fbpx
Wikipedia

Lemniscate constant

In mathematics, the lemniscate constant ϖ[1][2][3][4][5] is a transcendental mathematical constant that is the ratio of the perimeter of Bernoulli's lemniscate to its diameter, analogous to the definition of π for the circle. Equivalently, the perimeter of the lemniscate is 2ϖ. The lemniscate constant is closely related to the lemniscate elliptic functions and approximately equal to 2.62205755.[6][7][8][9] The symbol ϖ is a cursive variant of π; see Pi § Variant pi.

Lemniscate of Bernoulli

Gauss's constant, denoted by G, is equal to ϖ /π ≈ 0.8346268.[10]

John Todd named two more lemniscate constants, the first lemniscate constant A = ϖ/2 ≈ 1.3110287771 and the second lemniscate constant B = π/(2ϖ) ≈ 0.5990701173.[11][12][13][14]

Sometimes the quantities 2ϖ or A are referred to as the lemniscate constant.[15][16]

History

Gauss's constant   is named after Carl Friedrich Gauss, who calculated it via the arithmetic–geometric mean as  .[6] By 1799, Gauss had two proofs of the theorem that   where   is the lemniscate constant.[2][a]

The lemniscate constant   and first lemniscate constant   were proven transcendental by Theodor Schneider in 1937 and the second lemniscate constant   and Gauss's constant   were proven transcendental by Theodor Schneider in 1941.[11][17][b] In 1975, Gregory Chudnovsky proved that the set   is algebraically independent over  , which implies that   and   are algebraically independent as well.[18][19] But the set   (where the prime denotes the derivative with respect to the second variable) is not algebraically independent over  . In fact,[20]

 

Forms

Usually,   is defined by the first equality below.[2][21][22]

 

where K is the complete elliptic integral of the first kind with modulus k, Β is the beta function, Γ is the gamma function and ζ is the Riemann zeta function.

The lemniscate constant can also be computed by the arithmetic–geometric mean  ,

 

Moreover,

 

which is analogous to

 

where   is the Dirichlet beta function and   is the Riemann zeta function.[23]

Gauss's constant is typically defined as the reciprocal of the arithmetic–geometric mean of 1 and the square root of 2, after his calculation of   published in 1800:[24]

 

Gauss's constant is equal to

 

where Β denotes the beta function. A formula for G in terms of Jacobi theta functions is given by

 

Gauss's constant may be computed from the gamma function at argument 1/4:

 

John Todd's lemniscate constants may be given in terms of the beta function B:

 

Series

Viète's formula for π can be written:

 

An analogous formula for ϖ is:[25]

 

The Wallis product for π is:

 

An analogous formula for ϖ is:[26]

 

A related result for Gauss's constant ( ) is:[27]

 

An infinite series of Gauss's constant discovered by Gauss is:[28]

 

The Machin formula for π is   and several similar formulas for π can be developed using trigonometric angle sum identities, e.g. Euler's formula  . Analogous formulas can be developed for ϖ, including the following found by Gauss:  , where   is the lemniscate arcsine.[29]

The lemniscate constant can be rapidly computed by the series[30][31]

 

where   (these are the generalized pentagonal numbers).

In a spirit similar to that of the Basel problem,

 

where   are the Gaussian integers and   is the Eisenstein series of weight   (see Lemniscate elliptic functions § Hurwitz numbers for a more general result).[32]

A related result is

 

where   is the sum of positive divisors function.[33]

In 1842, Malmsten found

 

where   is Euler's constant.

Gauss's constant is given by the rapidly converging series

 

The constant is also given by the infinite product

 

Continued fractions

The simple continued fraction of ϖ is given by[34]

 

A (generalized) continued fraction for π is

 
An analogous formula for ϖ is[12]
 

Define Brouncker's continued fraction by[35]

 
Let   except for the first equality where  . Then[36][37]
 
For example,
 

Gauss' constant as a (simple) continued fraction is [0, 1, 5, 21, 3, 4, 14, ...]. (sequence A053002 in the OEIS)

Integrals

 
A geometric representation of   and  

ϖ is related to the area under the curve  . Defining  , twice the area in the positive quadrant under the curve   is   In the quartic case,  

In 1842, Malmsten discovered that[38]

 

Furthermore,

 

and[39]

 
a form of Gaussian integral.

