fbpx
Wikipedia

Iterated function

In mathematics, an iterated function is a function X → X (that is, a function from some set X to itself) which is obtained by composing another function f : X → X with itself a certain number of times. The process of repeatedly applying the same function is called iteration. In this process, starting from some initial object, the result of applying a given function is fed again in the function as input, and this process is repeated. For example on the image on the right:

Composed  with  itself  repeatedlysimilarity  F
of center enlarges the smallest regular pentagon into successive concentric pentagons,  in manner that the outline of each one
passes through all vertices of the previous pentagon,
of which it is the image under F.  If  transformation  F
is  iterated  indefinitely,   then    and  K
are  the  starting  points  of  two  infinite  spirals.
L = ( K ),   M = ( K ) = ( K ),
with the circle‑shaped symbol of function composition.

Iterated functions are objects of study in computer science, fractals, dynamical systems, mathematics and renormalization group physics.

Definition

The formal definition of an iterated function on a set X follows.

Let X be a set and f: XX be a function.

Defining f n as the n-th iterate of f (a notation introduced by Hans Heinrich Bürmann[citation needed][1][2] and John Frederick William Herschel[3][1][4][2]), where n is a non-negative integer, by:

 
and
 

where idX is the identity function on X and fg denotes function composition. That is,

(fg)(x) = f (g(x)),

always associative.

Because the notation f n may refer to both iteration (composition) of the function f or exponentiation of the function f (the latter is commonly used in trigonometry), some mathematicians[citation needed] choose to use to denote the compositional meaning, writing fn(x) for the n-th iterate of the function f(x), as in, for example, f∘3(x) meaning f(f(f(x))). For the same purpose, f [n](x) was used by Benjamin Peirce[5][2][nb 1] whereas Alfred Pringsheim and Jules Molk suggested nf(x) instead.[6][2][nb 2]

Abelian property and iteration sequences

In general, the following identity holds for all non-negative integers m and n,

 

This is structurally identical to the property of exponentiation that aman = am + n, i.e. the special case f(x) = ax.

In general, for arbitrary general (negative, non-integer, etc.) indices m and n, this relation is called the translation functional equation, cf. Schröder's equation and Abel equation. On a logarithmic scale, this reduces to the nesting property of Chebyshev polynomials, Tm(Tn(x)) = Tm n(x), since Tn(x) = cos(n arccos(x)).

The relation (f m)n(x) = (f n)m(x) = f mn(x) also holds, analogous to the property of exponentiation that (am)n = (an)m = amn.

The sequence of functions f n is called a Picard sequence,[7][8] named after Charles Émile Picard.

For a given x in X, the sequence of values fn(x) is called the orbit of x.

If f n (x) = f n+m (x) for some integer m>0, the orbit is called a periodic orbit. The smallest such value of m for a given x is called the period of the orbit. The point x itself is called a periodic point. The cycle detection problem in computer science is the algorithmic problem of finding the first periodic point in an orbit, and the period of the orbit.

Fixed points

If f(x) = x for some x in X (that is, the period of the orbit of x is 1), then x is called a fixed point of the iterated sequence. The set of fixed points is often denoted as Fix(f). There exist a number of fixed-point theorems that guarantee the existence of fixed points in various situations, including the Banach fixed point theorem and the Brouwer fixed point theorem.

There are several techniques for convergence acceleration of the sequences produced by fixed point iteration.[9] For example, the Aitken method applied to an iterated fixed point is known as Steffensen's method, and produces quadratic convergence.

Limiting behaviour

Upon iteration, one may find that there are sets that shrink and converge towards a single point. In such a case, the point that is converged to is known as an attractive fixed point. Conversely, iteration may give the appearance of points diverging away from a single point; this would be the case for an unstable fixed point.[10] When the points of the orbit converge to one or more limits, the set of accumulation points of the orbit is known as the limit set or the ω-limit set.

The ideas of attraction and repulsion generalize similarly; one may categorize iterates into stable sets and unstable sets, according to the behaviour of small neighborhoods under iteration. (Also see Infinite compositions of analytic functions.)

Other limiting behaviours are possible; for example, wandering points are points that move away, and never come back even close to where they started.

Invariant measure

If one considers the evolution of a density distribution, rather than that of individual point dynamics, then the limiting behavior is given by the invariant measure. It can be visualized as the behavior of a point-cloud or dust-cloud under repeated iteration. The invariant measure is an eigenstate of the Ruelle-Frobenius-Perron operator or transfer operator, corresponding to an eigenvalue of 1. Smaller eigenvalues correspond to unstable, decaying states.

In general, because repeated iteration corresponds to a shift, the transfer operator, and its adjoint, the Koopman operator can both be interpreted as shift operators action on a shift space. The theory of subshifts of finite type provides general insight into many iterated functions, especially those leading to chaos.

Fractional iterates and flows, and negative iterates

 
g: RR is a trivial functional 5th root of f: R+R+, f(x) = sin(x). The computation of f(π6) = 12 = g5(π6) is shown.

The notion f1/n must be used with care when the equation gn(x) = f(x) has multiple solutions, which is normally the case, as in Babbage's equation of the functional roots of the identity map. For example, for n = 2 and f(x) = 4x − 6, both g(x) = 6 − 2x and g(x) = 2x − 2 are solutions; so the expression f 1/2(x) doesn't denote a unique function, just as numbers have multiple algebraic roots. The issue is quite similar to the expression "0/0" in arithmetic. A trivial root of f can always be obtained if f's domain can be extended sufficiently, cf. picture. The roots chosen are normally the ones belonging to the orbit under study.

