fbpx
Wikipedia

High-level programming language

In computer science, a high-level programming language is a programming language with strong abstraction from the details of the computer. In contrast to low-level programming languages, it may use natural language elements, be easier to use, or may automate (or even hide entirely) significant areas of computing systems (e.g. memory management), making the process of developing a program simpler and more understandable than when using a lower-level language. The amount of abstraction provided defines how "high-level" a programming language is.[1]

In the 1960s, a high-level programming language using a compiler was commonly called an autocode.[2] Examples of autocodes are COBOL and Fortran.[3]

The first high-level programming language designed for computers was Plankalkül, created by Konrad Zuse.[4] However, it was not implemented in his time, and his original contributions were largely isolated from other developments due to World War II, aside from the language's influence on the "Superplan" language by Heinz Rutishauser and also to some degree ALGOL. The first significantly widespread high-level language was Fortran, a machine-independent development of IBM's earlier Autocode systems. The ALGOL family, with ALGOL 58 defined in 1958 and ALGOL 60 defined in 1960 by committees of European and American computer scientists, introduced recursion as well as nested functions under lexical scope. ALGOL 60 was also the first language with a clear distinction between value and name-parameters and their corresponding semantics.[5] ALGOL also introduced several structured programming concepts, such as the while-do and if-then-else constructs and its syntax was the first to be described in formal notation – Backus–Naur form (BNF). During roughly the same period, COBOL introduced records (also called structs) and Lisp introduced a fully general lambda abstraction in a programming language for the first time.

Features Edit

"High-level language" refers to the higher level of abstraction from machine language. Rather than dealing with registers, memory addresses, and call stacks, high-level languages deal with variables, arrays, objects, complex arithmetic or boolean expressions, subroutines and functions, loops, threads, locks, and other abstract computer science concepts, with a focus on usability over optimal program efficiency. Unlike low-level assembly languages, high-level languages have few, if any, language elements that translate directly into a machine's native opcodes. Other features, such as string handling routines, object-oriented language features, and file input/output, may also be present. One thing to note about high-level programming languages is that these languages allow the programmer to be detached and separated from the machine. That is, unlike low-level languages like assembly or machine language, high-level programming can amplify the programmer's instructions and trigger a lot of data movements in the background without their knowledge. The responsibility and power of executing instructions have been handed over to the machine from the programmer.

Abstraction penalty Edit

High-level languages intend to provide features that standardize common tasks, permit rich debugging, and maintain architectural agnosticism; while low-level languages often produce more efficient code through optimization for a specific system architecture. Abstraction penalty is the cost that high-level programming techniques pay for being unable to optimize performance or use certain hardware because they don't take advantage of certain low-level architectural resources. High-level programming exhibits features like more generic data structures and operations, run-time interpretation, and intermediate code files; which often result in execution of far more operations than necessary, higher memory consumption, and larger binary program size.[6][7][8] For this reason, code which needs to run particularly quickly and efficiently may require the use of a lower-level language, even if a higher-level language would make the coding easier. In many cases, critical portions of a program mostly in a high-level language can be hand-coded in assembly language, leading to a much faster, more efficient, or simply reliably functioning optimised program.

However, with the growing complexity of modern microprocessor architectures, well-designed compilers for high-level languages frequently produce code comparable in efficiency to what most low-level programmers can produce by hand, and the higher abstraction may allow for more powerful techniques providing better overall results than their low-level counterparts in particular settings.[9] High-level languages are designed independent of a specific computing system architecture. This facilitates executing a program written in such a language on any computing system with compatible support for the Interpreted or JIT program. High-level languages can be improved as their designers develop improvements. In other cases, new high-level languages evolve from one or more others with the goal of aggregating the most popular constructs with new or improved features. An example of this is Scala which maintains backward compatibility with Java which means that programs and libraries written in Java will continue to be usable even if a programming shop switches to Scala; this makes the transition easier and the lifespan of such high-level coding indefinite. In contrast, low-level programs rarely survive beyond the system architecture which they were written for without major revision. This is the engineering 'trade-off' for the 'Abstraction Penalty'.

Relative meaning Edit

Examples of high-level programming languages in active use today include Python, JavaScript, Visual Basic, Delphi, Perl, PHP, ECMAScript, Ruby, C#, Java and many others.

