fbpx
Wikipedia

Zeta function regularization

In mathematics and theoretical physics, zeta function regularization is a type of regularization or summability method that assigns finite values to divergent sums or products, and in particular can be used to define determinants and traces of some self-adjoint operators. The technique is now commonly applied to problems in physics, but has its origins in attempts to give precise meanings to ill-conditioned sums appearing in number theory.

Definition Edit

There are several different summation methods called zeta function regularization for defining the sum of a possibly divergent series a1 + a2 + ....

One method is to define its zeta regularized sum to be ζA(−1) if this is defined, where the zeta function is defined for large Re(s) by

 

if this sum converges, and by analytic continuation elsewhere.

In the case when an = n, the zeta function is the ordinary Riemann zeta function. This method was used by Euler to "sum" the series 1 + 2 + 3 + 4 + ... to ζ(−1) = −1/12.

Hawking (1977) showed that in flat space, in which the eigenvalues of Laplacians are known, the zeta function corresponding to the partition function can be computed explicitly. Consider a scalar field φ contained in a large box of volume V in flat spacetime at the temperature T = β−1. The partition function is defined by a path integral over all fields φ on the Euclidean space obtained by putting τ = it which are zero on the walls of the box and which are periodic in τ with period β. In this situation from the partition function he computes energy, entropy and pressure of the radiation of the field φ. In case of flat spaces the eigenvalues appearing in the physical quantities are generally known, while in case of curved space they are not known: in this case asymptotic methods are needed.

Another method defines the possibly divergent infinite product a1a2.... to be exp(−ζ′A(0)). Ray & Singer (1971) used this to define the determinant of a positive self-adjoint operator A (the Laplacian of a Riemannian manifold in their application) with eigenvalues a1, a2, ...., and in this case the zeta function is formally the trace of As. Minakshisundaram & Pleijel (1949) showed that if A is the Laplacian of a compact Riemannian manifold then the Minakshisundaram–Pleijel zeta function converges and has an analytic continuation as a meromorphic function to all complex numbers, and Seeley (1967) extended this to elliptic pseudo-differential operators A on compact Riemannian manifolds. So for such operators one can define the determinant using zeta function regularization. See "analytic torsion."

Hawking (1977) suggested using this idea to evaluate path integrals in curved spacetimes. He studied zeta function regularization in order to calculate the partition functions for thermal graviton and matter's quanta in curved background such as on the horizon of black holes and on de Sitter background using the relation by the inverse Mellin transformation to the trace of the kernel of heat equations.

Example Edit

The first example in which zeta function regularization is available appears in the Casimir effect, which is in a flat space with the bulk contributions of the quantum field in three space dimensions. In this case we must calculate the value of Riemann zeta function at –3, which diverges explicitly. However, it can be analytically continued to s = –3 where hopefully there is no pole, thus giving a finite value to the expression. A detailed example of this regularization at work is given in the article on the detail example of the Casimir effect, where the resulting sum is very explicitly the Riemann zeta-function (and where the seemingly legerdemain analytic continuation removes an additive infinity, leaving a physically significant finite number).

An example of zeta-function regularization is the calculation of the vacuum expectation value of the energy of a particle field in quantum field theory. More generally, the zeta-function approach can be used to regularize the whole energy–momentum tensor both in flat and in curved spacetime. [1] [2] [3]

The unregulated value of the energy is given by a summation over the zero-point energy of all of the excitation modes of the vacuum:

 

Here,   is the zeroth component of the energy–momentum tensor and the sum (which may be an integral) is understood to extend over all (positive and negative) energy modes  ; the absolute value reminding us that the energy is taken to be positive. This sum, as written, is usually infinite (  is typically linear in n). The sum may be regularized by writing it as

 

where s is some parameter, taken to be a complex number. For large, real s greater than 4 (for three-dimensional space), the sum is manifestly finite, and thus may often be evaluated theoretically.

The zeta-regularization is useful as it can often be used in a way such that the various symmetries of the physical system are preserved. Zeta-function regularization is used in conformal field theory, renormalization and in fixing the critical spacetime dimension of string theory.

