fbpx
Wikipedia

Thermoproteota

The Thermoproteota (also known as Crenarchaea) are prokaryotes that have been classified as a phylum of the Archaea domain.[2][3][4] Initially, the Thermoproteota were thought to be sulfur-dependent extremophiles but recent studies have identified characteristic Thermoproteota environmental rRNA indicating the organisms may be the most abundant archaea in the marine environment.[5] Originally, they were separated from the other archaea based on rRNA sequences; other physiological features, such as lack of histones, have supported this division, although some crenarchaea were found to have histones.[6] Until recently all cultured Thermoproteota had been thermophilic or hyperthermophilic organisms, some of which have the ability to grow at up to 113 °C.[7] These organisms stain Gram negative and are morphologically diverse, having rod, cocci, filamentous and oddly-shaped cells.[8]

Thermoproteota
Archaea Sulfolobus infected with specific virus STSV-1.
Scientific classification
Domain: Archaea
Kingdom: Proteoarchaeota
Superphylum: TACK group
Phylum: Thermoproteota
Garrity & Holt 2021[1]
Class
Synonyms
  • "Eocyta" Lake et al. 1984
    This also applies to TACK group
  • "Crenarchaeota" Garrity and Holt 2001
  • "Gearchaeota" corrig. Kozubal et al. 2013
  • "Marsarchaeota" Jay et al. 2018
  • "Nezhaarchaeota" Wang et al. 2019
  • "Thermoproteaeota" Oren et al. 2015
  • "Thermoproteota" Whitman et al. 2018
  • "Verstraetearchaeota" Vanwonterghem et al. 2016

Thermoproteota were initially classified as a part of Regnum Eocyta in 1984,[9] but this classification has been discarded. The term "eocyte" now applies to either TACK (formerly Crenarchaeota) or to Thermoproteota.

Sulfolobus edit

One of the best characterized members of the Crenarchaeota is Sulfolobus solfataricus. This organism was originally isolated from geothermally heated sulfuric springs in Italy, and grows at 80 °C and pH of 2–4.[10] Since its initial characterization by Wolfram Zillig, a pioneer in thermophile and archaean research, similar species in the same genus have been found around the world. Unlike the vast majority of cultured thermophiles, Sulfolobus grows aerobically and chemoorganotrophically (gaining its energy from organic sources such as sugars). These factors allow a much easier growth under laboratory conditions than anaerobic organisms and have led to Sulfolobus becoming a model organism for the study of hyperthermophiles and a large group of diverse viruses that replicate within them.

16S rRNA based LTP_06_2022[11][12][13] 53 marker proteins based GTDB 08-RS214[14][15][16]
"TACK"

"Korarchaeia"

"BAT"

"Bathyarchaeia" (MCG)

Nitrososphaeria_A ("Aigarchaeota")

Nitrososphaeria

"Sulfobacteria"
"Methanomethylicia"

"Methanomethylicales"

"Nezhaarchaeales"

("Verstraetearchaeota")
"Thermoproteia"

"Gearchaeales"

"Thermofilales"

Thermoproteales

"Sulfolobia"

"Marsarchaeales"

Sulfolobales

Thermoproteota

Recombinational repair of DNA damage edit

Irradiation of S. solfataricus cells with ultraviolet light strongly induces formation of type IV pili that can then promote cellular aggregation.[17] Ultraviolet light-induced cellular aggregation was shown by Ajon et al.[18] to mediate high frequency inter-cellular chromosome marker exchange. Cultures that were ultraviolet light-induced had recombination rates exceeding those of uninduced cultures by as much as three orders of magnitude. S. solfataricus cells are only able to aggregate with other members of their own species.[18] Frols et al.[17][19] and Ajon et al.[18] considered that the ultraviolet light-inducible DNA transfer process, followed by homologous recombinational repair of damaged DNA, is an important mechanism for promoting chromosome integrity.

This DNA transfer process can be regarded as a primitive form of sexual interaction.

Marine species edit

Beginning in 1992, data were published that reported sequences of genes belonging to the Thermoproteota in marine environments.[20],[21] Since then, analysis of the abundant lipids from the membranes of Thermoproteota taken from the open ocean have been used to determine the concentration of these “low temperature Crenarchaea” (See TEX-86). Based on these measurements of their signature lipids, Thermoproteota are thought to be very abundant and one of the main contributors to the fixation of carbon .[citation needed] DNA sequences from Thermoproteota have also been found in soil and freshwater environments, suggesting that this phylum is ubiquitous to most environments.[22]

In 2005, evidence of the first cultured “low temperature Crenarchaea” was published. Named Nitrosopumilus maritimus, it is an ammonia-oxidizing organism isolated from a marine aquarium tank and grown at 28 °C.[23]

Possible connections with eukaryotes edit

The research about two-domain system of classification has paved the possibilities of connections between crenarchaea and eukaryotes.[24]

DNA analysis from 2008 (and later, 2017) has shown that eukaryotes possible evolved from thermoproteota-like organisms. Other candidates for the ancestor of eukaryotes include closely related asgards. This could suggest that eukaryotic organisms possibly evolved from prokaryotes.