Fractional iteration of a function can be defined: for instance, a half iterate of a function f is a function g such that g(g(x)) = f(x).[11] This function g(x) can be written using the index notation as f 1/2(x) . Similarly, f 1/3(x) is the function defined such that f1/3(f1/3(f1/3(x))) = f(x), while f2/3(x) may be defined as equal to f 1/3(f1/3(x)), and so forth, all based on the principle, mentioned earlier, that f mf n = f m + n. This idea can be generalized so that the iteration count n becomes a continuous parameter, a sort of continuous "time" of a continuous orbit.[12][13]

In such cases, one refers to the system as a flow. (cf. Section on conjugacy below.)

Negative iterates correspond to function inverses and their compositions. For example, f −1(x) is the normal inverse of f, while f −2(x) is the inverse composed with itself, i.e. f −2(x) = f −1(f −1(x)). Fractional negative iterates are defined analogously to fractional positive ones; for example, f −1/2(x) is defined such that f −1/2(f −1/2(x)) = f −1(x), or, equivalently, such that f −1/2(f 1/2(x)) = f 0(x) = x.

Some formulas for fractional iteration

One of several methods of finding a series formula for fractional iteration, making use of a fixed point, is as follows.[14]

  1. First determine a fixed point for the function such that f(a) = a.
  2. Define f n(a) = a for all n belonging to the reals. This, in some ways, is the most natural extra condition to place upon the fractional iterates.
  3. Expand fn(x) around the fixed point a as a Taylor series,
     
  4. Expand out
     
  5. Substitute in for fk(a) = a, for any k,
     
  6. Make use of the geometric progression to simplify terms,
     
    There is a special case when f '(a) = 1,
     

This can be carried on indefinitely, although inefficiently, as the latter terms become increasingly complicated. A more systematic procedure is outlined in the following section on Conjugacy.

Example 1

For example, setting f(x) = Cx + D gives the fixed point a = D/(1 − C), so the above formula terminates to just

 
which is trivial to check.

Example 2

Find the value of   where this is done n times (and possibly the interpolated values when n is not an integer). We have f(x) = 2x. A fixed point is a = f(2) = 2.

So set x = 1 and f n (1) expanded around the fixed point value of 2 is then an infinite series,

 
which, taking just the first three terms, is correct to the first decimal place when n is positive–cf. Tetration: f n(1) = n2. (Using the other fixed point a = f(4) = 4 causes the series to diverge.)

For n = −1, the series computes the inverse function 2+ln x/ln 2.

Example 3

With the function f(x) = xb, expand around the fixed point 1 to get the series

 
which is simply the Taylor series of x(bn ) expanded around 1.

Conjugacy

If f and g are two iterated functions, and there exists a homeomorphism h such that g = h−1fh , then f and g are said to be topologically conjugate.

Clearly, topological conjugacy is preserved under iteration, as gn = h−1  ○ f nh. Thus, if one can solve for one iterated function system, one also has solutions for all topologically conjugate systems. For example, the tent map is topologically conjugate to the logistic map. As a special case, taking f(x) = x + 1, one has the iteration of g(x) = h−1(h(x) + 1) as

gn(x) = h−1(h(x) + n),   for any function h.

Making the substitution x = h−1(y) = ϕ(y) yields

g(ϕ(y)) = ϕ(y+1),   a form known as the Abel equation.

Even in the absence of a strict homeomorphism, near a fixed point, here taken to be at x = 0, f(0) = 0, one may often solve[15] Schröder's equation for a function Ψ, which makes f(x) locally conjugate to a mere dilation, g(x) = f '(0) x, that is

f(x) = Ψ−1(f '(0) Ψ(x)).

Thus, its iteration orbit, or flow, under suitable provisions (e.g., f '(0) ≠ 1), amounts to the conjugate of the orbit of the monomial,

Ψ−1(f '(0)n Ψ(x)),

where n in this expression serves as a plain exponent: functional iteration has been reduced to multiplication! Here, however, the exponent n no longer needs be integer or positive, and is a continuous "time" of evolution for the full orbit:[16] the monoid of the Picard sequence (cf. transformation semigroup) has generalized to a full continuous group.[17]

 
Iterates of the sine function (blue), in the first half-period. Half-iterate (orange), i.e., the sine's functional square root; the functional square root of that, the quarter-iterate (black) above it; and further fractional iterates up to the 1/64th. The functions below the (blue) sine are six integral iterates below it, starting with the second iterate (red) and ending with the 64th iterate. The green envelope triangle represents the limiting null iterate, the sawtooth function serving as the starting point leading to the sine function. The dashed line is the negative first iterate, i.e. the inverse of sine (arcsin). (From the general pedagogy web-site.[18] For the notation, see [2].)

This method (perturbative determination of the principal eigenfunction Ψ, cf. Carleman matrix) is equivalent to the algorithm of the preceding section, albeit, in practice, more powerful and systematic.

Markov chains

If the function is linear and can be described by a stochastic matrix, that is, a matrix whose rows or columns sum to one, then the iterated system is known as a Markov chain.

Examples

There are many chaotic maps. Well-known iterated functions include the Mandelbrot set and iterated function systems.

Ernst Schröder,[19] in 1870, worked out special cases of the logistic map, such as the chaotic case f(x) = 4x(1 − x), so that Ψ(x) = arcsin2(x), hence f n(x) = sin2(2n arcsin(x)).

A nonchaotic case Schröder also illustrated with his method, f(x) = 2x(1 − x), yielded Ψ(x) = −1/2 ln(1 − 2x), and hence fn(x) = −1/2((1 − 2x)2n − 1).

If f is the action of a group element on a set, then the iterated function corresponds to a free group.

Most functions do not have explicit general closed-form expressions for the n-th iterate. The table below lists some[19] that do. Note that all these expressions are valid even for non-integer and negative n, as well as non-negative integer n.

   
   
   
   
  (see note)
 

where:

  •  
  (see note)
 

where:

  •  
    (rational difference equation)[20]  

where:

  •  
  •  
   
    (generic Abel equation)  
   
   
   
  (Chebyshev polynomial for integer m)  

Note: these two special cases of ax2 + bx + c are the only cases that have a closed-form solution. Choosing b = 2 = –a and b = 4 = –a, respectively, further reduces them to the nonchaotic and chaotic logistic cases discussed prior to the table.

