fbpx
Wikipedia

Dysfibrinogenemia

The dysfibrinogenemias consist of three types of fibrinogen disorders in which a critical blood clotting factor, fibrinogen, circulates at normal levels but is dysfunctional. Congenital dysfibrinogenemia is an inherited disorder in which one of the parental genes produces an abnormal fibrinogen. This fibrinogen interferes with normal blood clotting and/or lysis of blood clots. The condition therefore may cause pathological bleeding and/or thrombosis.[2][3][4] Acquired dysfibrinogenemia is a non-hereditary disorder in which fibrinogen is dysfunctional due to the presence of liver disease, autoimmune disease, a plasma cell dyscrasias, or certain cancers. It is associated primarily with pathological bleeding.[5] Hereditary fibrinogen Aα-Chain amyloidosis is a sub-category of congenital dysfibrinogenemia in which the dysfunctional fibrinogen does not cause bleeding or thrombosis but rather gradually accumulates in, and disrupts the function of, the kidney.[6]

Dysfibrinogenemia
Other namesDysfibrinogenemia, familial[1]

Congenital dysfibrinogenemia is the commonest of these three disorders. Some 100 different genetic mutations occurring in more than 400 families have been found to cause it.[5][7] All of these mutations as well as those causing hereditary fibrinogen Aα-Chain amyloidosis exhibit partial penetrance, i.e. only some family members with one of these mutant genes develop dysfibrinogenemia-related symptoms.[8][6] While both of these congenital disorders as well as acquired dysfibrinogenemia are considered very rare, it is estimated that ~0.8% of individuals with venous thrombosis have either a congenital or acquired dysfibrinogenemia. Hence, the dysfibrinogenemia disorders may be highly under-diagnosed conditions due to isolated thrombotic events that are not appreciated as reflecting an underlying fibrinogen disorder.[3]

Congenital dysfibrinogenemia is distinguished from a similar inherited disorder, congenital hypodysfibrinogenemia. Both disorders involve the circulation of dysfunctional fibrinogen but in congenital hypodysfibrinogenemia plasma fibrinogen levels are low while in congenital dysfibrinogenemia they are normal. Furthermore, the two disorders involve different gene mutations and inheritance patterns as well as somewhat different symptoms.[3][9]

Fibrinogen edit

Fibrinogen is a glycoprotein made and secreted into the blood primarily by liver hepatocyte cells. Endothelium cells also make what appears to be small amounts of fibrinogen but this fibrinogen has not been fully characterized; blood platelets and their precursors, bone marrow megakaryocytes, although once thought to make fibrinogen, are now known to take up and store but not make the glycoprotein.[9][10] The final secreted, hepatocyte-derived glycoprotein is made of two trimers each of which is composed of three polypeptide chains, (also termed α) encoded by the FGA gene, (also termed β) encoded by the FGB gene, and γ encoded by the FGG gene. All three genes are located on the long (i.e. "p") arm of human chromosome 4 (at positions 4q31.3, 4q31.3, and 4q32.1, respectively) and may contain mutations that are the cause of congenital dysfibrinogenemia. The heximer is assembled as a protein in the endoplasmic reticulum of hepatocytes and then transferred to the Golgi where Polysaccharides (i.e. complex sugars) and sialic acid are added by respective glycosylation and sialylation enzyme pathways thereby converting the heximer to a functional fibrinogen glycoprotein. The final circulating glycoprotein (notated as (AαBβγ)2, (αβγ)2, Aα22γ2, or α2β2γ2) is arranged as a long flexible rod with nodules at both ends termed D domains and central nodule termed the E domain.[11][12]

The normal process of blood clot formation involves the coordinated operation of two separate pathways that feed into a final common pathway: 1) primary hemostasis, i.e. the adhesion, activation, and aggregation of circulating blood platelets at sites of vascular injury and 2) secondary hemostasis, i.e. cleavage of the Aα and Bβ chains of fibrinogen by thrombin to form individual fibrin strands plus the respective fibrinopeptides A and B formed from this cleavage. In the final common pathway fibrin is cross-linked by activated clotting factor XIII (termed factor XIIIa) to form mature gel-like fibrin clots. Subsequent fibrinolysis pathways act to limit clot formation and dissolve clots no longer needed. Fibrinogen and its Aα fibrin chain have several functions in this process:[4][10][13][14]