Gauss's constant appears in the evaluation of the integrals

 
 

The first and second lemniscate constants are defined by integrals:[11]

 
 

Circumference of an ellipse

Gauss's constant satisfies the equation[40]

 

Euler discovered in 1738 that for the rectangular elastica (first and second lemniscate constants)[41][40]

 

Now considering the circumference   of the ellipse with axes   and  , satisfying  , Stirling noted that[42]

 

Hence the full circumference is

 

This is also the arc length of the sine curve on half a period:[43]

 

Notes

  1. ^ although neither of these proofs was rigorous from the modern point of view.
  2. ^ In particular, he proved that the beta function   is transcendental for all   such that  . The fact that   is transcendental follows from   and similarly for B and G from  

References

  1. ^ Gauss, C. F. (1866). Werke (Band III) (in Latin and German). Herausgegeben der Königlichen Gesellschaft der Wissenschaften zu Göttingen. p. 404
  2. ^ a b c Cox 1984, p. 281.
  3. ^ Eymard, Pierre; Lafon, Jean-Pierre (2004). The Number Pi. American Mathematical Society. ISBN 0-8218-3246-8. p. 199
  4. ^ Bottazzini, Umberto; Gray, Jeremy (2013). Hidden Harmony – Geometric Fantasies: The Rise of Complex Function Theory. Springer. doi:10.1007/978-1-4614-5725-1. ISBN 978-1-4614-5724-4. p. 57
  5. ^ Arakawa, Tsuneo; Ibukiyama, Tomoyoshi; Kaneko, Masanobu (2014). Bernoulli Numbers and Zeta Functions. Springer. ISBN 978-4-431-54918-5. p. 203
  6. ^ a b Finch, Steven R. (18 August 2003). Mathematical Constants. Cambridge University Press. p. 420. ISBN 978-0-521-81805-6.
  7. ^ Kobayashi, Hiroyuki; Takeuchi, Shingo (2019), "Applications of generalized trigonometric functions with two parameters", Communications on Pure & Applied Analysis, 18 (3): 1509–1521, arXiv:1903.07407, doi:10.3934/cpaa.2019072, S2CID 102487670
  8. ^ Asai, Tetsuya (2007), Elliptic Gauss Sums and Hecke L-values at s=1, arXiv:0707.3711
  9. ^ "A062539 - Oeis".
  10. ^ "A014549 - Oeis".
  11. ^ a b c Todd, John (January 1975). "The lemniscate constants". Communications of the ACM. 18 (1): 14–19. doi:10.1145/360569.360580. S2CID 85873.
  12. ^ a b "A085565 - Oeis".
  13. ^ "A076390 - Oeis".
  14. ^ Carlson, B. C. (2010), "Elliptic Integrals", in Olver, Frank W. J.; Lozier, Daniel M.; Boisvert, Ronald F.; Clark, Charles W. (eds.), NIST Handbook of Mathematical Functions, Cambridge University Press, ISBN 978-0-521-19225-5, MR 2723248
  15. ^ "A064853 - Oeis".
  16. ^ "Lemniscate Constant".
  17. ^ Schneider, Theodor (1941). "Zur Theorie der Abelschen Funktionen und Integrale". Journal für die reine und angewandte Mathematik. 183 (19): 110–128. doi:10.1515/crll.1941.183.110. S2CID 118624331.
  18. ^ G. V. Choodnovsky: Algebraic independence of constants connected with the functions of analysis, Notices of the AMS 22, 1975, p. A-486
  19. ^ G. V. Chudnovsky: Contributions to The Theory of Transcendental Numbers, American Mathematical Society, 1984, p. 6
  20. ^ Borwein, Jonathan M.; Borwein, Peter B. (1987). Pi and the AGM: A Study in Analytic Number Theory and Computational Complexity (First ed.). Wiley-Interscience. ISBN 0-471-83138-7. p. 45