The terms high-level and low-level are inherently relative. Some decades ago,[timeframe?] the C language, and similar languages, were most often considered "high-level", as it supported concepts such as expression evaluation, parameterised recursive functions, and data types and structures, while assembly language was considered "low-level". Today, many programmers might refer to C as low-level, as it lacks a large runtime-system (no garbage collection, etc.), basically supports only scalar operations, and provides direct memory addressing; it therefore, readily blends with assembly language and the machine level of CPUs and microcontrollers. Also, in the introduction chapter of The C Programming Language (second edition) by K&R, C is considered as a relatively "low level" language.[10]

Assembly language may itself be regarded as a higher level (but often still one-to-one if used without macros) representation of machine code, as it supports concepts such as constants and (limited) expressions, sometimes even variables, procedures, and data structures. Machine code, in its turn, is inherently at a slightly higher level than the microcode or micro-operations used internally in many processors.[11]

Execution modes Edit

There are three general modes of execution for modern high-level languages:

Interpreted
When code written in a language is interpreted, its syntax is read and then executed directly, with no compilation stage. A program called an interpreter reads each program statement, following the program flow, then decides what to do, and does it. A hybrid of an interpreter and a compiler will compile the statement into machine code and execute that; the machine code is then discarded, to be interpreted anew if the line is executed again. Interpreters are commonly the simplest implementations of the behavior of a language, compared to the other two variants listed here.
Compiled
When code written in a language is compiled, its syntax is transformed into an executable form before running. There are two types of compilation:
Machine code generation
Some compilers compile source code directly into machine code. This is the original mode of compilation, and languages that are directly and completely transformed to machine-native code in this way may be called truly compiled languages. See assembly language.
Intermediate representations
When code written in a language is compiled to an intermediate representation, that representation can be optimized or saved for later execution without the need to re-read the source file. When the intermediate representation is saved, it may be in a form such as bytecode. The intermediate representation must then be interpreted or further compiled to execute it. Virtual machines that execute bytecode directly or transform it further into machine code have blurred the once clear distinction between intermediate representations and truly compiled languages.
Source-to-source translated or transcompiled
Code written in a language may be translated into terms of a lower-level language for which native code compilers are already common. JavaScript and the language C are common targets for such translators. See CoffeeScript, Chicken Scheme, and Eiffel as examples. Specifically, the generated C and C++ code can be seen (as generated from the Eiffel language when using the EiffelStudio IDE) in the EIFGENs directory of any compiled Eiffel project. In Eiffel, the translated process is referred to as transcompiling or transcompiled, and the Eiffel compiler as a transcompiler or source-to-source compiler.

Note that languages are not strictly interpreted languages or compiled languages. Rather, implementations of language behavior use interpreting or compiling. For example, ALGOL 60 and Fortran have both been interpreted (even though they were more typically compiled). Similarly, Java shows the difficulty of trying to apply these labels to languages, rather than to implementations; Java is compiled to bytecode which is then executed by either interpreting (in a Java virtual machine (JVM)) or compiling (typically with a just-in-time compiler such as HotSpot, again in a JVM). Moreover, compiling, transcompiling, and interpreting is not strictly limited to only a description of the compiler artifact (binary executable or IL assembly).

High-level language computer architecture Edit

Alternatively, it is possible for a high-level language to be directly implemented by a computer – the computer directly executes the HLL code. This is known as a high-level language computer architecture – the computer architecture itself is designed to be targeted by a specific high-level language. The Burroughs large systems were target machines for ALGOL 60, for example.[12]

