fbpx
Wikipedia

I-III-VI semiconductors

I-III-VI2 semiconductors are solid semiconducting materials that contain three or more chemical elements belonging to groups I, III and VI (IUPAC groups 1/11, 13 and 16) of the periodic table. They usually involve two metals and one chalcogen. Some of these materials have a direct bandgap, Eg, of approximately 1.5 eV, which makes them efficient absorbers of sunlight and thus potential solar cell materials.[1] A fourth element is often added to a I-III-VI2 material to tune the bandgap for maximum solar cell efficiency. A representative example is copper indium gallium selenide (CuInxGa(1–x)Se2, Eg = 1.7–1.0 eV for x = 0–1[2]), which is used in copper indium gallium selenide solar cells.

Optical absorption spectrum of β-CuGaO2 powder (top left inset) obtained from diffuse reflection measurements. The right inset shows the Shockley-Queisser limit for the efficiency of a single-junction solar cell under unconcentrated sunlight.[3]

CuGaO2 edit

CuGaO2 exists in two main polymorphs, α and β. The α form has the delafossite crystal structure and can be prepared by reacting Cu2O with Ga2O3 at high temperatures. The β form has a wurtzite-like crystal structure (space group Pna21); it is metastable, but exhibits a long-term stability at temperatures below 300 °C.[4] It can be obtained by an ion exchange of Na+ ions in a β-NaGaO2 precursor with Cu+ ions in CuCl under vacuum, to avoid the oxidation of Cu+ to Cu2+.[3]

Unlike most I-III-VI2 oxides, which are transparent, electrically insulating solids with a bandgap above 2 eV, β-CuGaO2 has a direct bandgap of 1.47 eV, which is favorable for solar cell applications. In contrast, β-AgGaO2 and β-AgAlO2 have an indirect bandgap. Undoped β-CuGaO2 is a p-type semiconductor.[3]

AgGaO2 and AgAlO2 edit

 
Bandgap in AgGaO2-ZnO and CdO-ZnO alloys.[3]

Similarly to CuGaO2, α-AgGaO2 and α-AgAlO2 have the delafossite crystal structure while the structure of the corresponding β phases is similar to wurtzite (space group Pna2a). β-AgGaO2 is metastable and can be synthesized by ion exchange with a β-NaGaO2 precursor. The bandgaps of β-AgGaO2 and β-AgAlO2 (2.2 and 2.8 eV respectively) are indirect; they fall into the visible range and can be tuned by alloying with ZnO. For this reason, both materials are hardly suitable for solar cells, but have potential applications in photocatalysis.[3]

Contrary to LiGaO2, AgGaO2 can not be alloyed with ZnO by heating their mixture because of the Ag+ reduction to metallic silver; therefore, magnetron sputtering of AgGaO2 and ZnO targets is used instead.[3]

LiGaO2 and LiGaTe2 edit

 
Bandgap in LiGaO2-ZnO alloys.[3]
 
LiGaTe2 crystal
 
LiGaTe2 crystal structure

Pure single crystals of β-LiGaO2 with a length of several inches can be grown by the Czochralski method. Their cleaved surfaces have lattice constants that match those of ZnO and GaN and are therefore suitable for epitaxial growth of thin films of those materials. β-LiGaO2 is a potential nonlinear optics material, but its direct bandgap of 5.6 eV is too wide for visible light applications. It can be reduced down to 3.2 eV by alloying β-LiGaO2 with ZnO. The bandgap tuning is discontinuous because ZnO and β-LiGaO2 do not mix but form a Zn2LiGaO4 phase when their ratio is between ca. 0.2 and 1.[3]