These results are similar to the eocyte hypothesis of 1984, proposed by James A. Lake.[9] The classification according to Lake, states that both crenarchaea and asgards belong to Kingdom Eocyta. Though this has been discarded by scientists, the main concept remains. The term "Eocyta" now either refers to the TACK group or to Phylum Thermoproteota itself.

However, the topic is highly debated and research is still going on.

See also edit

References edit

  1. ^ Oren A, Garrity GM (2021). "Valid publication of the names of forty-two phyla of prokaryotes". Int J Syst Evol Microbiol. 71 (10): 5056. doi:10.1099/ijsem.0.005056. PMID 34694987. S2CID 239887308.
  2. ^ See the NCBI webpage on Crenarchaeota
  3. ^ C.Michael Hogan. 2010. Archaea. eds. E.Monosson & C.Cleveland, Encyclopedia of Earth. National Council for Science and the Environment, Washington DC.
  4. ^ Data extracted from the "NCBI taxonomy resources". National Center for Biotechnology Information. Retrieved 2007-03-19.
  5. ^ Madigan M; Martinko J, eds. (2005). Brock Biology of Microorganisms (11th ed.). Prentice Hall. ISBN 978-0-13-144329-7.
  6. ^ Cubonova L, Sandman K, Hallam SJ, Delong EF, Reeve JN (2005). "Histones in Crenarchaea". Journal of Bacteriology. 187 (15): 5482–5485. doi:10.1128/JB.187.15.5482-5485.2005. PMC 1196040. PMID 16030242.
  7. ^ Blochl E, Rachel R, Burggraf S, Hafenbradl D, Jannasch HW, Stetter KO (1997). "Pyrolobus fumarii, gen. and sp. nov., represents a novel group of archaea, extending the upper temperature limit for life to 113 °C". Extremophiles. 1 (1): 14–21. doi:10.1007/s007920050010. PMID 9680332. S2CID 29789667.
  8. ^ Garrity GM, Boone DR, eds. (2001). Bergey's Manual of Systematic Bacteriology Volume 1: The Archaea and the Deeply Branching and Phototrophic Bacteria (2nd ed.). Springer. ISBN 978-0-387-98771-2.
  9. ^ a b Lake JA, Henderson E, Oakes M, Clark MW (June 1984). "Eocytes: a new ribosome structure indicates a kingdom with a close relationship to eukaryotes". Proceedings of the National Academy of Sciences of the United States of America. 81 (12): 3786–3790. Bibcode:1984PNAS...81.3786L. doi:10.1073/pnas.81.12.3786. PMC 345305. PMID 6587394.
  10. ^ Zillig W, Stetter KO, Wunderl S, Schulz W, Priess H, Scholz I (1980). "The Sulfolobus-"Caldariellard" group: Taxonomy on the basis of the structure of DNA-dependent RNA polymerases". Arch. Microbiol. 125 (3): 259–269. doi:10.1007/BF00446886. S2CID 5805400.
  11. ^ "The LTP". Retrieved 10 May 2023.
  12. ^ "LTP_all tree in newick format". Retrieved 10 May 2023.
  13. ^ "LTP_06_2022 Release Notes" (PDF). Retrieved 10 May 2023.
  14. ^ "GTDB release 08-RS214". Genome Taxonomy Database. Retrieved 10 May 2023.
  15. ^ "ar53_r214.sp_label". Genome Taxonomy Database. Retrieved 10 May 2023.
  16. ^ "Taxon History". Genome Taxonomy Database. Retrieved 10 May 2023.
  17. ^ a b Fröls S, Ajon M, Wagner M, Teichmann D, Zolghadr B, Folea M, Boekema EJ, Driessen AJ, Schleper C, Albers SV. UV-inducible cellular aggregation of the hyperthermophilic archaeon Sulfolobus solfataricus is mediated by pili formation. Mol Microbiol. 2008 Nov;70(4):938-52. doi: 10.1111/j.1365-2958.2008.06459.x. PMID 18990182
  18. ^ a b c Ajon M, Fröls S, van Wolferen M, Stoecker K, Teichmann D, Driessen AJ, Grogan DW, Albers SV, Schleper C. UV-inducible DNA exchange in hyperthermophilic archaea mediated by type IV pili. Mol Microbiol. 2011 Nov;82(4):807-17. doi: 10.1111/j.1365-2958.2011.07861.x. Epub 2011 Oct 18. PMID 21999488
  19. ^ Fröls S, White MF, Schleper C. Reactions to UV damage in the model archaeon Sulfolobus solfataricus. Biochem Soc Trans. 2009 Feb;37(Pt 1):36-41. doi: 10.1042/BST0370036. PMID 19143598
  20. ^ Fuhrman JA, McCallum K, Davis AA (1992). "Novel major archaebacterial group from marine plankton". Nature. 356 (6365): 148–9. Bibcode:1992Natur.356..148F. doi:10.1038/356148a0. PMID 1545865. S2CID 4342208.
  21. ^ DeLong EF (1992). "Archaea in coastal marine environments". Proc Natl Acad Sci USA. 89 (12): 5685–9. Bibcode:1992PNAS...89.5685D. doi:10.1073/pnas.89.12.5685. PMC 49357. PMID 1608980.
  22. ^ Barns SM, Delwiche CF, Palmer JD, Pace NR (1996). "Perspectives on archaeal diversity, thermophily and monophyly from environmental rRNA sequences". Proc Natl Acad Sci USA. 93 (17): 9188–93. Bibcode:1996PNAS...93.9188B. doi:10.1073/pnas.93.17.9188. PMC 38617. PMID 8799176.
  23. ^ Könneke M, Bernhard AE, de la Torre JR, Walker CB, Waterbury JB, Stahl DA (2005). "Isolation of an autotrophic ammonia-oxidizing marine archaeon". Nature. 437 (7058): 543–6. Bibcode:2005Natur.437..543K. doi:10.1038/nature03911. PMID 16177789. S2CID 4340386.
  24. ^ Yutin, Natalya; Makarova, Kira S.; Mekhedov, Sergey L.; Wolf, Yuri I.; Koonin, Eugene V. (2008). "The deep archaeal roots of eukaryotes". Molecular Biology and Evolution. 25 (8): 1619–1630. doi:10.1093/molbev/msn108. PMC 2464739. PMID 18463089.

