 330 ft at S100 The original 1394 and 1394a standards used data strobe D S encoding renamed to alpha mode with the cables while 1394b added a data encoding scheme called 8b 10b referred to as beta mode Beta mode is based on 8b 10b from Gigabit Ethernet also used for many other protocols 8b 10b encoding involves expanding an 8 bit data word into 10 bits with the extra bits after the 5th and 8th data bits 27 The partitioned data is sent through a Running Disparity calculator function 27 The Running Disparity calculator attempts to keep the number of 1s transmitted equal to 0s 28 thereby assuring a DC balanced signal Then the different partitions are sent through a 5b 6b encoder for the 5 bit partition and a 3b 4b encoder for the 3 bit partition This gives the packet the ability to have at least two 1s ensuring synchronization of the PLL at the receiving end to the correct bit boundaries for reliable transfer 28 An additional function of the coding scheme is to support the arbitration for bus access and general bus control This is possible due to the surplus symbols afforded by the 8b 10b expansion While 8 bit symbols can encode a maximum of 256 values 10 bit symbols permit the encoding of up to 1024 Symbols invalid for the current state of the receiving PHY indicate data errors FireWire S800T IEEE 1394c 2006 Edit IEEE 1394c 2006 was published on June 8 2007 29 It provided a major technical improvement namely new port specification that provides 800 Mbit s over the same 8P8C Ethernet connectors with Category 5e cable which is specified in IEEE 802 3 clause 40 gigabit Ethernet over copper twisted pair along with a corresponding automatic negotiation that allows the same port to connect to either IEEE Std 1394 or IEEE 802 3 Ethernet devices Though the potential for a combined Ethernet and FireWire 8P8C port is intriguing citation needed as of November 2008 update no products or chipsets include this capability FireWire S1600 and S3200 Edit In December 2007 the 1394 Trade Association announced that products would be available before the end of 2008 using the S1600 and S3200 modes that for the most part had already been defined in 1394b and were further clarified in IEEE Std 1394 2008 8 The 1 572864 Gbit s and 3 145728 Gbit s devices use the same 9 conductor beta connectors as the existing FireWire 800 and are fully compatible with existing S400 and S800 devices It competes with USB 3 0 30 S1600 Symwave 31 and S3200 Dap Technology 32 development units have been made however because of FPGA technology DapTechnology targeted S1600 implementations first with S3200 not becoming commercially available until 2012 Steve Jobs declared FireWire dead in 2008 33 As of 2012 update there were few S1600 devices released with a Sony camera being the only notable user 34 Future enhancements including P1394d Edit A project named IEEE P1394d was formed by the IEEE on March 9 2009 to add single mode fiber as an additional transport medium to FireWire 35 The project was withdrawn in 2013 36 Other future iterations of FireWire were expected to increase speed to 6 4 Gbit s and additional connectors such as the small multimedia interface 37 citation needed Operating system support EditFull support for IEEE 1394a and 1394b is available for Microsoft Windows FreeBSD 38 Linux 39 40 Apple Mac OS 8 6 through Mac OS 9 41 NetBSD and Haiku In Windows XP a degradation in performance of 1394 devices may have occurred with installation of Service Pack 2 This was resolved in Hotfix 885222 42 and in SP3 Some FireWire hardware manufacturers also provide custom device drivers that replace the Microsoft OHCI host adapter driver stack enabling S800 capable devices to run at full 800 Mbit s transfer rates on older versions of Windows XP SP2 w o Hotfix 885222 and Windows Vista At the time of its release Microsoft Windows Vista supported only 1394a with assurances that 1394b support would come in the next service pack 43 Service Pack 1 for Microsoft Windows Vista has since been released however the addition of 1394b support is not mentioned anywhere in the release documentation 44 45 46 The 1394 bus driver was rewritten for Windows 7 to provide support for higher speeds and alternative media 47 In Linux support was originally provided by libraw1394 making direct communication between user space and IEEE 1394 buses 48 Subsequently a new kernel driver stack nicknamed JuJu has been implemented 49 Cable TV system support EditUnder FCC Code 47 CFR 76 640 section 4 subsections 1 and 2 