LiGaTe2 crystals with a size up to 5 mm can be grown in three steps. First, Li, Ga, and Te elements are fused in an evacuated quartz ampoule at 1250 K for 24 hours. At this stage Li reacts with the ampoule walls, releasing heat, and is partly consumed. In the second stage, the melt is homogenized in a sealed quartz ampoule, which is coated inside with pyrolytic carbon to reduce Li reactivity. The homogenization temperature is selected ca. 50 K above the melting point of LiGaTe2. The crystals are then grown from the homogenized melt by the Bridgman–Stockbarger technique in a two-zone furnace. The temperature at the start of crystallization is a few degrees below the LiGaTe2 melting point. The ampoule is moved the cold zone at a rate of 2.5 mm/day for 20 days.[5]

Room-temperature properties of I-III-VI2 semiconductors[6]
Formula a (Å) b (Å) c (Å) Space group Density
(g/cm3)
Melting point
(K)
Bandgap
(eV)
α-LiGaO2[7] 2.92 2.92 14.45 R3m 5.07 m 5.6d
β-LiGaO2[8] 5.406 6.379 5.013 Pna21 4.18 m 5.6d
LiGaSe2[5] Pna21
LiGaTe2[5] 6.33757(2) 6.33757(2) 11.70095(5) I43d 940[9] 2.41
LiInTe2[10] 6.398 6.398 12.46 I42d 4.91 1.5[5]
CuAlS2 5.323 5.323 10.44 I42d 3.47 2500 2.5
CuAlSe2 5.617 5.617 10.92 I42d 4.70 2260 2.67
CuAlTe2 5.976 5.976 11.80 I42d 5.50 2550 0.88
β-CuGaO2[4] 5.46004(1) 6.61013(2) 5. 27417(1) Pna21 m 1.47d
CuGaS2 5.360 5.360 10.49 I42d 4.35 2300 2.38
CuGaSe2 5.618 5.618 11.01 I42d 5.56 1970 0.96; 1.63
CuGaTe2 6.013 6.013 11.93 I42d 5.99 2400 0.82; 1.0
CuInS2 5.528 5.528 11.08 I42d 4.75 1400 1.2
CuInSe2 5.785 5.785 11.56 I42d 5.77 1600 0.86; 0.92
CuInTe2 6.179 6.179 12.365 I42d 6.10 1660 0.95
CuTlS2 5.58 5.58 11.17 I42d 6.32
CuTlSe2 5.844 5.844 11.65 I42d 7.11 900 1.07
CuFeO2 3.035 3.035 17.166 R3m 5.52
CuFeS2 5.29 5.29 10.32 I42d 4.088 1135 0.53
CuFeSe2[11] 5.544 5.544 11.076 P42c 5.41 850 0.16
CuLaS2 5.65 5.65 10.86 I42d
β-AgAlO2 m 2.8i
AgAlS2 5.707 5.707 10.28 I42d 3.94
AgAlSe2 5.986 5.986 10.77 I42d 5.07 1220 0.7
AgAlTe2 6.309 6.309 11.85 I42d 6.18 1000 0.56
α-AgGaO2 P63mc 4.12d[12]
β-AgGaO2 Pna2a m 2.2i
AgGaS2 5.755 5.755 10.28 I42d 4.72 1.66
AgGaSe2 5.985 5.985 10.90 I42d 5.84 1120 1.1
AgGaTe2 6.301 6.301 11.96 I42d 6.05 990 1.32[5]
AgInS2 5.828 5.828 11.19 I42d 5.00 1.18
AgInSe2 6.102 6.102 11.69 I42d 5.81 1053 0.96; 0.52
AgInTe2 6.42 6.42 12.59 I42d 6.12 965 1.03[5]
AgFeS2 5.66 5.66 10.30 I42d 4.53 0.88[13]
  • m stands for metastable, d for direct and i for indirect bandgap