Further reading edit

Scientific journals edit

  • Cavalier-Smith, T (2002). "The neomuran origin of archaebacteria, the negibacterial root of the universal tree and bacterial megaclassification". Int. J. Syst. Evol. Microbiol. 52 (Pt 1): 7–76. doi:10.1099/00207713-52-1-7. PMID 11837318.
  • Stackebrandt, E; Frederiksen W; Garrity GM; Grimont PA; Kampfer P; Maiden MC; Nesme X; Rossello-Mora R; Swings J; Truper HG; Vauterin L; Ward AC; Whitman WB (2002). "Report of the ad hoc committee for the re-evaluation of the species definition in bacteriology". Int. J. Syst. Evol. Microbiol. 52 (Pt 3): 1043–1047. doi:10.1099/ijs.0.02360-0. PMID 12054223.
  • Gurtler, V; Mayall BC (2001). "Genomic approaches to typing, taxonomy and evolution of bacterial isolates". Int. J. Syst. Evol. Microbiol. 51 (Pt 1): 3–16. doi:10.1099/00207713-51-1-3. PMID 11211268.
  • Dalevi, D; Hugenholtz P; Blackall LL (2001). "A multiple-outgroup approach to resolving division-level phylogenetic relationships using 16S rDNA data". Int. J. Syst. Evol. Microbiol. 51 (Pt 2): 385–391. doi:10.1099/00207713-51-2-385. PMID 11321083.
  • Keswani, J; Whitman WB (2001). "Relationship of 16S rRNA sequence similarity to DNA hybridization in prokaryotes". Int. J. Syst. Evol. Microbiol. 51 (Pt 2): 667–678. doi:10.1099/00207713-51-2-667. PMID 11321113.
  • Young, JM (2001). "Implications of alternative classifications and horizontal gene transfer for bacterial taxonomy". Int. J. Syst. Evol. Microbiol. 51 (Pt 3): 945–953. doi:10.1099/00207713-51-3-945. PMID 11411719.
  • Christensen, H; Bisgaard M; Frederiksen W; Mutters R; Kuhnert P; Olsen JE (2001). "Is characterization of a single isolate sufficient for valid publication of a new genus or species? Proposal to modify recommendation 30b of the Bacteriological Code (1990 Revision)". Int. J. Syst. Evol. Microbiol. 51 (Pt 6): 2221–2225. doi:10.1099/00207713-51-6-2221. PMID 11760965.
  • Christensen, H; Angen O; Mutters R; Olsen JE; Bisgaard M (2000). "DNA-DNA hybridization determined in micro-wells using covalent attachment of DNA". Int. J. Syst. Evol. Microbiol. 50 (3): 1095–1102. doi:10.1099/00207713-50-3-1095. PMID 10843050.
  • Xu, HX; Kawamura Y; Li N; Zhao L; Li TM; Li ZY; Shu S; Ezaki T (2000). "A rapid method for determining the G+C content of bacterial chromosomes by monitoring fluorescence intensity during DNA denaturation in a capillary tube". Int. J. Syst. Evol. Microbiol. 50 (4): 1463–1469. doi:10.1099/00207713-50-4-1463. PMID 10939651.
  • Young, JM (2000). "Suggestions for avoiding on-going confusion from the Bacteriological Code". Int. J. Syst. Evol. Microbiol. 50 (4): 1687–1689. doi:10.1099/00207713-50-4-1687. PMID 10939677.
  • Hansmann, S; Martin W (2000). "Phylogeny of 33 ribosomal and six other proteins encoded in an ancient gene cluster that is conserved across prokaryotic genomes: influence of excluding poorly alignable sites from analysis". Int. J. Syst. Evol. Microbiol. 50 (4): 1655–1663. doi:10.1099/00207713-50-4-1655. PMID 10939673.
  • Tindall, BJ (1999). "Proposal to change the Rule governing the designation of type strains deposited under culture collection numbers allocated for patent purposes". Int. J. Syst. Bacteriol. 49 (3): 1317–1319. doi:10.1099/00207713-49-3-1317. PMID 10490293.