Relation to other regularizations Edit

Zeta function regularization is equivalent to dimensional regularization, see[4]. However, the main advantage of the zeta regularization is that it can be used whenever the dimensional regularization fails, for example if there are matrices or tensors inside the calculations  

Relation to Dirichlet series Edit

Zeta-function regularization gives an analytic structure to any sums over an arithmetic function f(n). Such sums are known as Dirichlet series. The regularized form

 

converts divergences of the sum into simple poles on the complex s-plane. In numerical calculations, the zeta-function regularization is inappropriate, as it is extremely slow to converge. For numerical purposes, a more rapidly converging sum is the exponential regularization, given by

 

This is sometimes called the Z-transform of f, where z = exp(−t). The analytic structure of the exponential and zeta-regularizations are related. By expanding the exponential sum as a Laurent series

 

one finds that the zeta-series has the structure

 

The structure of the exponential and zeta-regulators are related by means of the Mellin transform. The one may be converted to the other by making use of the integral representation of the Gamma function:

 

which leads to the identity

 

relating the exponential and zeta-regulators, and converting poles in the s-plane to divergent terms in the Laurent series.

Heat kernel regularization Edit

The sum

 

is sometimes called a heat kernel or a heat-kernel regularized sum; this name stems from the idea that the   can sometimes be understood as eigenvalues of the heat kernel. In mathematics, such a sum is known as a generalized Dirichlet series; its use for averaging is known as an Abelian mean. It is closely related to the Laplace–Stieltjes transform, in that

 

where   is a step function, with steps of   at  . A number of theorems for the convergence of such a series exist. For example, by the Hardy-Littlewood Tauberian theorem, if [5]

 

then the series for   converges in the half-plane   and is uniformly convergent on every compact subset of the half-plane  . In almost all applications to physics, one has  

History Edit

Much of the early work establishing the convergence and equivalence of series regularized with the heat kernel and zeta function regularization methods was done by G. H. Hardy and J. E. Littlewood in 1916[6] and is based on the application of the Cahen–Mellin integral. The effort was made in order to obtain values for various ill-defined, conditionally convergent sums appearing in number theory.

In terms of application as the regulator in physical problems, before Hawking (1977), J. Stuart Dowker and Raymond Critchley in 1976 proposed a zeta-function regularization method for quantum physical problems.[7] Emilio Elizalde and others have also proposed a method based on the zeta regularization for the integrals  , here   is a regulator and the divergent integral depends on the numbers   in the limit   see renormalization. Also unlike other regularizations such as dimensional regularization and analytic regularization, zeta regularization has no counterterms and gives only finite results.

See also Edit

References Edit

  • ^ Tom M. Apostol, "Modular Functions and Dirichlet Series in Number Theory", "Springer-Verlag New York. (See Chapter 8.)"
  • ^ A. Bytsenko, G. Cognola, E. Elizalde, V. Moretti and S. Zerbini, "Analytic Aspects of Quantum Fields", World Scientific Publishing, 2003, ISBN 981-238-364-6
  • ^ G.H. Hardy and J.E. Littlewood, "Contributions to the Theory of the Riemann Zeta-Function and the Theory of the Distribution of Primes", Acta Mathematica, 41(1916) pp. 119–196. (See, for example, theorem 2.12)
  • Hawking, S. W. (1977), "Zeta function regularization of path integrals in curved spacetime", Communications in Mathematical Physics, 55 (2): 133–148, Bibcode:1977CMaPh..55..133H, doi:10.1007/BF01626516, ISSN 0010-3616, MR 0524257, S2CID 121650064
  • ^ V. Moretti, "Direct z-function approach and renormalization of one-loop stress tensor in curved spacetimes, Phys. Rev.D 56, 7797 (1997).
  • Minakshisundaram, S.; Pleijel, Å. (1949), "Some properties of the eigenfunctions of the Laplace-operator on Riemannian manifolds", Canadian Journal of Mathematics, 1 (3): 242–256, doi:10.4153/CJM-1949-021-5, ISSN 0008-414X, MR 0031145
  • Ray, D. B.; Singer, I. M. (1971), "R-torsion and the Laplacian on Riemannian manifolds", Advances in Mathematics, 7 (2): 145–210, doi:10.1016/0001-8708(71)90045-4, MR 0295381
  • "Zeta-function method for regularization", Encyclopedia of Mathematics, EMS Press, 2001 [1994]
  • Seeley, R. T. (1967), "Complex powers of an elliptic operator", in Calderón, Alberto P. (ed.), Singular Integrals (Proc. Sympos. Pure Math., Chicago, Ill., 1966), Proceedings of Symposia in Pure Mathematics, vol. 10, Providence, R.I.: Amer. Math. Soc., pp. 288–307, ISBN 978-0-8218-1410-9, MR 0237943
  • ^ Dowker, J. S.; Critchley, R. (1976), "Effective Lagrangian and energy–momentum tensor in de Sitter space", Physical Review D, 13 (12): 3224–3232, Bibcode:1976PhRvD..13.3224D, doi:10.1103/PhysRevD.13.3224
  • ^ D. Fermi, L. Pizzocchero, "Local zeta regularization and the scalar Casimir effect. A general approach based on integral kernels", World Scientific Publishing, ISBN: 978-981-3224-99-5 (hardcover), ISBN: 978-981-3225-01-5 (ebook). DOI: 10.1142/10570 (2017).