See also edit

References edit

  1. ^ Shishodia, Shubham; Chouchene, Bilel; Gries, Thomas; Schneider, Raphaël (2023-10-31). "Selected I-III-VI2 Semiconductors: Synthesis, Properties and Applications in Photovoltaic Cells". Nanomaterials. 13 (21): 2889. doi:10.3390/nano13212889. ISSN 2079-4991. PMC 10648425.
  2. ^ Tinoco, T.; Rincón, C.; Quintero, M.; Pérez, G. S. N. (1991). "Phase Diagram and Optical Energy Gaps for CuInyGa1−ySe2 Alloys". Physica Status Solidi A. 124 (2): 427–434. Bibcode:1991PSSAR.124..427T. doi:10.1002/pssa.2211240206.
  3. ^ a b c d e f g h Omata, T.; Nagatani, H.; Suzuki, I.; Kita, M. (2015). "Wurtzite-derived ternary I–III–O2 semiconductors". Science and Technology of Advanced Materials. 16 (2): 024902. Bibcode:2015STAdM..16b4902O. doi:10.1088/1468-6996/16/2/024902. PMC 5036475. PMID 27877769. 
  4. ^ a b Nagatani, H.; Suzuki, I.; Kita, M.; Tanaka, M.; Katsuya, Y.; Sakata, O.; Miyoshi, S.; Yamaguchi, S.; Omata, T. (2015). "Structural and Thermal Properties of Ternary Narrow-Gap Oxide Semiconductor; Wurtzite-Derived β-CuGaO2". Inorganic Chemistry. 54 (4): 1698–704. doi:10.1021/ic502659e. PMID 25651414.
  5. ^ a b c d e f Atuchin, V. V.; Liang, Fei; Grazhdannikov, S.; Isaenko, L. I.; Krinitsin, P. G.; Molokeev, M. S.; Prosvirin, I. P.; Jiang, Xingxing; Lin, Zheshuai (2018). "Negative thermal expansion and electronic structure variation of chalcopyrite type LiGaTe2". RSC Advances. 8 (18): 9946–9955. Bibcode:2018RSCAd...8.9946A. doi:10.1039/c8ra01079j. PMC 9078859. PMID 35540803.
  6. ^ Haynes, William M., ed. (2011). CRC Handbook of Chemistry and Physics (92nd ed.). Boca Raton, FL: CRC Press. pp. 12.82 and 12.87. ISBN 1-4398-5511-0.
  7. ^ Hoppe, R. (1965) Bull. Soc. Chim. Fr., 1115–1121
  8. ^ Konovalova E.A., Tomilov N.P. (1987) Russ. J. Inorg. Chem. 32, 1785–1787
  9. ^ Vasilyeva, Inga G.; Nikolaev, Ruslan E.; Krinitsin, Pavel G.; Isaenko, Ludmila I. (2017). "Phase Transitions of Nonlinear Optical LiGaTe2 Crystals before and after Melting". The Journal of Physical Chemistry C. 121 (32): 17429–17435. doi:10.1021/acs.jpcc.7b04962.
  10. ^ Hönle, W.; Kühn, G.; Neumann, H. (1986). "Die KristallStruktur von LiInTe2". Zeitschrift für anorganische Chemie. 532: 150–156. doi:10.1002/zaac.19865320121.
  11. ^ Woolley, J.C.; Lamarche, A.-M.; Lamarche, G.; Brun Del Re, R.; Quintero, M.; Gonzalez-Jimenez, F.; Swainson, I.P.; Holden, T.M. (1996). "Low temperature magnetic behaviour of CuFeSe2 from neutron diffraction data". Journal of Magnetism and Magnetic Materials. 164 (1–2): 154–162. Bibcode:1996JMMM..164..154W. doi:10.1016/S0304-8853(96)00365-4.
  12. ^ Vanaja, K. A.; Ajimsha, R. S.; Asha, A. S.; Rajeevkumar, K.; Jayaraj, M. K. (2008). "Pulsed laser deposition of p-type α-AgGaO2 thin films". Thin Solid Films. 516 (7): 1426–1430. Bibcode:2008TSF...516.1426V. doi:10.1016/j.tsf.2007.07.207.
  13. ^ Sciacca, B.; Yalcin, A. O.; Garnett, E. C. (2015). "Transformation of Ag Nanowires into Semiconducting AgFeS2 Nanowires". Journal of the American Chemical Society. 137 (13): 4340–4343. doi:10.1021/jacs.5b02051. PMID 25811079. S2CID 207154477.