  • Blood clotting: fibrinogen concentration is the rate-limiting factor in blood clot formation and along with blood platelets is critical to this formation (see Coagulation).
  • Platelet aggregation: fibrinogen promotes platelet aggregation by cross-linking platelet Glycoprotein IIb/IIIa receptors and thereby promotes blood clot formation through the primary hemostasis pathway.
  • Blood clot lysis: The Aα fibrin chain formed from fibrinogen binds tissue plasminogen activator, an agent that breaks down blood clots to participate thereby in promoting fibrinolysis.

Based on these fibrinogen functions, a fibrinogen mutation may act either to inhibit or promote blood clot formation and/or lysis to thereby produce in individuals a diathesis to develop pathological bleeding, thrombosis, or both conditions.[4]

Congenital dysfibrinogenemia edit

Presentation edit

Many cases of congenital dysfibrinogenemia are asymptomatic. Since manifestations of the disorder generally occur in early adulthood or middle-age, younger individuals with a gene mutation causing it may not have had time to develop symptoms while previously asymptomatic individuals of advanced age with such a mutation are unlikely to develop symptoms. Bleeding episodes in most cases of this disorder are mild and commonly involve easy bruising and menorrhagia. Less common manifestations of bleeding may be severe or even life-threatening; these include excessive bleeding after tooth extraction, surgery, vaginal birth, and miscarriage. Rarely, these individuals may suffer hemarthrosis or cerebral hemorrhage. In one study of 37 individuals >50 years old afflicted with this disorder, 19% had a history of thrombosis. Thrombotic complications occur in both arteries and veins and include transient ischemic attack, ischemic stroke, myocardial infarction, retinal artery thrombosis, peripheral artery thrombosis, and deep vein thrombosis. In one series of 33 individuals with a history of thrombosis due to congenital dysfibrinogenemia, five developed chronic pulmonary hypertension due to ongoing pulmonary embolism probably stemming form deep vein thrombosis. About 26% of individuals with the disorder suffer both bleeding and thrombosis complications.[5][14]

Pathophysiology edit

Congenital dysfibrinogenemia is most often caused by a single autosomal dominant missense mutation in the , , or γ gene; rarely, it is caused by a homozygous or compound heterozygous missense mutation, a deletion, frameshift mutation, insert mutation, or splice site mutation in one of these genes. The most frequent sites for these mutations code for the N-terminus of the Aα chain or the C-terminus of the γ chain that lead to defective assembly of fibrin in early clot formation and thereby a bleeding predisposition.[4] Two particular missense mutations represent the majority (74% in one study of 101 individuals) of all mutations associated with dysfibrinogenemia and therefore represent prime sites to examine in the initial testing of individuals having a congenital dysfibrinogenmia bleeding disorder. These mutations alter the codon coded for the amino acid arginine at either the 35th position of FGA (termed Arg35; see fibrinogen Metz1 and fibrinogen Bicetre in the Table below) and or the 301st position of FGG (termed Arg301; see fibrinogen Baltimore IV in the Table below).[11]

The following Table lists examples of mutations causing congenital dysfibrinogenemias. It gives: a) the mutated protein's trivial name; b) the gene mutated (i.e. FGA, FGB, or FGG), its mutation site (i.e. numbered nucleotide in the cloned gene), and the names of the nucleotides (i.e. C, T, A, G) at these sites before>after the mutation; c) the altered fibrinogen peptide (Aα, Bβ, or λ) and the amino acids (using standard abbreviations) found in the normal-mutated circulating fibrinogen; d) the cause of the mutated fibrinogen's misfunction(s); e) the clinical consequence(s) of the mutation; and f) comments. Unless noted as a deletion (del), frame shift (fs), or homozygous mutation, all mutations are heterozygous, missense mutations.[5][15]