Some of these examples are related among themselves by simple conjugacies. A few further examples, essentially amounting to simple conjugacies of Schröder's examples can be found in ref.[21]

Means of study

Iterated functions can be studied with the Artin–Mazur zeta function and with transfer operators.

In computer science

In computer science, iterated functions occur as a special case of recursive functions, which in turn anchor the study of such broad topics as lambda calculus, or narrower ones, such as the denotational semantics of computer programs.

Definitions in terms of iterated functions

Two important functionals can be defined in terms of iterated functions. These are summation:

 

and the equivalent product:

 

Functional derivative

The functional derivative of an iterated function is given by the recursive formula:

 

Lie's data transport equation

Iterated functions crop up in the series expansion of combined functions, such as g(f(x)).

Given the iteration velocity, or beta function (physics),

 

for the nth iterate of the function f, we have[22]

 

For example, for rigid advection, if f(x) = x + t, then v(x) = t. Consequently, g(x + t) = exp(t ∂/∂x) g(x), action by a plain shift operator.

Conversely, one may specify f(x) given an arbitrary v(x), through the generic Abel equation discussed above,

 

where

 

This is evident by noting that

 

For continuous iteration index t, then, now written as a subscript, this amounts to Lie's celebrated exponential realization of a continuous group,

 

The initial flow velocity v suffices to determine the entire flow, given this exponential realization which automatically provides the general solution to the translation functional equation,[23]

 

See also

Notes

  1. ^ while f (n) is taken for the nth derivative
  2. ^ Alfred Pringsheim's and Jules Molk's (1907) notation nf(x) to denote function compositions must not be confused with Rudolf von Bitter Rucker's (1982) notation nx, introduced by Hans Maurer (1901) and Reuben Louis Goodstein (1947) for tetration, or with David Patterson Ellerman's (1995) nx pre-superscript notation for roots.