semiconductors, semiconductors, solid, semiconducting, materials, that, contain, three, more, chemical, elements, belonging, groups, iupac, groups, periodic, table, they, usually, involve, metals, chalcogen, some, these, materials, have, direct, bandgap, appro. I III VI2 semiconductors are solid semiconducting materials that contain three or more chemical elements belonging to groups I III and VI IUPAC groups 1 11 13 and 16 of the periodic table They usually involve two metals and one chalcogen Some of these materials have a direct bandgap Eg of approximately 1 5 eV which makes them efficient absorbers of sunlight and thus potential solar cell materials 1 A fourth element is often added to a I III VI2 material to tune the bandgap for maximum solar cell efficiency A representative example is copper indium gallium selenide CuInxGa 1 x Se2 Eg 1 7 1 0 eV for x 0 1 2 which is used in copper indium gallium selenide solar cells Optical absorption spectrum of b CuGaO2 powder top left inset obtained from diffuse reflection measurements The right inset shows the Shockley Queisser limit for the efficiency of a single junction solar cell under unconcentrated sunlight 3 Contents 1 CuGaO2 2 AgGaO2 and AgAlO2 3 LiGaO2 and LiGaTe2 4 See also 5 ReferencesCuGaO2 editCuGaO2 exists in two main polymorphs a and b The a form has the delafossite crystal structure and can be prepared by reacting Cu2O with Ga2O3 at high temperatures The b form has a wurtzite like crystal structure space group Pna21 it is metastable but exhibits a long term stability at temperatures below 300 C 4 It can be obtained by an ion exchange of Na ions in a b NaGaO2 precursor with Cu ions in CuCl under vacuum to avoid the oxidation of Cu to Cu2 3 Unlike most I III VI2 oxides which are transparent electrically insulating solids with a bandgap above 2 eV b CuGaO2 has a direct bandgap of 1 47 eV which is favorable for solar cell applications In contrast b AgGaO2 and b AgAlO2 have an indirect bandgap Undoped b CuGaO2 is a p type semiconductor 3 AgGaO2 and AgAlO2 edit nbsp Bandgap in AgGaO2 ZnO and CdO ZnO alloys 3 Similarly to CuGaO2 a AgGaO2 and a AgAlO2 have the delafossite crystal structure while the structure of the corresponding b phases is similar to wurtzite space group Pna2a b AgGaO2 is metastable and can be synthesized by ion exchange with a b NaGaO2 precursor The bandgaps of b AgGaO2 and b AgAlO2 2 2 and 2 8 eV respectively are indirect they fall into the visible range and can be tuned by alloying with ZnO For this reason both materials are hardly suitable for solar cells but have potential applications in photocatalysis 3 Contrary to LiGaO2 AgGaO2 can not be alloyed with ZnO by heating their mixture because of the Ag reduction to metallic silver therefore magnetron sputtering of AgGaO2 and ZnO targets is used instead 3 LiGaO2 and LiGaTe2 edit nbsp Bandgap in LiGaO2 ZnO alloys 3 nbsp LiGaTe2 crystal nbsp LiGaTe2 crystal