  21. ^ Finch, Steven R. (18 August 2003). Mathematical Constants. Cambridge University Press. pp. 420–422. ISBN 978-0-521-81805-6.
  22. ^ Schappacher, Norbert (1997). "Some milestones of lemniscatomy" (PDF). In Sertöz, S. (ed.). Algebraic Geometry (Proceedings of Bilkent Summer School, August 7–19, 1995, Ankara, Turkey). Marcel Dekker. pp. 257–290.
  23. ^ "A113847 - Oeis".
  24. ^ Cox 1984, p. 277.
  25. ^ Levin (2006)
  26. ^ Hyde (2014) proves the validity of a more general Wallis-like formula for clover curves; here the special case of the lemniscate is slightly transformed, for clarity.
  27. ^ Hyde, Trevor (2014). "A Wallis product on clovers" (PDF). The American Mathematical Monthly. 121 (3): 237–243. doi:10.4169/amer.math.monthly.121.03.237. S2CID 34819500.
  28. ^ Bottazzini, Umberto; Gray, Jeremy (2013). Hidden Harmony – Geometric Fantasies: The Rise of Complex Function Theory. Springer. doi:10.1007/978-1-4614-5725-1. ISBN 978-1-4614-5724-4. p. 60
  29. ^ Todd (1975)
  30. ^ Cox 1984, p. 307, eq. 2.21 for the first equality. The second equality can be proved by using the pentagonal number theorem.
  31. ^ Berndt, Bruce C. (1998). Ramanujan's Notebooks Part V. Springer. ISBN 978-1-4612-7221-2. p. 326
  32. ^ Eymard, Pierre; Lafon, Jean-Pierre (2004). The Number Pi. American Mathematical Society. ISBN 0-8218-3246-8. p. 232
  33. ^ Garrett, Paul. "Level-one elliptic modular forms" (PDF). University of Minnesota. p. 11—13
  34. ^ "A062540 - OEIS". oeis.org. Retrieved 2022-09-14.
  35. ^ Khrushchev, Sergey (2008). Orthogonal Polynomials and Continued Fractions (First ed.). Cambridge University Press. ISBN 978-0-521-85419-1. p. 140 (eq. 3.34), p. 153. There's an error on p. 153:   should be  .
  36. ^ Khrushchev, Sergey (2008). Orthogonal Polynomials and Continued Fractions (First ed.). Cambridge University Press. ISBN 978-0-521-85419-1. p. 146, 155
  37. ^ Perron, Oskar (1957). Die Lehre von den Kettenbrüchen: Band II (in German) (Third ed.). B. G. Teubner. p. 36, eq. 24
  38. ^ Blagouchine, Iaroslav V. (2014). "Rediscovery of Malmsten's integrals, their evaluation by contour integration methods and some related results". The Ramanujan Journal. 35 (1): 21–110. doi:10.1007/s11139-013-9528-5. S2CID 120943474.
  39. ^ "A068467 - Oeis".
  40. ^ a b Cox 1984, p. 313.
  41. ^ Levien (2008)
  42. ^ Cox 1984, p. 312.
  43. ^ Adlaj, Semjon (2012). "An Eloquent Formula for the Perimeter of an Ellipse" (PDF). American Mathematical Society. p. 1097. One might also observe that the length of the "sine" curve over half a period, that is, the length of the graph of the function sin(t) from the point where t = 0 to the point where t = π , is  . In this paper   and  .
  • Weisstein, Eric W. "Gauss's Constant". MathWorld.
  • Sequences A014549, A053002, and A062539 in OEIS
  • Cox, David A. (January 1984). "The Arithmetic-Geometric Mean of Gauss" (PDF). L'Enseignement Mathématique. 30 (2): 275–330. doi:10.5169/seals-53831. Retrieved 25 June 2022.