References

  1. ^ a b Herschel, John Frederick William (1820). "Part III. Section I. Examples of the Direct Method of Differences". A Collection of Examples of the Applications of the Calculus of Finite Differences. Cambridge, UK: Printed by J. Smith, sold by J. Deighton & sons. pp. 1–13 [5–6]. from the original on 2020-08-04. Retrieved 2020-08-04. [1] (NB. Inhere, Herschel refers to his 1813 work and mentions Hans Heinrich Bürmann's older work.)
  2. ^ a b c d Cajori, Florian (1952) [March 1929]. "§472. The power of a logarithm / §473. Iterated logarithms / §533. John Herschel's notation for inverse functions / §535. Persistence of rival notations for inverse functions / §537. Powers of trigonometric functions". A History of Mathematical Notations. Vol. 2 (3rd corrected printing of 1929 issue, 2nd ed.). Chicago, USA: Open court publishing company. pp. 108, 176–179, 336, 346. ISBN 978-1-60206-714-1. Retrieved 2016-01-18. […] §473. Iterated logarithms […] We note here the symbolism used by Pringsheim and Molk in their joint Encyclopédie article: "2logba = logb (logba), …, k+1logba = logb (klogba)."[a] […] §533. John Herschel's notation for inverse functions, sin−1x, tan−1x, etc., was published by him in the Philosophical Transactions of London, for the year 1813. He says (p. 10): "This notation cos.−1e must not be understood to signify 1/cos. e, but what is usually written thus, arc (cos.=e)." He admits that some authors use cos.mA for (cos. A)m, but he justifies his own notation by pointing out that since d2x, Δ3x, Σ2x mean ddx, ΔΔΔ x, ΣΣ x, we ought to write sin.2x for sin. sin. x, log.3x for log. log. log. x. Just as we write dn V=∫n V, we may write similarly sin.−1x=arc (sin.=x), log.−1x.=cx. Some years later Herschel explained that in 1813 he used fn(x), fn(x), sin.−1x, etc., "as he then supposed for the first time. The work of a German Analyst, Burmann, has, however, within these few months come to his knowledge, in which the same is explained at a considerably earlier date. He[Burmann], however, does not seem to have noticed the convenience of applying this idea to the inverse functions tan−1, etc., nor does he appear at all aware of the inverse calculus of functions to which it gives rise." Herschel adds, "The symmetry of this notation and above all the new and most extensive views it opens of the nature of analytical operations seem to authorize its universal adoption."[b] […] §535. Persistence of rival notations for inverse function.— […] The use of Herschel's notation underwent a slight change in Benjamin Peirce's books, to remove the chief objection to them; Peirce wrote: "cos[−1]x," "log[−1]x."[c] […] §537. Powers of trigonometric functions.—Three principal notations have been used to denote, say, the square of sin x, namely, (sin x)2, sin x2, sin2x. The prevailing notation at present is sin2x, though the first is least likely to be misinterpreted. In the case of sin2x two interpretations suggest themselves; first, sin x · sin x; second,[d] sin (sin x). As functions of the last type do not ordinarily present themselves, the danger of misinterpretation is very much less than in case of log2x, where log x · log x and log (log x) are of frequent occurrence in analysis. […] The notation sinnx for (sin x)n has been widely used and is now the prevailing one. […] (xviii+367+1 pages including 1 addenda page) (NB. ISBN and link for reprint of 2nd edition by Cosimo, Inc., New York, USA, 2013.)
  3. ^ Herschel, John Frederick William (1813) [1812-11-12]. "On a Remarkable Application of Cotes's Theorem". Philosophical Transactions of the Royal Society of London. London: Royal Society of London, printed by W. Bulmer and Co., Cleveland-Row, St. James's, sold by G. and W. Nicol, Pall-Mall. 103 (Part 1): 8–26 [10]. doi:10.1098/rstl.1813.0005. JSTOR 107384. S2CID 118124706.
  4. ^ Peano, Giuseppe (1903). Formulaire mathématique (in French). Vol. IV. p. 229.
  5. ^ Peirce, Benjamin (1852). Curves, Functions and Forces. Vol. I (new ed.). Boston, USA. p. 203.
  6. ^ Pringsheim, Alfred; Molk, Jules (1907). Encyclopédie des sciences mathématiques pures et appliquées (in French). Vol. I. p. 195. Part I.
  7. ^ Kuczma, Marek (1968). Functional equations in a single variable. Monografie Matematyczne. Warszawa: PWN – Polish Scientific Publishers.
  8. ^ Kuczma, M., Choczewski B., and Ger, R. (1990). Iterative Functional Equations. Cambridge University Press. ISBN 0-521-35561-3.
  9. ^ Carleson, L.; Gamelin, T. D. W. (1993). Complex dynamics. Universitext: Tracts in Mathematics. Springer-Verlag. ISBN 0-387-97942-5.
  10. ^ Istratescu, Vasile (1981). Fixed Point Theory, An Introduction, D. Reidel, Holland. ISBN 90-277-1224-7.
  11. ^ "Finding f such that f(f(x))=g(x) given g". MathOverflow.
  12. ^ Aldrovandi, R.; Freitas, L. P. (1998). "Continuous Iteration of Dynamical Maps". J. Math. Phys. 39 (10): 5324. arXiv:physics/9712026. Bibcode:1998JMP....39.5324A. doi:10.1063/1.532574. hdl:11449/65519. S2CID 119675869.
  13. ^ Berkolaiko, G.; Rabinovich, S.; Havlin, S. (1998). "Analysis of Carleman Representation of Analytical Recursions". J. Math. Anal. Appl. 224: 81–90. doi:10.1006/jmaa.1998.5986.
  14. ^ "Tetration.org".
  15. ^ Kimura, Tosihusa (1971). "On the Iteration of Analytic Functions", Funkcialaj Ekvacioj 2012-04-26 at the Wayback Machine 14, 197-238.
  16. ^ Curtright, T. L.; Zachos, C. K. (2009). "Evolution Profiles and Functional Equations". Journal of Physics A. 42 (48): 485208. arXiv:0909.2424. Bibcode:2009JPhA...42V5208C. doi:10.1088/1751-8113/42/48/485208. S2CID 115173476.
  17. ^ For explicit instance, example 2 above amounts to just f n(x) = Ψ−1((ln 2)n Ψ(x)), for any n, not necessarily integer, where Ψ is the solution of the relevant Schröder's equation, Ψ(2x) = ln 2 Ψ(x). This solution is also the infinite m limit of (f m(x) − 2)/(ln 2)m.
  18. ^ Curtright, T. L. Evolution surfaces and Schröder functional methods.
  19. ^ a b Schröder, Ernst (1870). "Ueber iterirte Functionen". Math. Ann. 3 (2): 296–322. doi:10.1007/BF01443992. S2CID 116998358.
  20. ^ Brand, Louis, "A sequence defined by a difference equation," American Mathematical Monthly 62, September 1955, 489–492. online
  21. ^ Katsura, S.; Fukuda, W. (1985). "Exactly solvable models showing chaotic behavior". Physica A: Statistical Mechanics and Its Applications. 130 (3): 597. Bibcode:1985PhyA..130..597K. doi:10.1016/0378-4371(85)90048-2.
  22. ^ Berkson, E.; Porta, H. (1978). "Semigroups of analytic functions and composition operators". The Michigan Mathematical Journal. 25: 101–115. doi:10.1307/mmj/1029002009. Curtright, T. L.; Zachos, C. K. (2010). "Chaotic maps, Hamiltonian flows and holographic methods". Journal of Physics A: Mathematical and Theoretical. 43 (44): 445101. arXiv:1002.0104. Bibcode:2010JPhA...43R5101C. doi:10.1088/1751-8113/43/44/445101. S2CID 115176169.
  23. ^ Aczel, J. (2006), Lectures on Functional Equations and Their Applications (Dover Books on Mathematics, 2006), Ch. 6, ISBN 978-0486445236.

External Links

Gill, John (January 2017). "A Primer on the Elementary Theory of Infinite Compositions of Complex Functions". Colorado State University.