  • Tindall, BJ (1999). "Proposal to change Rule 18a, Rule 18f and Rule 30 to limit the retroactive consequences of changes accepted by the ICSB". Int. J. Syst. Bacteriol. 49 (3): 1321–1322. doi:10.1099/00207713-49-3-1321. PMID 10425797.
  • Tindall, BJ (1999). "Misunderstanding the Bacteriological Code". Int. J. Syst. Bacteriol. 49 (3): 1313–1316. doi:10.1099/00207713-49-3-1313. PMID 10425796.
  • Tindall, BJ (1999). "Proposals to update and make changes to the Bacteriological Code". Int. J. Syst. Bacteriol. 49 (3): 1309–1312. doi:10.1099/00207713-49-3-1309. PMID 10425795.
  • Burggraf, S; Huber H; Stetter KO (1997). "Reclassification of the crenarchael orders and families in accordance with 16S rRNA sequence data". Int. J. Syst. Bacteriol. 47 (3): 657–660. doi:10.1099/00207713-47-3-657. PMID 9226896.
  • Palys, T; Nakamura LK; Cohan FM (1997). "Discovery and classification of ecological diversity in the bacterial world: the role of DNA sequence data". Int. J. Syst. Bacteriol. 47 (4): 1145–1156. doi:10.1099/00207713-47-4-1145. PMID 9336922.
  • Euzeby, JP (1997). "List of Bacterial Names with Standing in Nomenclature: a folder available on the Internet". Int. J. Syst. Bacteriol. 47 (2): 590–592. doi:10.1099/00207713-47-2-590. PMID 9103655.
  • Clayton, RA; Sutton G; Hinkle PS Jr; Bult C; Fields C (1995). "Intraspecific variation in small-subunit rRNA sequences in GenBank: why single sequences may not adequately represent prokaryotic taxa". Int. J. Syst. Bacteriol. 45 (3): 595–599. doi:10.1099/00207713-45-3-595. PMID 8590690.
  • Murray, RG; Schleifer KH (1994). "Taxonomic notes: a proposal for recording the properties of putative taxa of procaryotes". Int. J. Syst. Bacteriol. 44 (1): 174–176. doi:10.1099/00207713-44-1-174. PMID 8123559.
  • Winker, S; Woese CR (1991). "A definition of the domains Archaea, Bacteria and Eucarya in terms of small subunit ribosomal RNA characteristics". Syst. Appl. Microbiol. 14 (4): 305–310. doi:10.1016/s0723-2020(11)80303-6. PMID 11540071.
  • Woese, CR; Kandler O; Wheelis ML (1990). "Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya". Proc. Natl. Acad. Sci. USA. 87 (12): 4576–4579. Bibcode:1990PNAS...87.4576W. doi:10.1073/pnas.87.12.4576. PMC 54159. PMID 2112744.
  • Achenbach-Richter, L; Woese CR (1988). "The ribosomal gene spacer region in archaebacteria". Syst. Appl. Microbiol. 10 (3): 211–214. doi:10.1016/s0723-2020(88)80002-x. PMID 11542149.
  • McGill, TJ; Jurka J; Sobieski JM; Pickett MH; Woese CR; Fox GE (1986). "Characteristic archaebacterial 16S rRNA oligonucleotides". Syst. Appl. Microbiol. 7 (2–3): 194–197. doi:10.1016/S0723-2020(86)80005-4. PMID 11542064.
  • Woese, CR; Gupta R; Hahn CM; Zillig W; Tu J (1984). "The phylogenetic relationships of three sulfur dependent archaebacteria". Syst. Appl. Microbiol. 5: 97–105. doi:10.1016/S0723-2020(84)80054-5. PMID 11541975.
  • Woese, CR; Olsen GJ (1984). "The phylogenetic relationships of three sulfur dependent archaebacteria". Syst. Appl. Microbiol. 5: 97–105. doi:10.1016/S0723-2020(84)80054-5. PMID 11541975.
  • Woese, CR; Fox GE (1977). "Phylogenetic structure of the prokaryotic domain: the primary kingdoms". Proc. Natl. Acad. Sci. USA. 74 (11): 5088–5090. Bibcode:1977PNAS...74.5088W. doi:10.1073/pnas.74.11.5088. PMC 432104. PMID 270744.