External links

  • "Gauss's constant and where it occurs". www.johndcook.com. 2021-10-17.

lemniscate, constant, gauss, constant, redirects, here, parameter, used, orbital, mechanics, gaussian, gravitational, constant, mathematics, lemniscate, constant, transcendental, mathematical, constant, that, ratio, perimeter, bernoulli, lemniscate, diameter, . Gauss s constant redirects here For the parameter used in orbital mechanics see Gaussian gravitational constant In mathematics the lemniscate constant ϖ 1 2 3 4 5 is a transcendental mathematical constant that is the ratio of the perimeter of Bernoulli s lemniscate to its diameter analogous to the definition of p for the circle Equivalently the perimeter of the lemniscate x 2 y 2 2 x 2 y 2 displaystyle x 2 y 2 2 x 2 y 2 is 2ϖ The lemniscate constant is closely related to the lemniscate elliptic functions and approximately equal to 2 62205755 6 7 8 9 The symbol ϖ is a cursive variant of p see Pi Variant pi Lemniscate of Bernoulli Gauss s constant denoted by G is equal to ϖ p 0 8346268 10 John Todd named two more lemniscate constants the first lemniscate constant A ϖ 2 1 3110287771 and the second lemniscate constant B p 2ϖ 0 5990701173 11 12 13 14 Sometimes the quantities 2ϖ or A are referred to as the lemniscate constant 15 16 Contents 1 History 2 Forms 3 Series 4 Continued fractions 5 Integrals 5 1 Circumference of an ellipse 6 Notes 7 References 8 External linksHistory EditGauss s constant G displaystyle G is named after Carl Friedrich Gauss who calculated it via the arithmetic geometric mean as 1 M 1 2 displaystyle 1 M 1 sqrt 2 6 By 1799 Gauss had two proofs of the theorem that M 1 2 p ϖ displaystyle M 1 sqrt 2 pi varpi where ϖ displaystyle varpi is the lemniscate constant 2 a The lemniscate constant ϖ displaystyle varpi and first lemniscate constant A displaystyle A were proven transcendental by Theodor Schneider in 1937 and the second lemniscate constant B displaystyle B and Gauss s constant G displaystyle G were proven transcendental by Theodor Schneider in 1941 11 17 b In 1975 Gregory Chudnovsky proved that the set p ϖ displaystyle pi varpi is algebraically independent over Q displaystyle mathbb Q which implies that A displaystyle A and B displaystyle B are algebraically independent as well 18 19 But the set p M 1 1 2 M 1 1 2 displaystyle pi M 1 1 sqrt 2 M 1 1 sqrt 2 where the prime denotes the derivative with respect to the second variable is not algebraically independent over Q displaystyle mathbb Q In fact 20 p 2 2 M 3 1 1 2 M 1 1 2 1 G 3 M 1 1 2 displaystyle pi 2 sqrt 2 frac M 3 1 1 sqrt 2 M 1 1 sqrt 2 frac 1 G 3 M 1 1 sqrt 2 Forms EditUsually ϖ displaystyle varpi is defined by the first equality below 2 21 22 ϖ 2 0 1 d t 1 t 4 2 0 d t 1 t 4 0 1 d t t t 3 1 d t t 3 t 4 0 1 t 4 4 t d t 2 2 0 1 1 t 4 4 d t 3 0 1 1 t 4 d t 2 K i 1 2 B 1 4 1 2 G 1 4 2 2 2 p 2 2 4 z 3 4 2 z 1 4 2 2 62205 75542 92119 81046 48395 89891 11941 displaystyle begin aligned varpi amp 2 int 0 1 frac mathrm d t sqrt 1 t 4 sqrt 2 int 0 infty frac mathrm d t sqrt 1 t 4 int 0 1 frac mathrm d t sqrt t t 3 int 1 infty frac mathrm d t sqrt t 3 t 6mu amp 4 int 0 infty Bigl sqrt 4 1 t 4 t Bigr mathrm d t 2 sqrt 2 int 0 1 sqrt 4 1 t 4 mathop mathrm d t 3 int 0 1 sqrt 1 t 4 mathrm d t 2mu amp 2K i tfrac 1 2 mathrm B bigl tfrac 1 4 tfrac 1 2 bigr frac Gamma 1 4 2 2 sqrt 2 pi frac 2 sqrt 2 4 frac zeta 3 4 2 zeta 1 4 2 5mu amp 2 62205 75542 92119 81046 48395 89891 11941 ldots end aligned where K is the complete elliptic integral of the first kind with modulus k B is the beta function G is the gamma function and z is the Riemann zeta function The lemniscate constant can also be computed by the arithmetic