zeta, function, regularization, mathematics, theoretical, physics, zeta, function, regularization, type, regularization, summability, method, that, assigns, finite, values, divergent, sums, products, particular, used, define, determinants, traces, some, self, . In mathematics and theoretical physics zeta function regularization is a type of regularization or summability method that assigns finite values to divergent sums or products and in particular can be used to define determinants and traces of some self adjoint operators The technique is now commonly applied to problems in physics but has its origins in attempts to give precise meanings to ill conditioned sums appearing in number theory Contents 1 Definition 2 Example 3 Relation to other regularizations 4 Relation to Dirichlet series 5 Heat kernel regularization 6 History 7 See also 8 ReferencesDefinition EditThere are several different summation methods called zeta function regularization for defining the sum of a possibly divergent series a1 a2 One method is to define its zeta regularized sum to be zA 1 if this is defined where the zeta function is defined for large Re s by z A s 1 a 1 s 1 a 2 s displaystyle zeta A s frac 1 a 1 s frac 1 a 2 s cdots if this sum converges and by analytic continuation elsewhere In the case when an n the zeta function is the ordinary Riemann zeta function This method was used by Euler to sum the series 1 2 3 4 to z 1 1 12 Hawking 1977 showed that in flat space in which the eigenvalues of Laplacians are known the zeta function corresponding to the partition function can be computed explicitly Consider a scalar field f contained in a large box of volume V in flat spacetime at the temperature T b 1 The partition function is defined by a path integral over all fields f on the Euclidean space obtained by putting t it which are zero on the walls of the box and which are periodic in t with period b In this situation from the partition function he computes energy entropy and pressure of the radiation of the field f In case of flat spaces the eigenvalues appearing in the physical quantities are generally known while in case of curved space they are not known in this case asymptotic methods are needed Another method defines the possibly divergent infinite product a1a2 to be exp z A 0 Ray amp Singer 1971 used this to define the determinant of a positive self adjoint operator A the Laplacian of a Riemannian manifold in their application with eigenvalues a1 a2 and in this case the zeta function is formally the trace of A s Minakshisundaram amp Pleijel 1949 showed that if A is the Laplacian of a compact Riemannian manifold then the Minakshisundaram Pleijel zeta function converges and has an analytic continuation as a meromorphic function to all complex numbers and Seeley 1967 extended this to elliptic pseudo differential operators A on compact Riemannian manifolds So for such operators one can define the determinant using zeta function regularization See analytic torsion Hawking 1977 suggested using this idea to evaluate path integrals in curved spacetimes He studied zeta function regularization in order to calculate the partition functions for thermal graviton and matter s quanta in curved background such as on the horizon of black holes and on de Sitter background using the relation by the inverse Mellin transformation to the trace of the kernel of heat equations Example EditThe first example in which zeta function regularization is available appears in the Casimir effect which is in a flat space with the bulk contributions of the quantum field in three space dimensions In this case we must calculate the value of Riemann zeta function at 3 which diverges explicitly However it can be analytically continued to s 3 where hopefully there is no pole thus giving a finite value to the expression A detailed example of this regularization at work is given in the article on the detail example of the Casimir effect where the resulting sum is very explicitly the Riemann zeta function and where the seemingly legerdemain analytic continuation removes an additive infinity leaving a physically significant