structure Pure single crystals of b LiGaO2 with a length of several inches can be grown by the Czochralski method Their cleaved surfaces have lattice constants that match those of ZnO and GaN and are therefore suitable for epitaxial growth of thin films of those materials b LiGaO2 is a potential nonlinear optics material but its direct bandgap of 5 6 eV is too wide for visible light applications It can be reduced down to 3 2 eV by alloying b LiGaO2 with ZnO The bandgap tuning is discontinuous because ZnO and b LiGaO2 do not mix but form a Zn2LiGaO4 phase when their ratio is between ca 0 2 and 1 3 LiGaTe2 crystals with a size up to 5 mm can be grown in three steps First Li Ga and Te elements are fused in an evacuated quartz ampoule at 1250 K for 24 hours At this stage Li reacts with the ampoule walls releasing heat and is partly consumed In the second stage the melt is homogenized in a sealed quartz ampoule which is coated inside with pyrolytic carbon to reduce Li reactivity The homogenization temperature is selected ca 50 K above the melting point of LiGaTe2 The crystals are then grown from the homogenized melt by the Bridgman Stockbarger technique in a two zone furnace The temperature at the start of crystallization is a few degrees below the LiGaTe2 melting point The ampoule is moved the cold zone at a rate of 2 5 mm day for 20 days 5 Room temperature properties of I III VI2 semiconductors 6 Formula a A b A c A Space group Density g cm3 Melting point K Bandgap eV a LiGaO2 7 2 92 2 92 14 45 R3 m 5 07 m 5 6d b LiGaO2 8 5 406 6 379 5 013 Pna21 4 18 m 5 6d LiGaSe2 5 Pna21 LiGaTe2 5 6 33757 2 6 33757 2 11 70095 5 I4 3d 940 9 2 41 LiInTe2 10 6 398 6 398 12 46 I4 2d 4 91 1 5 5 CuAlS2 5 323 5 323 10 44 I4 2d 3 47 2500 2 5 CuAlSe2 5 617 5 617 10 92 I4 2d 4 70 2260 2 67 CuAlTe2 5 976 5 976 11 80 I4 2d 5 50 2550 0 88 b CuGaO2 4 5 46004 1 6 61013 2 5 27417 1 Pna21 m 1 47d CuGaS2 5 360 5 360 10 49 I4 2d 4 35 2300 2 38 CuGaSe2 5 618 5 618 11 01 I4 2d 5 56 1970 0 96 1 63 CuGaTe2 6 013 6 013 11 93 I4 2d 5 99 2400 0 82 1 0 CuInS2 5 528 5 528 11 08 I4 2d 4 75 1400 1 2 CuInSe2 5 785 5 785 11 56 I4 2d 5 77 1600 0 86 0 92 CuInTe2 6 179 6 179 12 365 I4 2d 6 10 1660 0 95 CuTlS2 5 58 5 58 11 17 I4 2d 6 32 CuTlSe2 5 844 5 844 11 65 I4 2d 7 11 900 1 07 CuFeO2 3 035 3 035 17 166 R3 m 5 52 CuFeS2 5 29 5 29 10 32 I4 2d 4 088 1135 0 53 CuFeSe2 11 5 544 5 544 11 076 P4 2c 5 41 850 0 16 CuLaS2 5 65 5 65 10 86 I4 2d b AgAlO2 m 2 8i AgAlS2 5 707 5 707 10 28 I4 2d 3 94 AgAlSe2 5 986 5 986 10 77 I4 2d 5 07 1220 0 7 AgAlTe2 6 309 6 309 11 85 I4 2d 6 18 1000 0 56 a AgGaO2 P63mc 4 12d 12 b AgGaO2 Pna2a m 2 2i AgGaS2 5 755 5 755 10 28 I4 2d 4 72 1 66 AgGaSe2 5 985 5 985 10 90 I4 2d 5 84 1120 1 1 AgGaTe2 6 301 6 301 11 96 I4 2d 6 05 990 1 32 5 AgInS2 5 828 5 828 11 19 I4 2d 5 00 1 18 AgInSe2 6 102 6 102 11 69 I4 2d 5 81 1053 0 96 0 52 AgInTe2 6 42 6 42 12 59 I4 2d 6 12 965 1 03 5 AgFeS2 5 66 5 66 10 30 I4 2d 4 53 0 