geometric mean M displaystyle M ϖ p M 1 2 displaystyle varpi frac pi M 1 sqrt 2 Moreover e b 0 ϖ p displaystyle e beta 0 frac varpi sqrt pi which is analogous toe z 0 1 2 p displaystyle e zeta 0 frac 1 sqrt 2 pi where b displaystyle beta is the Dirichlet beta function and z displaystyle zeta is the Riemann zeta function 23 Gauss s constant is typically defined as the reciprocal of the arithmetic geometric mean of 1 and the square root of 2 after his calculation of M 1 2 displaystyle M 1 sqrt 2 published in 1800 24 G 1 M 1 2 displaystyle G frac 1 M 1 sqrt 2 Gauss s constant is equal toG 1 2 p B 1 4 1 2 displaystyle G frac 1 2 pi mathrm B bigl tfrac 1 4 tfrac 1 2 bigr where B denotes the beta function A formula for G in terms of Jacobi theta functions is given byG ϑ 01 2 e p displaystyle G vartheta 01 2 left e pi right Gauss s constant may be computed from the gamma function at argument 1 4 G G 1 4 2 2 2 p 3 displaystyle G frac Gamma bigl tfrac 1 4 bigr 2 2 sqrt 2 pi 3 John Todd s lemniscate constants may be given in terms of the beta function B A 1 2 p G 1 2 ϖ 1 4 B 1 4 1 2 B 1 2 G 1 4 B 1 2 3 4 displaystyle begin aligned A amp tfrac 1 2 pi G tfrac 1 2 varpi tfrac 1 4 mathrm B bigl tfrac 1 4 tfrac 1 2 bigr 3mu B amp frac 1 2G tfrac 1 4 mathrm B bigl tfrac 1 2 tfrac 3 4 bigr end aligned Series EditViete s formula for p can be written 2 p 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 displaystyle frac 2 pi sqrt frac 1 2 cdot sqrt frac 1 2 frac 1 2 sqrt frac 1 2 cdot sqrt frac 1 2 frac 1 2 sqrt frac 1 2 frac 1 2 sqrt frac 1 2 cdots An analogous formula for ϖ is 25 2 ϖ 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 displaystyle frac 2 varpi sqrt frac 1 2 cdot sqrt frac 1 2 frac 1 2 bigg sqrt frac 1 2 cdot sqrt frac 1 2 frac 1 2 Bigg sqrt frac 1 2 frac 1 2 bigg sqrt frac 1 2 cdots The Wallis product for p is p 2 n 1 1 1 n 1 n 1 n 1 2 n 2 n 1 2 n 2 n 1 2 1 2 3 4 3 4 5 6 5 6 7 displaystyle frac pi 2 prod n 1 infty left 1 frac 1 n right 1 n 1 prod n 1 infty left frac 2n 2n 1 cdot frac 2n 2n 1 right biggl frac 2 1 cdot frac 2 3 biggr biggl frac 4 3 cdot frac 4 5 biggr biggl frac 6 5 cdot frac 6 7 biggr cdots An analogous formula for ϖ is 26 ϖ 2 n 1 1 1 2 n 1 n 1 n 1 4 n 1 4 n 2 4 n 4 n 1 3 2 4 5 7 6 8 9 11 10 12 13 displaystyle frac varpi 2 prod n 1 infty left 1 frac 1 2n right 1 n 1 prod n 1 infty left frac 4n 1 4n 2 cdot frac 4n 4n 1 right biggl frac 3 2 cdot frac 4 5 biggr biggl frac 7 6 cdot frac 8 9 biggr biggl frac 11 10 cdot frac 12 13 biggr cdots A related result for Gauss s constant G ϖ p displaystyle G varpi pi is 27 G n 1 4 n 1 4 n 4 n 2 4 n 1 3 4 6 5 7 8 10 9 11 12 14 13 displaystyle G prod n 1 infty left frac 4n 1 4n cdot frac 4n 2 4n 1 right biggl frac 3 4 cdot frac 6 5 biggr biggl frac 7 8 cdot frac 10 9 biggr biggl frac 11 12 cdot frac 14 13 biggr cdots An infinite series of Gauss s constant discovered by Gauss is 28 G n 0 1 n k 1 n 2 k 1 2 2 k 2 1 1 2 2 2 1 2 3 2 2 2 4 2 1 2 3 2 5 2 2 2 4 2 6 2 displaystyle G sum n 0 infty 1 n prod k 1 n frac 2k 1 2 2k 2 1 frac 1 2 2 2 frac 1 2 cdot 3 2 2 2 cdot 4 2 frac 1 2 cdot 3 2 cdot 5 2 2 2 cdot 4 2 cdot 6 2 cdots The Machin formula for p is 1 4 p 4 arctan 1 5 arctan 1 239 textstyle tfrac 1 4 pi 4 arctan tfrac 1 5 arctan tfrac 1 239 and several similar formulas for p can be developed using trigonometric angle sum identities e g Euler s formula 1 4 p arctan 1 2 arctan 1 3 textstyle tfrac 1 4 pi arctan tfrac 1 2 arctan tfrac 1 3 Analogous formulas can be developed for ϖ including the following found by Gauss 1 2 ϖ 2 arcsl 1 2 arcsl 7 23 displaystyle tfrac 1 2 varpi 2 operatorname arcsl tfrac 1 2 operatorname arcsl tfrac 7 23 where arcsl displaystyle