finite number An example of zeta function regularization is the calculation of the vacuum expectation value of the energy of a particle field in quantum field theory More generally the zeta function approach can be used to regularize the whole energy momentum tensor both in flat and in curved spacetime 1 2 3 The unregulated value of the energy is given by a summation over the zero point energy of all of the excitation modes of the vacuum 0 T 00 0 n ℏ w n 2 displaystyle langle 0 T 00 0 rangle sum n frac hbar omega n 2 Here T 00 displaystyle T 00 is the zeroth component of the energy momentum tensor and the sum which may be an integral is understood to extend over all positive and negative energy modes w n displaystyle omega n the absolute value reminding us that the energy is taken to be positive This sum as written is usually infinite w n displaystyle omega n is typically linear in n The sum may be regularized by writing it as 0 T 00 s 0 n ℏ w n 2 w n s displaystyle langle 0 T 00 s 0 rangle sum n frac hbar omega n 2 omega n s where s is some parameter taken to be a complex number For large real s greater than 4 for three dimensional space the sum is manifestly finite and thus may often be evaluated theoretically The zeta regularization is useful as it can often be used in a way such that the various symmetries of the physical system are preserved Zeta function regularization is used in conformal field theory renormalization and in fixing the critical spacetime dimension of string theory Relation to other regularizations EditZeta function regularization is equivalent to dimensional regularization see 4 However the main advantage of the zeta regularization is that it can be used whenever the dimensional regularization fails for example if there are matrices or tensors inside the calculations ϵ i j k displaystyle epsilon i j k Relation to Dirichlet series EditZeta function regularization gives an analytic structure to any sums over an arithmetic function f n Such sums are known as Dirichlet series The regularized form f s n 1 f n n s displaystyle tilde f s sum n 1 infty f n n s converts divergences of the sum into simple poles on the complex s plane In numerical calculations the zeta function regularization is inappropriate as it is extremely slow to converge For numerical purposes a more rapidly converging sum is the exponential regularization given by F t n 1 f n e t n displaystyle F t sum n 1 infty f n e tn This is sometimes called the Z transform of f where z exp t The analytic structure of the exponential and zeta regularizations are related By expanding the exponential sum as a Laurent series F t a N t N a N 1 t N 1 displaystyle F t frac a N t N frac a N 1 t N 1 cdots one finds that the zeta series has the structure f s a N s N displaystyle tilde f s frac a N s N cdots The structure of the exponential and zeta regulators are related by means of the Mellin transform The one may be converted to the other by making use of the integral representation of the Gamma function G s 0 t s 1 e t d t displaystyle Gamma s int 0 infty t s 1 e t dt which leads to the identity G s f s 0 t s 1 F t d t displaystyle Gamma s tilde f s int 0 infty t s 1 F t dt relating the exponential and zeta regulators and converting poles in the s plane to divergent terms in the Laurent series Heat kernel regularization EditThe sum f s n a n e s w n displaystyle f s sum n a n e s omega n is sometimes called a heat kernel or a heat kernel regularized sum this name stems from the idea that the w n displaystyle omega n can sometimes be understood as eigenvalues of the heat kernel In mathematics such a sum is known as a generalized Dirichlet series its use for averaging is known as an Abelian mean It is closely related to the Laplace Stieltjes transform in that f s 0 e s t d a t displaystyle f s int 0 infty e st d alpha t where a t displaystyle alpha t is a step function with steps of a n displaystyle a n at t w n displaystyle t omega n A number of theorems for the convergence of such a series exist For example by the Hardy Littlewood Tauberian theorem if 5 L lim sup n log k 1 n a k w n displaystyle L