Cable TV providers in the US with digital systems must upon request of a customer have provided a high definition capable cable box with a functional FireWire interface This applied only to customers leasing high definition capable cable boxes from their cable provider after April 1 2004 50 The interface can be used to display or record Cable TV including HDTV programming 51 In June 2010 the FCC issued an order that permitted set top boxes to include IP based interfaces in place of FireWire 52 53 Comparison with USB EditWhile both technologies provide similar end results there are fundamental differences between USB and FireWire USB requires the presence of a host controller typically a PC which connects point to point with the USB device This allows for simpler and lower cost peripherals at the cost of lowered functionality of the bus Intelligent hubs are required to connect multiple USB devices to a single USB host controller By contrast FireWire is essentially a peer to peer network where any device may serve as the host or client allowing multiple devices to be connected on one bus 54 The FireWire host interface supports DMA and memory mapped devices allowing data transfers to happen without loading the host CPU with interrupts and buffer copy operations 10 55 Additionally FireWire features two data buses for each segment of the bus network whereas until USB 3 0 USB featured only one This means that FireWire can have communication in both directions at the same time full duplex whereas USB communication prior to 3 0 can only occur in one direction at any one time half duplex citation needed While USB 2 0 expanded into the fully backwards compatible USB 3 0 and 3 1 using the same main connector type FireWire used a different connector between 400 and 800 implementations Common applications EditConsumer automobiles Edit IDB 1394 Customer Convenience Port CCP was the automotive version of the 1394 standard 56 Consumer audio and video Edit IEEE 1394 was the High Definition Audio Video Network Alliance HANA standard connection interface for A V audio visual component communication and control 57 HANA was dissolved in September 2009 and the 1394 Trade Association assumed control of all HANA generated intellectual property Military and aerospace vehicles Edit SAE Aerospace standard AS5643 originally released in 2004 and reaffirmed in 2013 establishes IEEE 1394 standards as a military and aerospace databus network in those vehicles AS5643 is utilized by several large programs including the F 35 Lightning II the X 47B UCAV aircraft AGM 154 weapon and JPSS 1 polar satellite for NOAA AS5643 combines existing 1394 2008 features like looped topology with additional features like transformer isolation and time synchronization to create deterministic double and triple fault tolerant data bus networks 58 59 60 General networking Edit FireWire can be used for ad hoc terminals only no routers except where a FireWire hub is used computer networks Specifically RFC 2734 specifies how to run IPv4 over the FireWire interface and RFC 3146 specifies how to run IPv6 Mac OS X Linux and FreeBSD include support for networking over FireWire 61 Windows 95 Windows 98 Windows Me 62 Windows XP and Windows Server 2003 include native support for IEEE 1394 networking 63 Windows 2000 does not have native support but may work with third party drivers A network can be set up between two computers using a single standard FireWire cable or by multiple computers through use of a hub This is similar to Ethernet networks with the major differences being transfer speed conductor length and the fact that standard FireWire cables can be used for point to point communication On December 4 2004 Microsoft announced that it would discontinue support for IP networking over the FireWire interface in all future versions of Microsoft Windows 64 Consequently support for this feature is absent from Windows Vista and later Windows releases 65 66 Microsoft rewrote their 1394 driver in Windows 7 67 but networking support for FireWire is not present Unibrain offers free FireWire networking drivers for Windows called ubCore 68 which support Windows Vista and later versions Some models of the PlayStation 2 console had an i LINK branded 1394 connector This was used for networking until the release of an Ethernet adapter late in the console s lifespan but very few software titles supported the feature citation needed IIDC Edit IIDC Instrumentation amp Industrial Digital Camera is the FireWire