Scientific handbooks edit

  • Garrity GM, Holt JG (2001). "Phylum AI. Crenarchaeota phy. nov.". In DR Boone, RW Castenholz (eds.). Bergey's Manual of Systematic Bacteriology Volume 1: The Archaea and the deeply branching and phototrophic Bacteria (2nd ed.). New York: Springer Verlag. pp. 169. ISBN 978-0-387-98771-2.

External links edit

thermoproteota, also, known, crenarchaea, prokaryotes, that, have, been, classified, phylum, archaea, domain, initially, were, thought, sulfur, dependent, extremophiles, recent, studies, have, identified, characteristic, environmental, rrna, indicating, organi. The Thermoproteota also known as Crenarchaea are prokaryotes that have been classified as a phylum of the Archaea domain 2 3 4 Initially the Thermoproteota were thought to be sulfur dependent extremophiles but recent studies have identified characteristic Thermoproteota environmental rRNA indicating the organisms may be the most abundant archaea in the marine environment 5 Originally they were separated from the other archaea based on rRNA sequences other physiological features such as lack of histones have supported this division although some crenarchaea were found to have histones 6 Until recently all cultured Thermoproteota had been thermophilic or hyperthermophilic organisms some of which have the ability to grow at up to 113 C 7 These organisms stain Gram negative and are morphologically diverse having rod cocci filamentous and oddly shaped cells 8 ThermoproteotaArchaea Sulfolobus infected with specific virus STSV 1 Scientific classificationDomain ArchaeaKingdom ProteoarchaeotaSuperphylum TACK groupPhylum ThermoproteotaGarrity amp Holt 2021 1 Class Culexarchaeia Methanomethylicia ThermoproteiSynonyms Eocyta Lake et al 1984This also applies to TACK group Crenarchaeota Garrity and Holt 2001 Gearchaeota corrig Kozubal et al 2013 Marsarchaeota Jay et al 2018 Nezhaarchaeota Wang et al 2019 Thermoproteaeota Oren et al 2015 Thermoproteota Whitman et al 2018 Verstraetearchaeota Vanwonterghem et al 2016Thermoproteota were initially classified as a part of Regnum Eocyta in 1984 9 but this classification has been discarded The term eocyte now applies to either TACK formerly Crenarchaeota or to Thermoproteota Contents 1 Sulfolobus 2 Recombinational repair of DNA damage 3 Marine species 4 Possible connections with eukaryotes 5 See also 6 References 7 Further reading 7 1 Scientific journals 7 2 Scientific handbooks 8 External linksSulfolobus editOne of the best characterized members of the Crenarchaeota is Sulfolobus solfataricus This organism was originally isolated from geothermally heated sulfuric springs in Italy and grows at 80 C and pH of 2 4 10 Since its initial characterization by Wolfram Zillig a pioneer in thermophile and archaean research similar species in the same genus have been found around the world Unlike the vast majority of cultured thermophiles Sulfolobus grows aerobically and chemoorganotrophically gaining its energy from organic sources such as sugars These factors allow a much easier growth under laboratory conditions than anaerobic organisms and have led to Sulfolobus becoming a model organism for the study of hyperthermophiles and a large group of diverse viruses that replicate within them 16S rRNA based LTP 06 2022 11 12 13 53 marker proteins based GTDB 08 RS214 14 15 16 TACK NitrososphaerotaThermoproteota Thermoproteia ThermoprotealesFervidicoccalesDesulfurococcales 1DesulfurococcalesSulfolobales TACK Korarchaeia BAT Bathyarchaeia MCG Nitrososphaeria A Aigarchaeota Nitrososphaeria Sulfobacteria Methanomethylicia Methanomethylicales Nezhaarchaeales Verstraetearchaeota Thermoproteia Gearchaeales Thermofilales Thermoproteales Sulfolobia Marsarchaeales SulfolobalesThermoproteotaRecombinational repair of DNA damage editIrradiation of S solfataricus cells with ultraviolet light strongly induces formation of type IV pili that can then promote cellular aggregation 17 Ultraviolet light induced cellular aggregation was shown by Ajon et al 18 to mediate high frequency inter cellular chromosome marker exchange Cultures that were ultraviolet light induced had recombination rates exceeding those of uninduced cultures by as much as three orders of magnitude S solfataricus cells are only able to aggregate with