See also Edit

References Edit

  1. ^ . Archived from the original on 26 August 2007.
  2. ^ London, Keith (1968). "4, Programming". Introduction to Computers. 24 Russell Square London WC1: Faber and Faber Limited. p. 184. ISBN 0571085938. The 'high' level programming languages are often called autocodes and the processor program, a compiler.{{cite book}}: CS1 maint: location (link)
  3. ^ London, Keith (1968). "4, Programming". Introduction to Computers. 24 Russell Square London WC1: Faber and Faber Limited. p. 186. ISBN 0571085938. Two high level programming languages which can be used here as examples to illustrate the structure and purpose of autocodes are COBOL (Common Business Oriented Language) and FORTRAN (Formular Translation).{{cite book}}: CS1 maint: location (link)
  4. ^ Giloi, Wolfgang, K. [de] (1997). "Konrad Zuse's Plankalkül: The First High-Level "non von Neumann" Programming Language". IEEE Annals of the History of Computing, vol. 19, no. 2, pp. 17–24, April–June, 1997. (abstract)
  5. ^ Although it lacked a notion of reference-parameters, which could be a problem in some situations. Several successors, including ALGOL W, ALGOL 68, Simula, Pascal, Modula and Ada thus included reference-parameters (The related C-language family instead allowed addresses as value-parameters).
  6. ^ Surana P (2006). "Meta-Compilation of Language Abstractions" (PDF). (PDF) from the original on 17 February 2015. Retrieved 17 March 2008. {{cite journal}}: Cite journal requires |journal= (help)
  7. ^ Kuketayev. . Archived from the original on 11 January 2009. Retrieved 17 March 2008.
  8. ^ Chatzigeorgiou; Stephanides (2002). "Evaluating Performance and Power Of Object-Oriented Vs. Procedural Programming Languages". In Blieberger; Strohmeier (eds.). Proceedings - 7th International Conference on Reliable Software Technologies - Ada-Europe'2002. Springer. p. 367.
  9. ^ Manuel Carro; José F. Morales; Henk L. Muller; G. Puebla; M. Hermenegildo (2006). "High-level languages for small devices: a case study" (PDF). Proceedings of the 2006 International Conference on Compilers, Architecture and Synthesis for Embedded Systems. ACM.
  10. ^ Kernighan, Brian W.; Ritchie, Dennis M. (1988). The C Programming Language: 2nd Edition. Prentice Hall. ISBN 9780131103627. Archived from the original on 13 December 2018.
  11. ^ Hyde, Randall. (2010). The art of assembly language (2nd ed.). San Francisco: No Starch Press. ISBN 9781593273019. OCLC 635507601.
  12. ^ Chu, Yaohan (1975), "Concepts of High-Level Language Computer Architecture", High-Level Language Computer Architecture, Elsevier, pp. 1–14, doi:10.1016/b978-0-12-174150-1.50007-0, ISBN 9780121741501