operatorname arcsl is the lemniscate arcsine 29 The lemniscate constant can be rapidly computed by the series 30 31 ϖ 2 1 2 p n Z e p n 2 2 2 1 4 p e p 12 n Z 1 n e p p n 2 displaystyle varpi 2 1 2 pi left sum n in mathbb Z e pi n 2 right 2 2 1 4 pi e pi 12 left sum n in mathbb Z 1 n e pi p n right 2 where p n 3 n 2 n 2 displaystyle p n 3n 2 n 2 these are the generalized pentagonal numbers In a spirit similar to that of the Basel problem z Z i 0 1 z 4 G 4 i ϖ 4 15 displaystyle sum z in mathbb Z i setminus 0 frac 1 z 4 G 4 i frac varpi 4 15 where Z i displaystyle mathbb Z i are the Gaussian integers and G 4 displaystyle G 4 is the Eisenstein series of weight 4 displaystyle 4 see Lemniscate elliptic functions Hurwitz numbers for a more general result 32 A related result is n 1 s 3 n e 2 p n ϖ 4 80 p 4 1 240 displaystyle sum n 1 infty sigma 3 n e 2 pi n frac varpi 4 80 pi 4 frac 1 240 where s 3 displaystyle sigma 3 is the sum of positive divisors function 33 In 1842 Malmsten found n 1 1 n 1 log 2 n 1 2 n 1 p 4 g 2 log p ϖ 2 displaystyle sum n 1 infty 1 n 1 frac log 2n 1 2n 1 frac pi 4 left gamma 2 log frac pi varpi sqrt 2 right where g displaystyle gamma is Euler s constant Gauss s constant is given by the rapidly converging seriesG 32 4 e p 3 n 1 n e 2 n p 3 n 1 2 displaystyle G sqrt 4 32 e frac pi 3 left sum n infty infty 1 n e 2n pi 3n 1 right 2 The constant is also given by the infinite product G m 1 tanh 2 p m 2 displaystyle G prod m 1 infty tanh 2 left frac pi m 2 right Continued fractions EditThe simple continued fraction of ϖ is given by 34 ϖ 2 1 1 1 1 1 1 1 1 1 1 1 4 displaystyle varpi 2 cfrac 1 1 cfrac 1 1 cfrac 1 1 cfrac 1 1 cfrac 1 1 cfrac 1 4 ddots A generalized continued fraction for p isp 2 1 1 1 1 2 1 2 3 1 3 4 1 displaystyle frac pi 2 1 cfrac 1 1 cfrac 1 cdot 2 1 cfrac 2 cdot 3 1 cfrac 3 cdot 4 1 ddots An analogous formula for ϖ is 12 ϖ 2 1 1 2 2 3 2 4 5 2 6 7 2 displaystyle frac varpi 2 1 cfrac 1 2 cfrac 2 cdot 3 2 cfrac 4 cdot 5 2 cfrac 6 cdot 7 2 ddots Define Brouncker s continued fraction by 35 b s s 1 2 2 s 3 2 2 s 5 2 2 s s gt 0 displaystyle b s s cfrac 1 2 2s cfrac 3 2 2s cfrac 5 2 2s ddots quad s gt 0 Let n 0 displaystyle n geq 0 except for the first equality where n 1 displaystyle n geq 1 Then 36 37 b 4 n 4 n 1 k 1 n 4 k 1 2 4 k 3 4 k 1 p ϖ 2 b 4 n 1 2 n 1 k 1 n 2 k 2 2 k 1 2 k 1 4 p b 4 n 2 4 n 1 k 1 n 4 k 3 4 k 1 4 k 1 2 ϖ 2 p b 4 n 3 2 n 1 k 1 n 2 k 1 2 k 1 2 k 2 p displaystyle begin aligned b 4n amp 4n 1 prod k 1 n frac 4k 1 2 4k 3 4k 1 frac pi varpi 2 b 4n 1 amp 2n 1 prod k 1 n frac 2k 2 2k 1 2k 1 frac 4 pi b 4n 2 amp 4n 1 prod k 1 n frac 4k 3 4k 1 4k 1 2 frac varpi 2 pi b 4n 3 amp 2n 1 prod k 1 n frac 2k 1 2k 1 2k 2 pi end aligned For example b 1 4 p b 2 ϖ 2 p b 3 p b 4 9 p ϖ 2 displaystyle begin aligned b 1 amp frac 4 pi b 2 amp frac varpi 2 pi b 3 amp pi b 4 amp frac 9 pi varpi 2 end aligned Gauss constant as a simple continued fraction is 0 1 5 21 3 4 14 sequence A053002 in the OEIS Integrals Edit A geometric representation of ϖ 2 displaystyle varpi 2 and ϖ 2 displaystyle varpi sqrt 2 ϖ is related to the area under the curve x 4 y 4 1 displaystyle x 4 y 4 1 Defining p n B 1 n 1 n displaystyle pi n mathrel mathrm B bigl tfrac 1 n tfrac 1 n bigr twice the area in the positive quadrant under the curve x n y n 1 displaystyle x n y n 1 is 2 0 1 1 x n n d x 1 n p n textstyle 2 int 0 1 sqrt n 1 x n mathop mathrm d x tfrac 1 n pi n In the quartic case 1 4 p 4 1 2 ϖ displaystyle tfrac 1 4 pi 4 tfrac 1 sqrt 2 varpi In 1842 Malmsten discovered that 38 0 1 log log x 1 x 2 d x p 2 log p ϖ 2 displaystyle int 0 1 frac log log x 1 x 2 dx frac pi 2 log frac pi varpi sqrt 2 Furthermore 0 tanh x x e x d x log