iterated, function, mathematics, iterated, function, function, that, function, from, some, itself, which, obtained, composing, another, function, with, itself, certain, number, times, process, repeatedly, applying, same, function, called, iteration, this, proc. In mathematics an iterated function is a function X X that is a function from some set X to itself which is obtained by composing another function f X X with itself a certain number of times The process of repeatedly applying the same function is called iteration In this process starting from some initial object the result of applying a given function is fed again in the function as input and this process is repeated For example on the image on the right Composed with itself repeatedly similarity F of center S enlarges the smallest regular pentagon into successive concentric pentagons in manner that the outline of each onepasses through all vertices of the previous pentagon of which it is the image under F If transformation F is iterated indefinitely then A and Kare the starting points of two infinite spirals L F displaystyle mathit F K M F F displaystyle mathit F circ mathit F K F 2 displaystyle mathit F 2 K with the circle shaped symbol of function composition Iterated functions are objects of study in computer science fractals dynamical systems mathematics and renormalization group physics Contents 1 Definition 2 Abelian property and iteration sequences 3 Fixed points 4 Limiting behaviour 5 Invariant measure 6 Fractional iterates and flows and negative iterates 6 1 Some formulas for fractional iteration 6 1 1 Example 1 6 1 2 Example 2 6 1 3 Example 3 7 Conjugacy 8 Markov chains 9 Examples 10 Means of study 11 In computer science 12 Definitions in terms of iterated functions 13 Functional derivative 14 Lie s data transport equation 15 See also 16 Notes 17 References 18 External LinksDefinition EditThe formal definition of an iterated function on a set X follows Let X be a set and f X X be a function Defining f n as the n th iterate of f a notation introduced by Hans Heinrich Burmann citation needed 1 2 and John Frederick William Herschel 3 1 4 2 where n is a non negative integer by f 0 d e f id X displaystyle f 0 stackrel mathrm def operatorname id X and f n 1 d e f f f n displaystyle f n 1 stackrel mathrm def f circ f n where idX is the identity function on X and f g denotes function composition That is f g x f g x always associative Because the notation f n may refer to both iteration composition of the function f or exponentiation of the function f the latter is commonly used in trigonometry some mathematicians citation needed choose to use to denote the compositional meaning writing f n x for the n th iterate of the function f x as in for example f 3 x meaning f f f x For the same purpose f n x was used by Benjamin Peirce 5 2 nb 1 whereas Alfred Pringsheim and Jules Molk suggested n f x instead 6 2 nb 2 Abelian property and iteration sequences EditIn general the following identity holds for all non negative integers m and n f m f n f n f m f m n displaystyle f m circ f n f n circ f m f m n This is structurally identical to the property of exponentiation that aman am n i e the special case f x ax In general for arbitrary general negative non integer etc indices m and n this relation is called the translation functional equation cf Schroder s equation and Abel equation On a logarithmic scale this reduces to the nesting property of Chebyshev polynomials Tm Tn x Tm n x since Tn x cos n arccos x The relation fm n x fn m x fmn x also holds analogous to the property of exponentiation that am n an m amn The sequence of functions f n is called a Picard sequence 7 8 named after Charles Emile Picard For a given x in X the sequence of values fn x is called the orbit of x If f n x f n m x for some integer m gt 0 the orbit is called a periodic orbit The smallest such value of m for a given x is called the period of the orbit The point x itself is called a periodic point The cycle detection problem in computer science is the algorithmic problem of finding the first periodic point in an orbit and the period of the orbit Fixed points EditIf f x x for some x in X that is the period of the orbit of x is 1 then x is called a fixed point of the iterated sequence The set of fixed points is often denoted as Fix f There exist a number of fixed point theorems that guarantee the existence of fixed points in various situations including the Banach fixed point theorem and the Brouwer fixed point theorem There are several techniques for convergence acceleration of the sequences produced by fixed point iteration 9 For example the Aitken method applied to an iterated fixed point is known as Steffensen s method and produces quadratic convergence Limiting behaviour EditUpon iteration one may find that there are sets that shrink and converge towards a single point In such a case the point that is converged to is known as an attractive fixed point Conversely iteration may give the appearance of points diverging away from a single point this would be the case for an unstable fixed point 10 When the points of the orbit converge to one or more limits the set of accumulation points of the orbit is known as the limit set or the w limit set The ideas of attraction and repulsion generalize similarly one may categorize iterates into stable sets and unstable sets according to the behaviour of small neighborhoods under iteration Also see Infinite compositions of analytic functions Other limiting behaviours are possible for example wandering points are points that move away and never come back even close to where they started Invariant measure EditIf one considers the evolution of a density distribution rather than that of individual point dynamics then the limiting behavior is given by the invariant measure It can be visualized as the behavior of a point cloud or dust cloud under repeated iteration The invariant measure is an eigenstate of the Ruelle Frobenius Perron operator or transfer operator corresponding to an eigenvalue of 1 Smaller eigenvalues correspond to unstable decaying states In general because repeated iteration corresponds to a shift the transfer operator and its adjoint the Koopman operator can both be interpreted as shift operators action on a shift space The theory of subshifts of finite type provides general insight into many iterated functions especially those leading to chaos Fractional iterates