data format standard for live video and is used by Apple s iSight A V camera The system was designed for machine vision systems 69 but is also used for other computer vision applications and for some webcams Although they are easily confused since they both run over FireWire IIDC is different from and incompatible with the ubiquitous AV C Audio Video Control used to control camcorders and other consumer video devices 70 DV Edit Digital Video DV is a standard protocol used by some digital camcorders All DV cameras that recorded to tape media had a FireWire interface usually a 4 conductor All DV ports on camcorders only operate at the slower 100 Mbit s speed of FireWire This presents operational issues if the camcorder is daisy chained from a faster S400 device or via a common hub because any segment of a FireWire network cannot support multiple speed communication 71 Labeling of the port varied by manufacturer with Sony using either its i LINK trademark or the letters DV Many digital video recorders have a DV input FireWire connector usually an alpha connector that can be used to record video directly from a DV camcorder computer free The protocol also accommodates remote control play rewind etc of connected devices and can stream time code from a camera USB is unsuitable for the transfer of the video data from tape because tape by its very nature does not support variable data rates USB relies heavily on processor support and this was not guaranteed to service the USB port in time The later move away from tape towards solid state memory or disc media e g SD Cards optical disks or hard drives has facilitated moving to USB transfer because file based data can be moved in segments as required Frame grabbers Edit IEEE 1394 interface is commonly found in frame grabbers devices that capture and digitize an analog video signal however IEEE 1394 is facing competition from the Gigabit Ethernet interface citing speed and availability issues 72 iPod and iPhone synchronization and charging Edit iPods released prior to the iPod with Dock Connector used IEEE 1394a ports for transferring music files and charging but in 2003 the FireWire port in iPods was succeeded by Apple s dock connector and IEEE 1394 to 30 pin connector cables were made Apple Inc dropped support for FireWire cables starting with iPod nano 4th Generation 73 iPod touch 2nd Generation and iPhone in favor of USB cables Security issues EditDevices on a FireWire bus can communicate by direct memory access DMA where a device can use hardware to map internal memory to FireWire s physical memory space The SBP 2 Serial Bus Protocol 2 used by FireWire disk drives uses this capability to minimize interrupts and buffer copies In SBP 2 the initiator controlling device sends a request by remotely writing a command into a specified area of the target s FireWire address space This command usually includes buffer addresses in the initiator s FireWire Physical Address Space which the target is supposed to use for moving I O data to and from the initiator 74 On many implementations particularly those like PCs and Macs using the popular OHCI the mapping between the FireWire physical memory space and device physical memory is done in hardware without operating system intervention While this enables high speed and low latency communication between data sources and sinks without unnecessary copying such as between a video camera and a software video recording application or between a disk drive and the application buffers this can also be a security or media rights restriction risk if untrustworthy devices are attached to the bus and initiate a DMA attack One of the applications known to exploit this to gain unauthorized access to running Windows Mac OS and Linux computers is the spyware FinFireWire 75 For this reason high security installations typically either use newer machines that map a virtual memory space to the FireWire physical memory space such as a Power Mac G5 or any Sun workstation disable relevant drivers at operating system level 76 disable the OHCI hardware mapping between FireWire and device memory physically disable the entire FireWire interface or opt to not use FireWire or other hardware like PCMCIA PC Card ExpressCard or Thunderbolt which expose DMA to external components An unsecured FireWire interface can be used to debug a machine whose operating system has crashed and in some systems for remote console operations Windows natively supports this scenario of kernel debugging 77 