other members of their own species 18 Frols et al 17 19 and Ajon et al 18 considered that the ultraviolet light inducible DNA transfer process followed by homologous recombinational repair of damaged DNA is an important mechanism for promoting chromosome integrity This DNA transfer process can be regarded as a primitive form of sexual interaction Marine species editBeginning in 1992 data were published that reported sequences of genes belonging to the Thermoproteota in marine environments 20 21 Since then analysis of the abundant lipids from the membranes of Thermoproteota taken from the open ocean have been used to determine the concentration of these low temperature Crenarchaea See TEX 86 Based on these measurements of their signature lipids Thermoproteota are thought to be very abundant and one of the main contributors to the fixation of carbon citation needed DNA sequences from Thermoproteota have also been found in soil and freshwater environments suggesting that this phylum is ubiquitous to most environments 22 In 2005 evidence of the first cultured low temperature Crenarchaea was published Named Nitrosopumilus maritimus it is an ammonia oxidizing organism isolated from a marine aquarium tank and grown at 28 C 23 Possible connections with eukaryotes editMain articles Eocyte hypothesis and Two domain system The research about two domain system of classification has paved the possibilities of connections between crenarchaea and eukaryotes 24 DNA analysis from 2008 and later 2017 has shown that eukaryotes possible evolved from thermoproteota like organisms Other candidates for the ancestor of eukaryotes include closely related asgards This could suggest that eukaryotic organisms possibly evolved from prokaryotes These results are similar to the eocyte hypothesis of 1984 proposed by James A Lake 9 The classification according to Lake states that both crenarchaea and asgards belong to Kingdom Eocyta Though this has been discarded by scientists the main concept remains The term Eocyta now either refers to the TACK group or to Phylum Thermoproteota itself However the topic is highly debated and research is still going on See also editEuryarchaeota List of Archaea genera Two domain system Asgard archaea References edit Oren A Garrity GM 2021 Valid publication of the names of forty two phyla of prokaryotes Int J Syst Evol Microbiol 71 10 5056 doi 10 1099 ijsem 0 005056 PMID 34694987 S2CID 239887308 See the NCBI webpage on Crenarchaeota C Michael Hogan 2010 Archaea eds E Monosson amp C Cleveland Encyclopedia of Earth National Council for Science and the Environment Washington DC Data extracted from the NCBI taxonomy resources National Center for Biotechnology Information Retrieved 2007 03 19 Madigan M Martinko J eds 2005 Brock Biology of Microorganisms 11th ed Prentice Hall ISBN 978 0 13 144329 7 Cubonova L Sandman K Hallam SJ Delong EF Reeve JN 2005 Histones in Crenarchaea Journal of Bacteriology 187 15 5482 5485 doi 10 1128 JB 187 15 5482 5485 2005 PMC 1196040 PMID 16030242 Blochl E Rachel R Burggraf S Hafenbradl D Jannasch HW Stetter KO 1997 Pyrolobus fumarii gen and sp nov represents a novel group of archaea extending the upper temperature limit for life to 113 C Extremophiles 1 1 14 21 doi 10 1007 s007920050010 PMID 9680332 S2CID 29789667 Garrity GM Boone DR eds 2001 Bergey s Manual of Systematic Bacteriology Volume 1 The Archaea and the Deeply Branching and Phototrophic Bacteria 2nd ed Springer ISBN 978 0 387 98771 2 a b Lake JA Henderson E Oakes M Clark MW June 1984 Eocytes a new ribosome structure indicates a kingdom with a close relationship to eukaryotes Proceedings of the National Academy of Sciences of the United States of America 81 12 3786 3790 Bibcode 1984PNAS 81 3786L doi 10 1073 pnas 81 12 3786 PMC 345305 PMID 6587394 Zillig W Stetter KO Wunderl S Schulz W Priess H Scholz I 1980 The Sulfolobus Caldariellard group Taxonomy on the basis of the structure of DNA dependent RNA polymerases Arch Microbiol 125 3 259 269 doi 10 1007 BF00446886 S2CID 5805400 The LTP Retrieved 10 May 2023 LTP all tree in newick format Retrieved 10 May 2023 LTP 06 2022 Release Notes PDF Retrieved 10 May 2023 GTDB release 08 RS214 Genome Taxonomy Database Retrieved 10 May 2023 ar53 r214 sp label Genome Taxonomy Database