and flows and negative iterates Edit g R R is a trivial functional 5th root of f R R f x sin x The computation of f p 6 1 2 g5 p 6 is shown The notion f1 n must be used with care when the equation gn x f x has multiple solutions which is normally the case as in Babbage s equation of the functional roots of the identity map For example for n 2 and f x 4x 6 both g x 6 2x and g x 2x 2 are solutions so the expression f1 2 x doesn t denote a unique function just as numbers have multiple algebraic roots The issue is quite similar to the expression 0 0 in arithmetic A trivial root of f can always be obtained if f s domain can be extended sufficiently cf picture The roots chosen are normally the ones belonging to the orbit under study Fractional iteration of a function can be defined for instance a half iterate of a function f is a function g such that g g x f x 11 This function g x can be written using the index notation as f1 2 x Similarly f1 3 x is the function defined such that f1 3 f1 3 f1 3 x f x while f2 3 x may be defined as equal to f1 3 f1 3 x and so forth all based on the principle mentioned earlier that fm fn fm n This idea can be generalized so that the iteration count n becomes a continuous parameter a sort of continuous time of a continuous orbit 12 13 In such cases one refers to the system as a flow cf Section on conjugacy below Negative iterates correspond to function inverses and their compositions For example f 1 x is the normal inverse of f while f 2 x is the inverse composed with itself i e f 2 x f 1 f 1 x Fractional negative iterates are defined analogously to fractional positive ones for example f 1 2 x is defined such that f 1 2 f 1 2 x f 1 x or equivalently such that f 1 2 f1 2 x f0 x x Some formulas for fractional iteration Edit One of several methods of finding a series formula for fractional iteration making use of a fixed point is as follows 14 First determine a fixed point for the function such that f a a Define f n a a for all n belonging to the reals This in some ways is the most natural extra condition to place upon the fractional iterates Expand fn x around the fixed point a as a Taylor series f n x f n a x a d d x f n x x a x a 2 2 d 2 d x 2 f n x x a displaystyle f n x f n a x a left frac d dx f n x right x a frac x a 2 2 left frac d 2 dx 2 f n x right x a cdots Expand out f n x f n a x a f a f f a f f 2 a f f n 1 a displaystyle f n x f n a x a f a f f a f f 2 a cdots f f n 1 a cdots Substitute in for fk a a for any k f n x a x a f a n x a 2 2 f a f a n 1 1 f a f a n 1 displaystyle f n x a x a f a n frac x a 2 2 f a f a n 1 left 1 f a cdots f a n 1 right cdots Make use of the geometric progression to simplify terms f n x a x a f a n x a 2 2 f a f a n 1 f a n 1 f a 1 displaystyle f n x a x a f a n frac x a 2 2 f a f a n 1 frac f a n 1 f a 1 cdots There is a special case when f a 1 f n x x x a 2 2 n f a x a 3 6 3 2 n n 1 f a 2 n f a displaystyle f n x x frac x a 2 2 nf a frac x a 3 6 left frac 3 2 n n 1 f a 2 nf a right cdots This can be carried on indefinitely although inefficiently as the latter terms become increasingly complicated A more systematic procedure is outlined in the following section on Conjugacy Example 1 Edit For example setting f x Cx D gives the fixed point a D 1 C so the above formula terminates to justf n x D 1 C x D 1 C C n C n x 1 C n 1 C D displaystyle f n x frac D 1 C left x frac D 1 C right C n C n x frac 1 C n 1 C D which is trivial to check Example 2 Edit Find the value of 2 2 2 displaystyle sqrt 2 sqrt 2 sqrt 2 cdots where this is done n times and possibly the interpolated values when n is not an integer We have f x 2 x A fixed point is a f 2 2 So set x 1 and f n 1 expanded around the fixed point value of 2 is then an infinite series 2 2 2 f n 1 2 ln 2 n ln 2 n 1 ln 2 n 1 4 ln 2 1 displaystyle sqrt 2 sqrt 2 sqrt 2 cdots f n 1 2 ln 2 n frac ln 2 n 1 ln 2 n 1 4 ln 2 1 cdots which taking just the first three terms is correct to the first decimal place when n is positive cf Tetration f n 1 n 2 Using the other fixed point a f 4 4 causes the series to diverge For n 1 the series computes the inverse function 2 ln x ln 2 Example 3 Edit With the function f x xb expand around the fixed point 1 to get the seriesf n x 1 b n x 1 1 2 b n b n 1 x 1 2 1 3 b n b n 1 b n 2 x 1 3 displaystyle f n x 1 b n x 1 frac 1 2 b n b n 1 x 1 2 frac 1 3 b n b n 1 b n 2 x 1 3 cdots which is simply the Taylor series of x bn expanded around 1 Conjugacy EditIf f and g are two iterated functions and there exists a homeomorphism h such that g h 1 f h then f and g are said to be topologically conjugate Clearly topological conjugacy is preserved under iteration as gn h 1 f n h Thus if one can solve for one iterated function system one also has solutions for all topologically conjugate systems For example the tent map is topologically conjugate to the logistic map As a special case taking f x x 1 one has the iteration of g x h 1 h x 1 as gn x h 1 h x n for any function h Making the substitution x h 1 y ϕ y yields g ϕ y ϕ y 1 a form known as the Abel equation Even in the absence of a strict homeomorphism near a fixed point here taken to be at x 0 f 0 0 one may often solve 15 Schroder s equation for a function PS which makes f x locally conjugate to a mere dilation g x f 0 x that is f x PS 1 f 0 PS x Thus its iteration orbit or flow under suitable provisions e g f 0 1 amounts to the conjugate of the orbit of the monomial PS 1 f 0 n PS x where n in this expression serves as a plain exponent functional iteration has been reduced to multiplication Here however the exponent n no longer needs be integer or positive and is a continuous time of evolution for the full orbit 16 the monoid of the Picard sequence cf transformation semigroup has generalized to a full continuous group 17 Iterates of the sine function blue in the first half period Half iterate orange i e the sine s functional square root the functional square root of that the quarter iterate black above it and further fractional iterates up to the 1 64th The functions below the blue sine are six integral iterates below it starting with the second iterate red and ending with the 64th iterate The green envelope triangle represents the limiting null iterate the sawtooth function serving as the starting point leading to the sine function The dashed line is the negative first iterate i e the inverse of sine arcsin From the general pedagogy web site 18 For the notation see 2 This