External links Edit

high, level, programming, language, computer, science, high, level, programming, language, programming, language, with, strong, abstraction, from, details, computer, contrast, level, programming, languages, natural, language, elements, easier, automate, even, . In computer science a high level programming language is a programming language with strong abstraction from the details of the computer In contrast to low level programming languages it may use natural language elements be easier to use or may automate or even hide entirely significant areas of computing systems e g memory management making the process of developing a program simpler and more understandable than when using a lower level language The amount of abstraction provided defines how high level a programming language is 1 In the 1960s a high level programming language using a compiler was commonly called an autocode 2 Examples of autocodes are COBOL and Fortran 3 The first high level programming language designed for computers was Plankalkul created by Konrad Zuse 4 However it was not implemented in his time and his original contributions were largely isolated from other developments due to World War II aside from the language s influence on the Superplan language by Heinz Rutishauser and also to some degree ALGOL The first significantly widespread high level language was Fortran a machine independent development of IBM s earlier Autocode systems The ALGOL family with ALGOL 58 defined in 1958 and ALGOL 60 defined in 1960 by committees of European and American computer scientists introduced recursion as well as nested functions under lexical scope ALGOL 60 was also the first language with a clear distinction between value and name parameters and their corresponding semantics 5 ALGOL also introduced several structured programming concepts such as the while do and if then else constructs and its syntax was the first to be described in formal notation Backus Naur form BNF During roughly the same period COBOL introduced records also called structs and Lisp introduced a fully general lambda abstraction in a programming language for the first time Contents 1 Features 2 Abstraction penalty 3 Relative meaning 4 Execution modes 4 1 High level language computer architecture 5 See also 6 References 7 External linksFeatures EditThis section does not cite any sources Please help improve this section by adding citations to reliable sources Unsourced material may be challenged and removed August 2023 Learn how and when to remove this template message High level language refers to the higher level of abstraction from machine language Rather than dealing with registers memory addresses and call stacks high level languages deal with variables arrays objects complex arithmetic or boolean expressions subroutines and functions loops threads locks and other abstract computer science concepts with a focus on usability over optimal program efficiency Unlike low level assembly languages high level languages have few if any language elements that translate directly into a machine s native opcodes Other features such as string handling routines object oriented language features and file input output may also be present One thing to note about high level programming languages is that these languages allow the programmer to be detached and separated from the machine That is unlike low level languages like assembly or machine language high level programming can amplify the programmer s instructions and trigger a lot of data movements in the background without their knowledge The responsibility and power of executing instructions have been handed over to the machine from the programmer Abstraction penalty EditHigh level languages intend to provide features that standardize common tasks permit rich debugging and maintain architectural agnosticism while low level languages often produce more efficient code through optimization for a specific system architecture Abstraction penalty is the cost that high level programming techniques pay for being unable to optimize performance or use certain hardware because they don t take advantage of certain low level architectural resources High level programming exhibits features like more generic data structures and operations run time interpretation and intermediate code files which often result in execution of far more operations than necessary higher memory consumption and larger binary program size 6 7 8 For this reason code which needs to run particularly quickly and efficiently may require the use of a lower level language even if a higher level language would make the coding easier In many cases critical portions of a program mostly in a high level language can be hand coded in assembly language leading to a much faster more efficient or simply reliably functioning optimised program However with the growing complexity of modern microprocessor architectures well designed compilers for high level languages frequently produce code comparable in efficiency to what most low level programmers can produce by hand and the higher abstraction may allow for more powerful techniques providing better overall results than their low level counterparts in particular settings 9 High level languages are designed independent of a specific computing system architecture This facilitates executing a program written in such a language on any computing system with compatible support for the Interpreted or JIT program High level languages can be improved as their designers develop improvements In other cases new high level languages evolve from one or more others with the goal of aggregating the most popular constructs with new or improved features An example of this is Scala which maintains backward compatibility with Java which means that programs and libraries written in Java will continue to be usable even if a programming shop switches to Scala this makes the transition easier and the lifespan of such high level coding indefinite In contrast low level programs rarely survive beyond the system architecture which they were written for without major revision This is the engineering trade off for the Abstraction Penalty Relative meaning EditThis section needs additional citations for verification Please help improve this article by adding citations to reliable sources in this section Unsourced material may be challenged and removed October 2018 Learn how and when to remove this template message Examples of high level programming languages in active use today include Python JavaScript Visual Basic Delphi Perl PHP ECMAScript Ruby C Java and many others The terms high level and low level are inherently relative Some decades ago timeframe the C language and similar languages were most often considered high level as it supported concepts such as expression evaluation parameterised recursive functions and data types and structures while assembly language was considered low level Today many programmers might refer to C as low level as it lacks a large runtime system no garbage collection etc basically supports only scalar operations and provides direct memory addressing it therefore readily blends with assembly language and the machine level of CPUs and microcontrollers Also in the introduction chapter of The C Programming Language second edition by K amp R C is considered as a relatively low level