Retrieved 10 May 2023 Taxon History Genome Taxonomy Database Retrieved 10 May 2023 a b Frols S Ajon M Wagner M Teichmann D Zolghadr B Folea M Boekema EJ Driessen AJ Schleper C Albers SV UV inducible cellular aggregation of the hyperthermophilic archaeon Sulfolobus solfataricus is mediated by pili formation Mol Microbiol 2008 Nov 70 4 938 52 doi 10 1111 j 1365 2958 2008 06459 x PMID 18990182 a b c Ajon M Frols S van Wolferen M Stoecker K Teichmann D Driessen AJ Grogan DW Albers SV Schleper C UV inducible DNA exchange in hyperthermophilic archaea mediated by type IV pili Mol Microbiol 2011 Nov 82 4 807 17 doi 10 1111 j 1365 2958 2011 07861 x Epub 2011 Oct 18 PMID 21999488 Frols S White MF Schleper C Reactions to UV damage in the model archaeon Sulfolobus solfataricus Biochem Soc Trans 2009 Feb 37 Pt 1 36 41 doi 10 1042 BST0370036 PMID 19143598 Fuhrman JA McCallum K Davis AA 1992 Novel major archaebacterial group from marine plankton Nature 356 6365 148 9 Bibcode 1992Natur 356 148F doi 10 1038 356148a0 PMID 1545865 S2CID 4342208 DeLong EF 1992 Archaea in coastal marine environments Proc Natl Acad Sci USA 89 12 5685 9 Bibcode 1992PNAS 89 5685D doi 10 1073 pnas 89 12 5685 PMC 49357 PMID 1608980 Barns SM Delwiche CF Palmer JD Pace NR 1996 Perspectives on archaeal diversity thermophily and monophyly from environmental rRNA sequences Proc Natl Acad Sci USA 93 17 9188 93 Bibcode 1996PNAS 93 9188B doi 10 1073 pnas 93 17 9188 PMC 38617 PMID 8799176 Konneke M Bernhard AE de la Torre JR Walker CB Waterbury JB Stahl DA 2005 Isolation of an autotrophic ammonia oxidizing marine archaeon Nature 437 7058 543 6 Bibcode 2005Natur 437 543K doi 10 1038 nature03911 PMID 16177789 S2CID 4340386 Yutin Natalya Makarova Kira S Mekhedov Sergey L Wolf Yuri I Koonin Eugene V 2008 The deep archaeal roots of eukaryotes Molecular Biology and Evolution 25 8 1619 1630 doi 10 1093 molbev msn108 PMC 2464739 PMID 18463089 Further reading editScientific journals edit Cavalier Smith T 2002 The neomuran origin of archaebacteria the negibacterial root of the universal tree and bacterial megaclassification Int J Syst Evol Microbiol 52 Pt 1 7 76 doi 10 1099 00207713 52 1 7 PMID 11837318 Stackebrandt E Frederiksen W Garrity GM Grimont PA Kampfer P Maiden MC Nesme X Rossello Mora R Swings J Truper HG Vauterin L Ward AC Whitman WB 2002 Report of the ad hoc committee for the re evaluation of the species definition in bacteriology Int J Syst Evol Microbiol 52 Pt 3 1043 1047 doi 10 1099 ijs 0 02360 0 PMID 12054223 Gurtler V Mayall BC 2001 Genomic approaches to typing taxonomy and evolution of bacterial isolates Int J Syst Evol Microbiol 51 Pt 1 3 16 doi 10 1099 00207713 51 1 3 PMID 11211268 Dalevi D Hugenholtz P Blackall LL 2001 A multiple outgroup approach to resolving division level phylogenetic relationships using 16S rDNA data Int J Syst Evol Microbiol 51 Pt 2 385 391 doi 10 1099 00207713 51 2 385 PMID 11321083 Keswani J Whitman WB 2001 Relationship of 16S rRNA sequence similarity to DNA hybridization in prokaryotes Int J Syst Evol Microbiol 51 Pt 2 667 678 doi 10 1099 00207713 51 2 667 PMID 11321113 Young JM 2001 Implications of alternative classifications and horizontal gene transfer for bacterial taxonomy Int J Syst Evol Microbiol 51 Pt 3 945 953 doi 10 1099 00207713 51 3 945 PMID 11411719 Christensen H Bisgaard M Frederiksen W Mutters R Kuhnert P Olsen JE 2001 Is characterization of a single isolate sufficient for valid publication of a new genus or species Proposal to modify recommendation 30b of the Bacteriological Code 1990 Revision Int J Syst Evol Microbiol 51 Pt 6 2221 2225 doi 10 1099 00207713 51 6 2221 PMID 11760965 Christensen H Angen O Mutters R Olsen JE Bisgaard M 2000 DNA DNA hybridization determined in micro wells using covalent attachment of DNA Int J Syst Evol Microbiol 50 3 1095 1102 doi 10 1099 00207713 50 3 1095 PMID 10843050 Xu HX Kawamura Y Li N Zhao L Li TM Li ZY Shu S Ezaki T 2000 A rapid method for determining the G C content of bacterial chromosomes by monitoring fluorescence intensity during DNA denaturation in a capillary tube Int J Syst Evol Microbiol 50 4 1463 1469 doi 10 1099 00207713 50 4 1463 PMID 10939651 Young JM 2000 Suggestions for avoiding on going confusion from the Bacteriological Code Int J Syst Evol Microbiol 50 