fbpx
Wikipedia

Hilbert spectrum

The Hilbert spectrum (sometimes referred to as the Hilbert amplitude spectrum), named after David Hilbert, is a statistical tool that can help in distinguishing among a mixture of moving signals. The spectrum itself is decomposed into its component sources using independent component analysis. The separation of the combined effects of unidentified sources (blind signal separation) has applications in climatology, seismology, and biomedical imaging.

Hilbert Spectrum of a frequency modulated waveform on the form given by .

Conceptual summary edit

The Hilbert spectrum is computed by way of a 2-step process consisting of:

  • Preprocessing a signal separate it into intrinsic mode functions using a mathematical decomposition such as singular value decomposition (SVD) or empirical mode decomposition (EMD);
  • Applying the Hilbert transform to the results of the above step to obtain the instantaneous frequency spectrum of each of the components.

The Hilbert transform defines the imaginary part of the function to make it an analytic function (sometimes referred to as a progressive function), i.e. a function whose signal strength is zero for all frequency components less than zero.

With the Hilbert transform, the singular vectors give instantaneous frequencies that are functions of time, so that the result is an energy distribution over time and frequency.

The result is an ability to capture time-frequency localization to make the concept of instantaneous frequency and time relevant (the concept of instantaneous frequency is otherwise abstract or difficult to define for all but monocomponent signals).

Definition edit

For a given signal   decomposed (with for example Empirical Mode Decomposition) to

 

where   is the number of intrinsic mode functions that   consists of and

 

The instantaneous angle frequency is then defined as

 

From this, we can define the Hilbert Spectrum[1] for   as

 

The Hilbert Spectrum of   is then given by

 

Marginal Hilbert Spectrum edit

A two dimensional representation of a Hilbert Spectrum, called Marginal Hilbert Spectrum, is defined as

 

where   is the length of the sampled signal  . The Marginal Hilbert Spectrum show the total energy that each frequency value contribute with.[1]

Applications edit

The Hilbert spectrum has many practical applications. One example application pioneered by Professor Richard Cobbold, is the use of the Hilbert spectrum for the analysis of blood flow by pulse Doppler ultrasound. Other applications of the Hilbert spectrum include analysis of climatic features, water waves, and the like.

See also edit

References edit

  1. ^ a b Norden E Huang, Samuel S P Shen, Hilbert-Huang Transform and Its Applications, 2nd edition
  • Huang, et al., "" Proc. R. Soc. Lond. (A) 1998
  • Huang, N.E.; et al. (2016). "On Holo-Hilbert spectral analysis: a full informational spectral representation for nonlinear and non-stationary data". Phil. Trans. R. Soc. Lond. A. 374: 20150206. Bibcode:2016RSPTA.37450206H. doi:10.1098/rsta.2015.0206. PMC 4792412. PMID 26953180.

hilbert, spectrum, this, article, needs, additional, citations, verification, please, help, improve, this, article, adding, citations, reliable, sources, unsourced, material, challenged, removed, find, sources, news, newspapers, books, scholar, jstor, january,. This article needs additional citations for verification Please help improve this article by adding citations to reliable sources Unsourced material may be challenged and removed Find sources Hilbert spectrum news newspapers books scholar JSTOR January 2018 Learn how and when to remove this message The Hilbert spectrum sometimes referred to as the Hilbert amplitude spectrum named after David Hilbert is a statistical tool that can help in distinguishing among a mixture of moving signals The spectrum itself is decomposed into its component sources using independent component analysis The separation of the combined effects of unidentified sources blind signal separation has applications in climatology seismology and biomedical imaging Hilbert Spectrum of a frequency modulated waveform on the form given by x t c 1 c 2 t cos w t ϵ sin 2 w t displaystyle x t c 1 c 2 t cdot cos big omega t epsilon sin 2 omega t big Contents 1 Conceptual summary 2 Definition 2 1 Marginal Hilbert Spectrum 3 Applications 4 See also 5 ReferencesConceptual summary editThe Hilbert spectrum is computed by way of a 2 step process consisting of Preprocessing a signal separate it into intrinsic mode functions using a mathematical decomposition such as singular value decomposition SVD or empirical mode decomposition EMD Applying the Hilbert transform to the results of the above step to obtain the instantaneous frequency spectrum of each of the components The Hilbert transform defines the imaginary part of the function to make it an analytic function sometimes referred to as a progressive function i e a function whose signal strength is zero for all frequency components less than zero With the Hilbert transform the singular vectors give instantaneous frequencies that are functions of time so that the result is an energy distribution over time and frequency The result is an ability to capture time frequency localization to make the concept of instantaneous frequency and time relevant the concept of instantaneous frequency is otherwise abstract or difficult to define for all but monocomponent signals Definition editFor a given signal x t displaystyle x t nbsp decomposed with for example Empirical Mode Decomposition tox t r t j 1 k c j t displaystyle x t r t sum j 1 k c j t nbsp where k displaystyle k nbsp is the number of intrinsic mode functions that x t displaystyle x t nbsp consists of andc j t R a j t e i 8 j t a j t cos 8 j t displaystyle c j t mathbb R big a j t e i theta j t big a j t cos big theta j t big nbsp The instantaneous angle frequency is then defined asw j t d 8 j t d t displaystyle omega j t frac d theta j t dt nbsp From this we can define the Hilbert Spectrum 1 for c j t displaystyle c j t nbsp asH j w t a j t w w j t 0 otherwise displaystyle H j omega t begin cases a j t amp omega omega j t 0 amp text otherwise end cases nbsp The Hilbert Spectrum of x t displaystyle x t nbsp is then given byH w t j 1 k H j w t displaystyle H omega t sum j 1 k H j omega t nbsp Marginal Hilbert Spectrum edit A two dimensional representation of a Hilbert Spectrum called Marginal Hilbert Spectrum is defined ash w 1 T 0 T H w t d t displaystyle h omega frac 1 T int 0 T H omega t dt nbsp where T displaystyle T nbsp is the length of the sampled signal x t displaystyle x t nbsp The Marginal Hilbert Spectrum show the total energy that each frequency value contribute with 1 Applications editThe Hilbert spectrum has many practical applications One example application pioneered by Professor Richard Cobbold is the use of the Hilbert spectrum for the analysis of blood flow by pulse Doppler ultrasound Other applications of the Hilbert spectrum include analysis of climatic features water waves and the like See also editHilbert Huang transformReferences edit a b Norden E Huang Samuel S P Shen Hilbert Huang Transform and Its Applications 2nd edition Huang et al The empirical mode decomposition and the Hilbert spectrum for nonlinear and non stationary time series analysis Proc R Soc Lond A 1998 Huang N E et al 2016 On Holo Hilbert spectral analysis a full informational spectral representation for nonlinear and non stationary data Phil Trans R Soc Lond A 374 20150206 Bibcode 2016RSPTA 37450206H doi 10 1098 rsta 2015 0206 PMC 4792412 PMID 26953180 Retrieved from https en wikipedia org w index php title Hilbert spectrum amp oldid 1130037078, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.