language 10 Assembly language may itself be regarded as a higher level but often still one to one if used without macros representation of machine code as it supports concepts such as constants and limited expressions sometimes even variables procedures and data structures Machine code in its turn is inherently at a slightly higher level than the microcode or micro operations used internally in many processors 11 Execution modes EditThis section needs additional citations for verification Please help improve this article by adding citations to reliable sources in this section Unsourced material may be challenged and removed Find sources Execution modes news newspapers books scholar JSTOR October 2018 Learn how and when to remove this template message There are three general modes of execution for modern high level languages Interpreted When code written in a language is interpreted its syntax is read and then executed directly with no compilation stage A program called an interpreter reads each program statement following the program flow then decides what to do and does it A hybrid of an interpreter and a compiler will compile the statement into machine code and execute that the machine code is then discarded to be interpreted anew if the line is executed again Interpreters are commonly the simplest implementations of the behavior of a language compared to the other two variants listed here Compiled When code written in a language is compiled its syntax is transformed into an executable form before running There are two types of compilation Machine code generation Some compilers compile source code directly into machine code This is the original mode of compilation and languages that are directly and completely transformed to machine native code in this way may be called truly compiled languages See assembly language Intermediate representations When code written in a language is compiled to an intermediate representation that representation can be optimized or saved for later execution without the need to re read the source file When the intermediate representation is saved it may be in a form such as bytecode The intermediate representation must then be interpreted or further compiled to execute it Virtual machines that execute bytecode directly or transform it further into machine code have blurred the once clear distinction between intermediate representations and truly compiled languages dd Source to source translated or transcompiled Code written in a language may be translated into terms of a lower level language for which native code compilers are already common JavaScript and the language C are common targets for such translators See CoffeeScript Chicken Scheme and Eiffel as examples Specifically the generated C and C code can be seen as generated from the Eiffel language when using the EiffelStudio IDE in the EIFGENs directory of any compiled Eiffel project In Eiffel the translated process is referred to as transcompiling or transcompiled and the Eiffel compiler as a transcompiler or source to source compiler Note that languages are not strictly interpreted languages or compiled languages Rather implementations of language behavior use interpreting or compiling For example ALGOL 60 and Fortran have both been interpreted even though they were more typically compiled Similarly Java shows the difficulty of trying to apply these labels to languages rather than to implementations Java is compiled to bytecode which is then executed by either interpreting in a Java virtual machine JVM or compiling typically with a just in time compiler such as HotSpot again in a JVM Moreover compiling transcompiling and interpreting is not strictly limited to only a description of the compiler artifact binary executable or IL assembly High level language computer architecture Edit Alternatively it is possible for a high level language to be directly implemented by a computer the computer directly executes the HLL code This is known as a high level language computer architecture the computer architecture itself is designed to be targeted by a specific high level language The Burroughs large systems were target machines for ALGOL 60 for example 12 See also Edit nbsp Computer programming portalGenerational list of programming languages Categorical list of programming languages Very high level programming languages Low level programming languages High level assembler Abstraction computer science References Edit HThreads RD Glossary Archived from the original on 26 August 2007 London Keith 1968 4 Programming Introduction to Computers 24 Russell Square London WC1 Faber and Faber Limited p 184 ISBN 0571085938 The high level programming languages are often called autocodes and the processor program a compiler a href Template Cite book html title Template Cite book cite book a CS1 maint location link London Keith 1968 4 Programming Introduction to Computers 24 Russell Square London WC1 Faber and Faber Limited p 186 ISBN 0571085938 Two high level programming languages which can be used here as examples to illustrate the structure and purpose of autocodes are COBOL Common Business Oriented Language and FORTRAN Formular Translation a href Template Cite book html title Template Cite book cite book a CS1 maint location link Giloi Wolfgang K de 1997 Konrad Zuse s Plankalkul The First High Level non von Neumann Programming Language IEEE Annals of the History of Computing vol 19 no 2 pp 17 24 April June 1997 abstract Although it lacked a notion of reference parameters which could be a problem in some situations Several successors including ALGOL W ALGOL 68 Simula Pascal Modula and Ada thus included reference parameters The related C language family instead allowed addresses as value parameters Surana P 2006 Meta Compilation of Language Abstractions PDF Archived PDF from the original on 17 February 2015 Retrieved 17 March 2008 a href Template Cite journal html title Template Cite journal cite journal a Cite journal requires journal help Kuketayev The Data Abstraction Penalty DAP Benchmark for Small Objects in Java Archived from the original on 11 January 2009 Retrieved 17 March 2008 Chatzigeorgiou Stephanides 2002 Evaluating Performance and Power Of Object Oriented Vs Procedural Programming Languages In Blieberger Strohmeier eds Proceedings 7th International Conference on Reliable Software Technologies Ada Europe 2002 Springer p 367 Manuel Carro Jose F Morales Henk L Muller G Puebla M Hermenegildo 2006 High level languages for small devices a case study PDF Proceedings of the 2006 International Conference on Compilers Architecture and Synthesis for Embedded Systems ACM Kernighan Brian W Ritchie Dennis M 1988 The C Programming Language 2nd Edition Prentice Hall ISBN 9780131103627 Archived from the original on 13 December 2018 Hyde Randall 2010 The art of assembly language 2nd ed San Francisco No Starch Press ISBN 9781593273019 OCLC 635507601 Chu Yaohan 1975 Concepts of High Level Language Computer Architecture High Level Language Computer Architecture Elsevier pp 1 14 doi 10 1016 b978 0 12 174150 1 50007 0 ISBN 9780121741501External links Edithttp c2 com cgi wiki HighLevelLanguage The WikiWikiWeb s article on high level programming languages Retrieved from https en wikipedia org w index php title High level programming language amp oldid 1176995342, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.