method perturbative determination of the principal eigenfunction PS cf Carleman matrix is equivalent to the algorithm of the preceding section albeit in practice more powerful and systematic Markov chains EditIf the function is linear and can be described by a stochastic matrix that is a matrix whose rows or columns sum to one then the iterated system is known as a Markov chain Examples EditThere are many chaotic maps Well known iterated functions include the Mandelbrot set and iterated function systems Ernst Schroder 19 in 1870 worked out special cases of the logistic map such as the chaotic case f x 4x 1 x so that PS x arcsin2 x hence f n x sin2 2n arcsin x A nonchaotic case Schroder also illustrated with his method f x 2x 1 x yielded PS x 1 2 ln 1 2x and hence fn x 1 2 1 2x 2n 1 If f is the action of a group element on a set then the iterated function corresponds to a free group Most functions do not have explicit general closed form expressions for the n th iterate The table below lists some 19 that do Note that all these expressions are valid even for non integer and negative n as well as non negative integer n f x displaystyle f x f n x displaystyle f n x x b displaystyle x b x n b displaystyle x nb a x b a 1 displaystyle ax b a neq 1 a n x a n 1 a 1 b displaystyle a n x frac a n 1 a 1 b a x b b 1 displaystyle ax b b neq 1 a b n 1 b 1 x b n displaystyle a frac b n 1 b 1 x b n a x 2 b x b 2 2 b 4 a displaystyle ax 2 bx frac b 2 2b 4a see note 2 a 2 n b 2 a displaystyle frac 2 alpha 2 n b 2a where a 2 a x b 2 displaystyle alpha frac 2ax b 2 a x 2 b x b 2 2 b 8 4 a displaystyle ax 2 bx frac b 2 2b 8 4a see note 2 a 2 n 2 a 2 n b 2 a displaystyle frac 2 alpha 2 n 2 alpha 2 n b 2a where a 2 a x b 2 a x b 2 16 4 displaystyle alpha frac 2ax b pm sqrt 2ax b 2 16 4 a x b c x d displaystyle frac ax b cx d rational difference equation 20 a c b c a d c c x a a a n 1 c x a b b n 1 c x a a a n c x a b b n displaystyle frac a c frac bc ad c left frac cx a alpha alpha n 1 cx a beta beta n 1 cx a alpha alpha n cx a beta beta n right where a a d a d 2 4 b c 2 displaystyle alpha frac a d sqrt a d 2 4bc 2 b a d a d 2 4 b c 2 displaystyle beta frac a d sqrt a d 2 4bc 2 g 1 h g x displaystyle g 1 Big h bigl g x bigr Big g 1 h n g x displaystyle g 1 Bigl h n bigl g x bigr Bigr g 1 g x b displaystyle g 1 bigl g x b bigr generic Abel equation g 1 g x n b displaystyle g 1 bigl g x nb bigr x 2 b displaystyle sqrt x 2 b x 2 b n displaystyle sqrt x 2 bn g 1 a g x b a 1 b 0 displaystyle g 1 Bigl a g x b Bigr a neq 1 vee b 0 g 1 a n g x a n 1 a 1 b displaystyle g 1 Bigl a n g x frac a n 1 a 1 b Bigr a x 2 b displaystyle sqrt ax 2 b a n x 2 a n 1 a 1 b displaystyle sqrt a n x 2 frac a n 1 a 1 b T m x cos m arccos x displaystyle T m x cos m arccos x Chebyshev polynomial for integer m T m n cos m n arccos x displaystyle T mn cos m n arccos x Note these two special cases of ax2 bx c are the only cases that have a closed form solution Choosing b 2 a and b 4 a respectively further reduces them to the nonchaotic and chaotic logistic cases discussed prior to the table Some of these examples are related among themselves by simple conjugacies A few further examples essentially amounting to simple conjugacies of Schroder s examples can be found in ref 21 Means of study EditIterated functions can be studied with the Artin Mazur zeta function and with transfer operators In computer science EditIn computer science iterated functions occur as a special case of recursive functions which in turn anchor the study of such broad topics as lambda calculus or narrower ones such as the denotational semantics of computer programs Definitions in terms of iterated functions EditTwo important functionals can be defined in terms of iterated functions These are summation b 1 i a b g i i x i 1 x g i b a 1 a 0 displaystyle left b 1 sum i a b g i right equiv left i x rightarrow i 1 x g i right b a 1 a 0 and the equivalent product b 1 i a b g i i x i 1 x g i b a 1 a 1 displaystyle left b 1 prod i a b g i right equiv left i x rightarrow i 1 xg i right b a 1 a 1 Functional derivative EditThe functional derivative of an iterated function is given by the recursive formula d f N x d f y f f N 1 x d f N 1 x d f y d f N 1 x y displaystyle frac delta f N x delta f y f f N 1 x frac delta f N 1 x delta f y delta f N 1 x y Lie s data transport equation EditIterated functions crop up in the series expansion of combined functions such as g f x Given the iteration velocity or beta function physics v x f n x n n 0 displaystyle v x left frac partial f n x partial n right n 0 for the n th iterate of the function f we have 22 g f x exp v x x g x displaystyle g f x exp left v x frac partial partial x right g x For example for rigid advection if f x x t then v x t Consequently g x t exp t x g x action by a plain shift operator Conversely one may specify f x given an arbitrary v x through the generic Abel equation discussed above f x h 1 h x 1 displaystyle f x h 1 h x 1 where h x 1 v x d x displaystyle h x int frac 1 v x dx This is evident by noting that f n x h 1 h x n displaystyle f n x h 1 h x n For continuous iteration index t then now written as a subscript this amounts to Lie s celebrated exponential realization of a continuous group e t h x g x g h 1 h x t g f t x displaystyle e t frac partial partial h x g x g h 1 h x t g f t x The initial flow velocity v suffices to determine the entire flow given this exponential realization which automatically provides the general solution to the translation functional equation 23 f t f t x f t t x displaystyle f t f tau x f t tau x See also Shift operator Functions of a real variableSee also EditIrrational rotation Iterated function system Iterative method Rotation number Sarkovskii s theorem Fractional calculus Recurrence relation Schroder s equation Functional square root Abel function Infinite compositions of analytic functions Flow mathematics Tetration Functional equationNotes Edit while f n is taken for the n th derivative Alfred Pringsheim s and Jules Molk s 1907 notation n f x to denote function compositions must not be confused with Rudolf von Bitter Rucker s 1982 notation n x introduced by Hans Maurer 1901 and Reuben Louis Goodstein 1947 for tetration or with David Patterson Ellerman s 1995 n x pre superscript notation for roots References Edit a b Herschel John Frederick William 1820 Part III Section I Examples of the Direct Method of Differences A Collection