although newer Windows Insider Preview builds no longer include the ability out of the box 78 On FreeBSD the dcons driver provides both using gdb as debugger Under Linux firescope 79 and fireproxy 80 exist See also EditDMA attack HAVi Linux IEEE 1394 target List of interface bit rates Pin control attackReferences Edit a b 1394ta org 1394ta org Archived from the original on 2017 02 09 Retrieved 2017 03 07 The 1394 digital link standard was conceived in 1986 by technologists at Apple Computer Yaghmour Karim Masters Jon Ben Yossef Gilad Gerum Philippe 2008 08 15 Building embedded Linux systems O Reilly Media Inc p 70 ISBN 978 0 596 52968 0 Retrieved 2012 01 08 What Is FireWire 1394 Trade Association Archived from the original on 2014 04 04 a b c d Attachment 1 List of Patents in the 1394 Patent Portfolio PDF Retrieved 2021 01 03 a b MPEG LA 1394 Licensors a b IEEE Standard 1394a Thunderbolt Retrieved 2016 06 14 a b c Teener Michael J What is Firewire Retrieved 2008 07 14 self published source a b c IEEE Standard for a High Performance Serial Bus IEEE STD 1394 2008 2008 10 21 doi 10 1109 IEEESTD 2008 4659233 ISBN 978 0 7381 5771 9 Apple Thunderbolt to FireWire Adapter Retrieved 2019 12 19 a b FireWire USB Comparison Usb ware com Archived from the original on 2007 03 16 Retrieved 2010 01 25 Schmid Patrick 2004 04 02 Go External FireWire 800 Tom s Hardware Retrieved 2020 10 17 MPEG LA 1394 License Agreement Archived from the original on 2017 10 08 Retrieved 2011 12 03 a b MPEG LA 1394 FAQ MPEG LA 1394 License Agreement Express hardcopy Google Patent search IEEE 1394 BYLAWS OF THE 1394 TRADE ASSOCIATION Archived from the original on 2011 11 04 IEEE 1394 The Multimedia Bus of The Future cablelabs com Archived from the original on 2011 09 27 IEEE 1394 Tutorial Retrieved 2019 08 27 a b IEEE 1394 Architecture PDF I ONE Archived from the original PDF on 2007 01 07 a b c d IEEE 1394 AKA FireWire amp iLink PDF Retrieved 2012 09 01 a b c d e IEEE 1394 and Linux Tindel net Archived from the original on 2012 04 26 Retrieved 2012 09 01 IEEE p1394 Working Group 1996 08 30 IEEE Std 1394 1995 High Performance Serial Bus PDF IEEE doi 10 1109 IEEESTD 1996 81049 ISBN 1 55937 583 3 Davis Larry Firewire Bus interfacebus com Retrieved 2016 06 20 a b FireWire Developer Note Developer apple com 2008 04 28 Retrieved 2010 01 25 IEEE p1394a Working Group 2000 06 30 IEEE Std 1394a 2000 High Performance Serial Bus Amendment 1 IEEE doi 10 1109 IEEESTD 2000 91614 ISBN 0 7381 1958 X P1394a Draft 5 0 permanent dead link available IEEE p1394b Working Group 2002 12 14 IEEE Std 1394b 2002 High Performance Serial Bus Amendment 2 IEEE ISBN 0 7381 3253 5 permanent dead link a b Encoder Decoder Iram cs berkeley edu 1997 12 17 Retrieved 2012 09 01 a b Haden Rhys 2007 06 30 CP3070 Principles of Data Communications Rhyshaden com Retrieved 2012 09 01 High Performance Serial Bus Amendment 3 IEEE STD 1394c 2006 2007 06 08 doi 10 1109 IEEESTD 2006 371044 ISBN 978 0 7381 5237 0 1394 Trade Association Announces 3 2 Gigabit per Second Speed for FireWire 1394 Trade Association 2007 12 12 Retrieved 2008 08 03 Archived copy PDF symwave com Archived from the original PDF on 6 March 2016 Retrieved 14 January 2022 a href Template Cite web html title Template Cite web cite web a CS1 maint archived copy as title link Fires Up World s First 3 2 Gigabit IEEE 1394b FireWire SOC Solution DapTechnology 2009 11 23 Archived from the original on 2012 05 17 Retrieved 2012 09 01 Arthur Charles 2008 10 17 Steve Jobs explains why FireWire is dead TheGuardian com Retrieved 2016 06 14 Henehan Burke 2012 01 06 FireWire at 4Gbps Impact on industrial apps EE Times Retrieved 2016 06 14 P1394d IEEE Standard for a High Performance Serial Bus Amendment IEEE 1394 Single mode Fiber Fiber Physical Medium PMD Specification IEEE Standards IEEE Retrieved 8 October 2012 IEEE SA Standards Board Approvals March 2013 Retrieved 2016 06 14 Baxter Les 2007 11 01 New developments in IEEE 1394 a k a FireWire Lightwave Retrieved 2007 12 19 FreeBSD firewire 4 man page Freebsd org 2006 04 01 Retrieved 2010 01 25 Linux FireWire wiki Ieee1394 wiki kernel org 2009 08 22 Retrieved 2010 01 25 Linux Unified Target wiki linux iscsi org 2012 07 21 Retrieved 2012 08 12 FireWire 2 2 2 and 2 3 3 Information and Download Docs info apple com Archived from the original on 2008 12 30 Retrieved 2010 01 25 Performance of 1394 devices may decrease after you install Windows XP Service Pack 2 Support microsoft com 2006 06 01 Retrieved 2010 01 25 Microsoft