ϖ 2 p displaystyle int 0 infty frac tanh x x e x dx log frac varpi 2 pi and 39 0 e x 4 d x 2 ϖ 2 p 4 analogous to 0 e x 2 d x p 2 displaystyle int 0 infty e x 4 dx frac sqrt 2 varpi sqrt 2 pi 4 quad text analogous to int 0 infty e x 2 dx frac sqrt pi 2 a form of Gaussian integral Gauss s constant appears in the evaluation of the integrals1 G 0 p 2 sin x d x 0 p 2 cos x d x displaystyle frac 1 G int 0 frac pi 2 sqrt sin x dx int 0 frac pi 2 sqrt cos x dx G 0 d x cosh p x displaystyle G int 0 infty frac dx sqrt cosh pi x The first and second lemniscate constants are defined by integrals 11 A 0 1 d x 1 x 4 displaystyle A int 0 1 frac dx sqrt 1 x 4 B 0 1 x 2 d x 1 x 4 displaystyle B int 0 1 frac x 2 dx sqrt 1 x 4 Circumference of an ellipse Edit Gauss s constant satisfies the equation 40 1 G 2 0 1 x 2 d x 1 x 4 displaystyle frac 1 G 2 int 0 1 frac x 2 dx sqrt 1 x 4 Euler discovered in 1738 that for the rectangular elastica first and second lemniscate constants 41 40 arc length height A B 0 1 d x 1 x 4 0 1 x 2 d x 1 x 4 ϖ 2 p 2 ϖ p 4 displaystyle textrm arc textrm length cdot textrm height A cdot B int 0 1 frac mathrm d x sqrt 1 x 4 cdot int 0 1 frac x 2 mathop mathrm d x sqrt 1 x 4 frac varpi 2 cdot frac pi 2 varpi frac pi 4 Now considering the circumference C displaystyle C of the ellipse with axes 2 displaystyle sqrt 2 and 1 displaystyle 1 satisfying 2 x 2 4 y 2 1 displaystyle 2x 2 4y 2 1 Stirling noted that 42 C 2 0 1 d x 1 x 4 0 1 x 2 d x 1 x 4 displaystyle frac C 2 int 0 1 frac dx sqrt 1 x 4 int 0 1 frac x 2 dx sqrt 1 x 4 Hence the full circumference isC 1 G G p 3 820197789 displaystyle C frac 1 G G pi approx 3 820197789 ldots This is also the arc length of the sine curve on half a period 43 C 0 p 1 cos 2 x d x displaystyle C int 0 pi sqrt 1 cos 2 x dx Notes Edit although neither of these proofs was rigorous from the modern point of view In particular he proved that the beta function B a b displaystyle mathrm B a b is transcendental for all a b Q Z displaystyle a b in mathbb Q setminus mathbb Z such that a b Z 0 displaystyle a b notin mathbb Z 0 The fact that ϖ displaystyle varpi is transcendental follows from ϖ 1 2 B 1 4 1 2 displaystyle varpi tfrac 1 2 mathrm B left tfrac 1 4 tfrac 1 2 right and similarly for B and G from B 1 2 3 4 displaystyle mathrm B left tfrac 1 2 tfrac 3 4 right References Edit Gauss C F 1866 Werke Band III in Latin and German Herausgegeben der Koniglichen Gesellschaft der Wissenschaften zu Gottingen p 404 a b c Cox 1984 p 281 Eymard Pierre Lafon Jean Pierre 2004 The Number Pi American Mathematical Society ISBN 0 8218 3246 8 p 199 Bottazzini Umberto Gray Jeremy 2013 Hidden Harmony Geometric Fantasies The Rise of Complex Function Theory Springer doi 10 1007 978 1 4614 5725 1 ISBN 978 1 4614 5724 4 p 57 Arakawa Tsuneo Ibukiyama Tomoyoshi Kaneko Masanobu 2014 Bernoulli Numbers and Zeta Functions Springer ISBN 978 4 431 54918 5 p 203 a b Finch Steven R 18 August 2003 Mathematical Constants Cambridge University Press p 420 ISBN 978 0 521 81805 6 Kobayashi Hiroyuki Takeuchi Shingo 2019 Applications of generalized trigonometric functions with two parameters Communications on Pure amp Applied Analysis 18 3 1509 1521 arXiv 1903 07407 doi 10 3934 cpaa 2019072 S2CID 102487670 Asai Tetsuya 2007 Elliptic Gauss Sums and Hecke L values at s 1 arXiv 0707 3711 A062539 Oeis A014549 Oeis a b c Todd John January 1975 The lemniscate constants Communications of the ACM 18 1 14 19 doi 10 1145 360569 360580 S2CID 85873 a b A085565 Oeis A076390 Oeis Carlson B C 2010 Elliptic Integrals in Olver Frank W J Lozier Daniel M Boisvert Ronald F Clark Charles W eds NIST Handbook of Mathematical Functions Cambridge University