4 1687 1689 doi 10 1099 00207713 50 4 1687 PMID 10939677 Hansmann S Martin W 2000 Phylogeny of 33 ribosomal and six other proteins encoded in an ancient gene cluster that is conserved across prokaryotic genomes influence of excluding poorly alignable sites from analysis Int J Syst Evol Microbiol 50 4 1655 1663 doi 10 1099 00207713 50 4 1655 PMID 10939673 Tindall BJ 1999 Proposal to change the Rule governing the designation of type strains deposited under culture collection numbers allocated for patent purposes Int J Syst Bacteriol 49 3 1317 1319 doi 10 1099 00207713 49 3 1317 PMID 10490293 Tindall BJ 1999 Proposal to change Rule 18a Rule 18f and Rule 30 to limit the retroactive consequences of changes accepted by the ICSB Int J Syst Bacteriol 49 3 1321 1322 doi 10 1099 00207713 49 3 1321 PMID 10425797 Tindall BJ 1999 Misunderstanding the Bacteriological Code Int J Syst Bacteriol 49 3 1313 1316 doi 10 1099 00207713 49 3 1313 PMID 10425796 Tindall BJ 1999 Proposals to update and make changes to the Bacteriological Code Int J Syst Bacteriol 49 3 1309 1312 doi 10 1099 00207713 49 3 1309 PMID 10425795 Burggraf S Huber H Stetter KO 1997 Reclassification of the crenarchael orders and families in accordance with 16S rRNA sequence data Int J Syst Bacteriol 47 3 657 660 doi 10 1099 00207713 47 3 657 PMID 9226896 Palys T Nakamura LK Cohan FM 1997 Discovery and classification of ecological diversity in the bacterial world the role of DNA sequence data Int J Syst Bacteriol 47 4 1145 1156 doi 10 1099 00207713 47 4 1145 PMID 9336922 Euzeby JP 1997 List of Bacterial Names with Standing in Nomenclature a folder available on the Internet Int J Syst Bacteriol 47 2 590 592 doi 10 1099 00207713 47 2 590 PMID 9103655 Clayton RA Sutton G Hinkle PS Jr Bult C Fields C 1995 Intraspecific variation in small subunit rRNA sequences in GenBank why single sequences may not adequately represent prokaryotic taxa Int J Syst Bacteriol 45 3 595 599 doi 10 1099 00207713 45 3 595 PMID 8590690 Murray RG Schleifer KH 1994 Taxonomic notes a proposal for recording the properties of putative taxa of procaryotes Int J Syst Bacteriol 44 1 174 176 doi 10 1099 00207713 44 1 174 PMID 8123559 Winker S Woese CR 1991 A definition of the domains Archaea Bacteria and Eucarya in terms of small subunit ribosomal RNA characteristics Syst Appl Microbiol 14 4 305 310 doi 10 1016 s0723 2020 11 80303 6 PMID 11540071 Woese CR Kandler O Wheelis ML 1990 Towards a natural system of organisms proposal for the domains Archaea Bacteria and Eucarya Proc Natl Acad Sci USA 87 12 4576 4579 Bibcode 1990PNAS 87 4576W doi 10 1073 pnas 87 12 4576 PMC 54159 PMID 2112744 Achenbach Richter L Woese CR 1988 The ribosomal gene spacer region in archaebacteria Syst Appl Microbiol 10 3 211 214 doi 10 1016 s0723 2020 88 80002 x PMID 11542149 McGill TJ Jurka J Sobieski JM Pickett MH Woese CR Fox GE 1986 Characteristic archaebacterial 16S rRNA oligonucleotides Syst Appl Microbiol 7 2 3 194 197 doi 10 1016 S0723 2020 86 80005 4 PMID 11542064 Woese CR Gupta R Hahn CM Zillig W Tu J 1984 The phylogenetic relationships of three sulfur dependent archaebacteria Syst Appl Microbiol 5 97 105 doi 10 1016 S0723 2020 84 80054 5 PMID 11541975 Woese CR Olsen GJ 1984 The phylogenetic relationships of three sulfur dependent archaebacteria Syst Appl Microbiol 5 97 105 doi 10 1016 S0723 2020 84 80054 5 PMID 11541975 Woese CR Fox GE 1977 Phylogenetic structure of the prokaryotic domain the primary kingdoms Proc Natl Acad Sci USA 74 11 5088 5090 Bibcode 1977PNAS 74 5088W doi 10 1073 pnas 74 11 5088 PMC 432104 PMID 270744 Scientific handbooks edit Garrity GM Holt JG 2001 Phylum AI Crenarchaeota phy nov In DR Boone RW Castenholz eds Bergey s Manual of Systematic Bacteriology Volume 1 The Archaea and the deeply branching and phototrophic Bacteria 2nd ed New York Springer Verlag pp 169 ISBN 978 0 387 98771 2 External links edit nbsp Wikimedia Commons has media related to Thermoproteota Crenarchaeota Virtual Microbiology bact wisc edu University of Wisconsin Comparative analysis of crenarchaeal genomes Integrated Microbial Genomes System United States Department of Energy Retrieved from https en wikipedia org w index php title Thermoproteota amp oldid 1215243050, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.