88 13 m stands for metastable d for direct and i for indirect bandgapSee also editList of semiconductor materialsReferences edit Shishodia Shubham Chouchene Bilel Gries Thomas Schneider Raphael 2023 10 31 Selected I III VI2 Semiconductors Synthesis Properties and Applications in Photovoltaic Cells Nanomaterials 13 21 2889 doi 10 3390 nano13212889 ISSN 2079 4991 PMC 10648425 Tinoco T Rincon C Quintero M Perez G S N 1991 Phase Diagram and Optical Energy Gaps for CuInyGa1 ySe2 Alloys Physica Status Solidi A 124 2 427 434 Bibcode 1991PSSAR 124 427T doi 10 1002 pssa 2211240206 a b c d e f g h Omata T Nagatani H Suzuki I Kita M 2015 Wurtzite derived ternary I III O2 semiconductors Science and Technology of Advanced Materials 16 2 024902 Bibcode 2015STAdM 16b4902O doi 10 1088 1468 6996 16 2 024902 PMC 5036475 PMID 27877769 nbsp a b Nagatani H Suzuki I Kita M Tanaka M Katsuya Y Sakata O Miyoshi S Yamaguchi S Omata T 2015 Structural and Thermal Properties of Ternary Narrow Gap Oxide Semiconductor Wurtzite Derived b CuGaO2 Inorganic Chemistry 54 4 1698 704 doi 10 1021 ic502659e PMID 25651414 a b c d e f Atuchin V V Liang Fei Grazhdannikov S Isaenko L I Krinitsin P G Molokeev M S Prosvirin I P Jiang Xingxing Lin Zheshuai 2018 Negative thermal expansion and electronic structure variation of chalcopyrite type LiGaTe2 RSC Advances 8 18 9946 9955 Bibcode 2018RSCAd 8 9946A doi 10 1039 c8ra01079j PMC 9078859 PMID 35540803 Haynes William M ed 2011 CRC Handbook of Chemistry and Physics 92nd ed Boca Raton FL CRC Press pp 12 82 and 12 87 ISBN 1 4398 5511 0 Hoppe R 1965 Bull Soc Chim Fr 1115 1121 Konovalova E A Tomilov N P 1987 Russ J Inorg Chem 32 1785 1787 Vasilyeva Inga G Nikolaev Ruslan E Krinitsin Pavel G Isaenko Ludmila I 2017 Phase Transitions of Nonlinear Optical LiGaTe2 Crystals before and after Melting The Journal of Physical Chemistry C 121 32 17429 17435 doi 10 1021 acs jpcc 7b04962 Honle W Kuhn G Neumann H 1986 Die KristallStruktur von LiInTe2 Zeitschrift fur anorganische Chemie 532 150 156 doi 10 1002 zaac 19865320121 Woolley J C Lamarche A M Lamarche G Brun Del Re R Quintero M Gonzalez Jimenez F Swainson I P Holden T M 1996 Low temperature magnetic behaviour of CuFeSe2 from neutron diffraction data Journal of Magnetism and Magnetic Materials 164 1 2 154 162 Bibcode 1996JMMM 164 154W doi 10 1016 S0304 8853 96 00365 4 Vanaja K A Ajimsha R S Asha A S Rajeevkumar K Jayaraj M K 2008 Pulsed laser deposition of p type a AgGaO2 thin films Thin Solid Films 516 7 1426 1430 Bibcode 2008TSF 516 1426V doi 10 1016 j tsf 2007 07 207 Sciacca B Yalcin A O Garnett E C 2015 Transformation of Ag Nanowires into Semiconducting AgFeS2 Nanowires Journal of the American Chemical Society 137 13 4340 4343 doi 10 1021 jacs 5b02051 PMID 25811079 S2CID 207154477 Retrieved from https en wikipedia org w index php title I III VI semiconductors amp oldid 1196864348, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.