Press ISBN 978 0 521 19225 5 MR 2723248 A064853 Oeis Lemniscate Constant Schneider Theodor 1941 Zur Theorie der Abelschen Funktionen und Integrale Journal fur die reine und angewandte Mathematik 183 19 110 128 doi 10 1515 crll 1941 183 110 S2CID 118624331 G V Choodnovsky Algebraic independence of constants connected with the functions of analysis Notices of the AMS 22 1975 p A 486 G V Chudnovsky Contributions to The Theory of Transcendental Numbers American Mathematical Society 1984 p 6 Borwein Jonathan M Borwein Peter B 1987 Pi and the AGM A Study in Analytic Number Theory and Computational Complexity First ed Wiley Interscience ISBN 0 471 83138 7 p 45 Finch Steven R 18 August 2003 Mathematical Constants Cambridge University Press pp 420 422 ISBN 978 0 521 81805 6 Schappacher Norbert 1997 Some milestones of lemniscatomy PDF In Sertoz S ed Algebraic Geometry Proceedings of Bilkent Summer School August 7 19 1995 Ankara Turkey Marcel Dekker pp 257 290 A113847 Oeis Cox 1984 p 277 Levin 2006 Hyde 2014 proves the validity of a more general Wallis like formula for clover curves here the special case of the lemniscate is slightly transformed for clarity Hyde Trevor 2014 A Wallis product on clovers PDF The American Mathematical Monthly 121 3 237 243 doi 10 4169 amer math monthly 121 03 237 S2CID 34819500 Bottazzini Umberto Gray Jeremy 2013 Hidden Harmony Geometric Fantasies The Rise of Complex Function Theory Springer doi 10 1007 978 1 4614 5725 1 ISBN 978 1 4614 5724 4 p 60 Todd 1975 Cox 1984 p 307 eq 2 21 for the first equality The second equality can be proved by using the pentagonal number theorem Berndt Bruce C 1998 Ramanujan s Notebooks Part V Springer ISBN 978 1 4612 7221 2 p 326 Eymard Pierre Lafon Jean Pierre 2004 The Number Pi American Mathematical Society ISBN 0 8218 3246 8 p 232 Garrett Paul Level one elliptic modular forms PDF University of Minnesota p 11 13 A062540 OEIS oeis org Retrieved 2022 09 14 Khrushchev Sergey 2008 Orthogonal Polynomials and Continued Fractions First ed Cambridge University Press ISBN 978 0 521 85419 1 p 140 eq 3 34 p 153 There s an error on p 153 4 G 3 s 4 G 1 s 4 2 displaystyle 4 Gamma 3 s 4 Gamma 1 s 4 2 should be 4 G 3 s 4 G 1 s 4 2 displaystyle 4 Gamma 3 s 4 Gamma 1 s 4 2 Khrushchev Sergey 2008 Orthogonal Polynomials and Continued Fractions First ed Cambridge University Press ISBN 978 0 521 85419 1 p 146 155 Perron Oskar 1957 Die Lehre von den Kettenbruchen Band II in German Third ed B G Teubner p 36 eq 24 Blagouchine Iaroslav V 2014 Rediscovery of Malmsten s integrals their evaluation by contour integration methods and some related results The Ramanujan Journal 35 1 21 110 doi 10 1007 s11139 013 9528 5 S2CID 120943474 A068467 Oeis a b Cox 1984 p 313 Levien 2008 Cox 1984 p 312 Adlaj Semjon 2012 An Eloquent Formula for the Perimeter of an Ellipse PDF American Mathematical Society p 1097 One might also observe that the length of the sine curve over half a period that is the length of the graph of the function sin t from the point where t 0 to the point where t p is 2 l 1 2 L M displaystyle sqrt 2 l 1 sqrt 2 L M In this paper M 1 G p ϖ displaystyle M 1 G pi varpi and L p M G p ϖ displaystyle L pi M G pi varpi Weisstein Eric W Gauss s Constant MathWorld Sequences A014549 A053002 and A062539 in OEIS Cox David A January 1984 The Arithmetic Geometric Mean of Gauss PDF L Enseignement Mathematique 30 2 275 330 doi 10 5169 seals 53831 Retrieved 25 June 2022 External links Edit Gauss s constant and where it occurs www johndcook com 2021 10 17 Retrieved from https en wikipedia org w index php title Lemniscate constant amp oldid 1128128338, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.