limsup n to infty frac log vert sum k 1 n a k vert omega n then the series for f s displaystyle f s converges in the half plane ℜ s gt L displaystyle Re s gt L and is uniformly convergent on every compact subset of the half plane ℜ s gt L displaystyle Re s gt L In almost all applications to physics one has L 0 displaystyle L 0 History EditMuch of the early work establishing the convergence and equivalence of series regularized with the heat kernel and zeta function regularization methods was done by G H Hardy and J E Littlewood in 1916 6 and is based on the application of the Cahen Mellin integral The effort was made in order to obtain values for various ill defined conditionally convergent sums appearing in number theory In terms of application as the regulator in physical problems before Hawking 1977 J Stuart Dowker and Raymond Critchley in 1976 proposed a zeta function regularization method for quantum physical problems 7 Emilio Elizalde and others have also proposed a method based on the zeta regularization for the integrals a x m s d x displaystyle int a infty x m s dx here x s displaystyle x s is a regulator and the divergent integral depends on the numbers z s m displaystyle zeta s m in the limit s 0 displaystyle s to 0 see renormalization Also unlike other regularizations such as dimensional regularization and analytic regularization zeta regularization has no counterterms and gives only finite results See also EditGenerating function Formal power series coefficients encode information about a sequence indexed by natural numbers Perron s formula Formula to calculate the sum of an arithmetic function in analytic number theory Renormalization Method in physics used to deal with infinities 1 1 1 1 Divergent series 1 2 3 4 Divergent series Analytic torsion Topological invariant of manifolds that can distinguish homotopy equivalent manifolds Ramanujan summation Mathematical techniques for summing divergent infinite series Minakshisundaram Pleijel zeta function Zeta function operator References Edit Tom M Apostol Modular Functions and Dirichlet Series in Number Theory Springer Verlag New York See Chapter 8 A Bytsenko G Cognola E Elizalde V Moretti and S Zerbini Analytic Aspects of Quantum Fields World Scientific Publishing 2003 ISBN 981 238 364 6 G H Hardy and J E Littlewood Contributions to the Theory of the Riemann Zeta Function and the Theory of the Distribution of Primes Acta Mathematica 41 1916 pp 119 196 See for example theorem 2 12 Hawking S W 1977 Zeta function regularization of path integrals in curved spacetime Communications in Mathematical Physics 55 2 133 148 Bibcode 1977CMaPh 55 133H doi 10 1007 BF01626516 ISSN 0010 3616 MR 0524257 S2CID 121650064 V Moretti Direct z function approach and renormalization of one loop stress tensor in curved spacetimes Phys Rev D 56 7797 1997 Minakshisundaram S Pleijel A 1949 Some properties of the eigenfunctions of the Laplace operator on Riemannian manifolds Canadian Journal of Mathematics 1 3 242 256 doi 10 4153 CJM 1949 021 5 ISSN 0008 414X MR 0031145 Ray D B Singer I M 1971 R torsion and the Laplacian on Riemannian manifolds Advances in Mathematics 7 2 145 210 doi 10 1016 0001 8708 71 90045 4 MR 0295381 Zeta function method for regularization Encyclopedia of Mathematics EMS Press 2001 1994 Seeley R T 1967 Complex powers of an elliptic operator in Calderon Alberto P ed Singular Integrals Proc Sympos Pure Math Chicago Ill 1966 Proceedings of Symposia in Pure Mathematics vol 10 Providence R I Amer Math Soc pp 288 307 ISBN 978 0 8218 1410 9 MR 0237943 Dowker J S Critchley R 1976 Effective Lagrangian and energy momentum tensor in de Sitter space Physical Review D 13 12 3224 3232 Bibcode 1976PhRvD 13 3224D doi 10 1103 PhysRevD 13 3224 D Fermi L Pizzocchero Local zeta regularization and the scalar Casimir effect A general approach based on integral kernels World Scientific Publishing ISBN 978 981 3224 99 5 hardcover ISBN 978 981 3225 01 5 ebook DOI 10 1142 10570 2017 Retrieved from https en wikipedia org w index php title Zeta function regularization amp oldid 1167537496, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.