to support 1394b standard EETimes com Retrieved 2010 01 25 Notable Changes in Windows Vista Service Pack 1 Technet2 microsoft com Archived from the original on 2008 05 17 Retrieved 2010 01 25 Release Notes for Windows Vista Service Pack 1 Technet2 microsoft com Archived from the original on 2008 04 30 Retrieved 2010 01 25 Hotfixes and Security Updates included in Windows Vista Service Pack 1 Technet2 microsoft com Archived from the original on 2008 05 11 Retrieved 2010 01 25 1394 Bus Driver in Windows 7 Microsoft com 2009 06 24 Retrieved 2010 01 25 Package libraw1394 8 1 3 0 4 Retrieved 2010 09 12 Juju Migration Retrieved 2012 10 10 page 145 PDF Archived from the original PDF on 2010 05 27 Retrieved 2010 01 25 rcliff How To Mac OS X Firewire HDTV recording AVS Forum Retrieved 2010 01 25 Requests for Waiver of Section 76 640 b 4 ii of the Commission s Rules PDF Federal Communications Commission 2010 06 18 retrieved 2016 06 14 FCC Douses FireWire Requirement For Set Tops With IP Multichannel News Retrieved 2016 06 14 FireWire vs USB 2 0 PDF Qimaging archived from the original PDF on 2010 10 11 retrieved 2016 06 14 firewirevsusb Directron com Archived from the original on 2012 09 04 Retrieved 2012 09 01 IDB Forum Homepage 2006 10 06 Archived from the original on 2006 10 06 Retrieved 2016 06 14 a href Template Cite web html title Template Cite web cite web a CS1 maint unfit URL link About HANA Hanaalliance org Archived from the original on 2010 01 29 Retrieved 2010 01 25 B V Richard Mourn DAPTechnology 2013 02 05 IEEE 1394 and AS5643 bring deterministic networking to high reliability Mil Aero designs Retrieved 2016 06 14 AS5643 IEEE 1394b Interface Requirements for Military and Aerospace Vehicle Applications SAE International Retrieved 2016 06 14 Mourn Richard 2011 09 07 UAVs leverage IEEE 1394b data buses for success EE Times Retrieved 2016 06 14 FreeBSD 7 1 fwip 4 man page Freebsd org 2005 07 16 Retrieved 2010 01 25 Windows Millennium Edition Me Support for IP over IEEE 1394 Bus Support microsoft com 2007 01 27 Retrieved 2012 09 01 Using IEEE 1394 FireWire Devices with Windows XP Support microsoft com 2007 12 01 Retrieved 2010 01 25 Discontinued Support for IP over 1394 Microsoft com 2004 12 08 Retrieved 2010 01 25 IP networking over the IEEE 1394 bus is not supported in Windows Vista and in all later versions of Windows Support microsoft com 2007 11 28 Retrieved 2010 01 25 New Networking Features in Windows Server 2008 Windows Vista and Windows 7 Technet microsoft com Retrieved 2010 01 25 1394 Bus Driver in Windows 7 Microsoft com 2009 06 18 Retrieved 2012 09 01 ubCore 1394 Firewire drivers Unibrain com Retrieved 2012 09 01 libdc1394 IIDC DCAM specifications Damien douxchamps net Retrieved 2010 01 25 AV C Overview Microsoft Developer Network Archived from the original on 2009 05 26 Retrieved 2009 10 14 IEEE 1394a specification How to Establish VGA to Firewire Connection Epiphan com Retrieved 2012 09 01 iPod nano Charging the battery Retrieved 2013 09 14 Tool Physically Hacks Windows Security Vulnerabilities DarkReading DarkReading Retrieved 2010 01 25 Tactical IT Intrusion Portfolio FINFIREWIRE PDF PDF Gamma International 2011 12 08 Retrieved 2014 04 28 Blocking the SBP 2 Driver to Reduce 1394 DMA Threats to BitLocker Microsoft 2011 03 04 Retrieved 2011 03 15 Setting Up Kernel Mode Debugging over a 1394 Cable Manually docs microsoft com 2017 05 23 Retrieved 2017 09 02 KD 1394 Work Around blogs msdn microsoft com 2016 08 11 Retrieved 2017 09 02 Andi Kleen ANNOUNCE firescope for i386 x86 64 released LKML 2006 04 04 Retrieved 2010 01 25 Bernhard Kaindl s fireproxy forwards the gdb remote protocol to FireWire It allows reading and writing remote memory by gdb Ieee1394 wiki kernel org 2009 11 07 Retrieved 2010 01 25 Further reading EditINCITS T10 Project 1467D 2004 Information technology Serial Bus Protocol 3 SBP 3 ANSI INCITS ANSI INCITS 375 2004 Anderson Don 1999 FireWire System Architecture MindShare Inc ISBN 0 201 48535 4 IEEE Standard for a High Performance Serial Bus IEEE STD 1394 2008 2008 10 21 doi 10 1109 IEEESTD 2008 4659233 ISBN 978 0 7381 5771 9 External links Edit Wikimedia Commons has media related to IEEE 1394 1394 Trade Association at the Wayback Machine archived 2019 03 28 1394 Standards Orientation Introduction at the Wayback Machine archived 2021 02 03 IEEE 1394 connectors pinout Retrieved from https en wikipedia org w index php title IEEE 1394 amp oldid 1146424213, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.