of Examples of the Applications of the Calculus of Finite Differences Cambridge UK Printed by J Smith sold by J Deighton amp sons pp 1 13 5 6 Archived from the original on 2020 08 04 Retrieved 2020 08 04 1 NB Inhere Herschel refers to his 1813 work and mentions Hans Heinrich Burmann s older work a b c d Cajori Florian 1952 March 1929 472 The power of a logarithm 473 Iterated logarithms 533 John Herschel s notation for inverse functions 535 Persistence of rival notations for inverse functions 537 Powers of trigonometric functions A History of Mathematical Notations Vol 2 3rd corrected printing of 1929 issue 2nd ed Chicago USA Open court publishing company pp 108 176 179 336 346 ISBN 978 1 60206 714 1 Retrieved 2016 01 18 473 Iterated logarithms We note here the symbolism used by Pringsheim and Molk in their joint Encyclopedie article 2logb a logb logb a k 1logb a logb klogb a a 533 John Herschel s notation for inverse functions sin 1 x tan 1 x etc was published by him in the Philosophical Transactions of London for the year 1813 He says p 10 This notation cos 1 e must not be understood to signify 1 cos e but what is usually written thus arc cos e He admits that some authors use cos m A for cos A m but he justifies his own notation by pointing out that since d2 x D3 x S2 x mean dd x DDD x SS x we ought to write sin 2 x for sin sin x log 3 x for log log log x Just as we write d n V n V we may write similarly sin 1 x arc sin x log 1 x cx Some years later Herschel explained that in 1813 he used fn x f n x sin 1 x etc as he then supposed for the first time The work of a German Analyst Burmann has however within these few months come to his knowledge in which the same is explained at a considerably earlier date He Burmann however does not seem to have noticed the convenience of applying this idea to the inverse functions tan 1 etc nor does he appear at all aware of the inverse calculus of functions to which it gives rise Herschel adds The symmetry of this notation and above all the new and most extensive views it opens of the nature of analytical operations seem to authorize its universal adoption b 535 Persistence of rival notations for inverse function The use of Herschel s notation underwent a slight change in Benjamin Peirce s books to remove the chief objection to them Peirce wrote cos 1 x log 1 x c 537 Powers of trigonometric functions Three principal notations have been used to denote say the square of sin x namely sin x 2 sin x2 sin2 x The prevailing notation at present is sin2 x though the first is least likely to be misinterpreted In the case of sin2 x two interpretations suggest themselves first sin x sin x second d sin sin x As functions of the last type do not ordinarily present themselves the danger of misinterpretation is very much less than in case of log2 x where log x log x and log log x are of frequent occurrence in analysis The notation sinn x for sin x n has been widely used and is now the prevailing one xviii 367 1 pages including 1 addenda page NB ISBN and link for reprint of 2nd edition by Cosimo Inc New York USA 2013 Herschel John Frederick William 1813 1812 11 12 On a Remarkable Application of Cotes s Theorem Philosophical Transactions of the Royal Society of London London Royal Society of London printed by W Bulmer and Co Cleveland Row St James s sold by G and W Nicol Pall Mall 103 Part 1 8 26 10 doi 10 1098 rstl 1813 0005 JSTOR 107384 S2CID 118124706 Peano Giuseppe 1903 Formulaire mathematique in French Vol IV p 229 Peirce Benjamin 1852 Curves Functions and Forces Vol I new ed Boston USA p 203 Pringsheim Alfred Molk Jules 1907 Encyclopedie des sciences mathematiques pures et appliquees in French Vol I p 195 Part I Kuczma Marek 1968 Functional equations in a single variable Monografie Matematyczne Warszawa PWN Polish Scientific Publishers Kuczma M Choczewski B and Ger R 1990 Iterative Functional Equations Cambridge University Press ISBN 0 521 35561 3 Carleson L Gamelin T D W 1993 Complex dynamics Universitext Tracts in Mathematics Springer Verlag ISBN 0 387 97942 5 Istratescu Vasile 1981 Fixed Point Theory An Introduction D Reidel Holland ISBN 90 277 1224 7 Finding f such that f f x g x given g MathOverflow Aldrovandi R Freitas L P 1998 Continuous Iteration of Dynamical Maps J Math Phys 39 10 5324 arXiv physics 9712026 Bibcode 1998JMP 39 5324A doi 10 1063 1 532574 hdl 11449 65519 S2CID 119675869 Berkolaiko G Rabinovich S Havlin S 1998 Analysis of Carleman Representation of Analytical Recursions J Math Anal Appl 224 81 90 doi 10 1006 jmaa 1998 5986 Tetration org Kimura Tosihusa 1971 On the Iteration of Analytic Functions Funkcialaj Ekvacioj Archived 2012 04 26 at the Wayback Machine 14 197 238 Curtright T L Zachos C K 2009 Evolution Profiles and Functional Equations Journal of Physics A 42 48 485208 arXiv 0909 2424 Bibcode 2009JPhA 42V5208C doi 10 1088 1751 8113 42 48 485208 S2CID 115173476 For explicit instance example 2 above amounts to just f n x PS 1 ln 2 n PS x for any n not necessarily integer where PS is the solution of the relevant Schroder s equation PS 2 x ln 2 PS x This solution is also the infinite m limit of f m x 2 ln 2 m Curtright T L Evolution surfaces and Schroder functional methods a b Schroder Ernst 1870 Ueber iterirte Functionen Math Ann 3 2 296 322 doi 10 1007 BF01443992 S2CID 116998358 Brand Louis A sequence defined by a difference equation American Mathematical Monthly 62 September 1955 489 492 online Katsura S Fukuda W 1985 Exactly solvable models showing chaotic behavior Physica A Statistical Mechanics and Its Applications 130 3 597 Bibcode 1985PhyA 130 597K doi 10 1016 0378 4371 85 90048 2 Berkson E Porta H 1978 Semigroups of analytic functions and composition operators The Michigan Mathematical Journal 25 101 115 doi 10 1307 mmj 1029002009 Curtright T L Zachos C K 2010 Chaotic maps Hamiltonian flows and holographic methods Journal of Physics A Mathematical and Theoretical 43 44 445101 arXiv 1002 0104 Bibcode 2010JPhA 43R5101C doi 10 1088 1751 8113 43 44 445101 S2CID 115176169 Aczel J 2006 Lectures on Functional Equations and Their Applications Dover Books on Mathematics 2006 Ch 6 ISBN 978 0486445236 External Links EditGill John January 2017 A Primer on the Elementary Theory of Infinite Compositions of Complex Functions Colorado State University Retrieved from https en wikipedia org w index php title Iterated function amp oldid 1138733018, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.