Trivial name Gene: site of mutation Protein chain: site mutation Pathophysiology Clinical disorder Comment
fibrinogen Detroit FGA: c.114G>C/T Aα: Arg19Ser abnormal Polymerization bleeding relatively rare; first description of congenital dysfibrinogenmia[16]
fibrinogen Metz1 FGA: c.103C>T Aα: Arg35Cys delayed release of fibrinopeptide A bleeding relatively common
fibrinogen Bicetrel FGA: c.104C>G Aα: Arg35His delayed release of fibrinopeptide A bleeding relatively common
fibrinogen Perth FGA: c.1541delC Aα: Pro495Leufs thin clot, increased clot strength, impaired plasmin generation bleeding and thrombosis relatively rare
fibrinogen Naples FGB: c.292G>A Bβ: Ala68thr defective thrombin binding thrombosis relatively rare; homozygous
fibrinogen BaltimoreIV FGG: c.901C>T λ: Arg301Cys impaired fiber interactions thrombosis relatively common
fibrinogen Vlissingen FGG: c.1033_1038del λ: del Asn319-Asp320 impaired fiber interactions thrombosis relatively rare; nucleotides 1033-1038 and amino acids 319-320 deleted
fibrinogen BarccelonaIV FGG: c.902G>A λ: Arg301His impaired fiber interactions thrombosis relatively common

Diagnosis edit

The diagnosis of congenital dysfibrinogenmia is made by clinical laboratory studies that find normal levels of plasma fibrinogen but significant excess in the amount of immunologically detected compared to functionally detected (i.e. able to be clotted) fibrinogen. The ratio of functionally-detected to immunologically detected fibrinogen masses in these cases is <0.7. Partial thromboplastin time, activated partial thromboplastin time, thrombin time, and reptilase time tests are usually prolonged regardless of history of bleeding or thrombosis.[11] Where available, laboratory analyses of the fibrinogen genes and peptide chains solidify the diagnosis. Initial examination of these genes or protein chains should search specifically for "hot spot" mutations, i.e. the most common mutations (see Pathophysiology section) that comprise the large bulk of mutations in the disorder.[5] In cases of dysfibrinogenemia in which acquired disease is suspected, diagnosis requires a proper diagnosis of the presence of a causable disease.[4]

Congenital dysfibrinogenmia is initially distinguished form congenital hypodysfibrinogenemia by the finding of normal immunologically-detected levels of fibrinogen in congenital dysfibrinogenemia and sub-normal levels of immunologically-detected fibrinogen in congenital hypodysfibrinogenemia. Both disorders exhibit mass ratios of functionally-detected to immunologically-detected fibrinogen that are below <0.7. Genetic and protein analyses can definitively differentiate the two disorders.[9]

Treatment edit

In a study of 189 individuals diagnosed with congenital dysfibrinogenemia, ~33% were asymptomatic, ~47% experienced episodic bleeding, and ~20% experienced episodic thromboses.[9] Due to the rareness of this disorder, treatment of individuals with these presentations are based primarily on case reports, guidelines set by the United Kingdom, and expert opinions rather than controlled clinical studies.[5]

Asymptomatic individuals edit

Treatment of asymptomatic congenital dysfibrinogenemia depends in part on the expectations of developing bleeding and/or thrombotic complications as estimated based on the history of family members with the disorder and, where available, determination of the exact mutation causing the disorder plus the propensity of the particular mutation type to develop these complications.[5] In general, individuals with this disorder require regular follow-up and multidiscipline management prior to surgery, pregnancy, and giving childbirth. Women with the disorder appear to have an increased rate of miscarriages and all individuals with fibrinogen activity in clotting tests below 0.5 grams/liter are prone to bleeding and spontaneous abortions. Women with multiple miscarriages and individuals with excessively low fibrinogen activity levels should be considered for prophylaxis therapy with fibrinogen replacement during pregnancy, delivery, and/or surgery.[5][9]

Symptomatic individuals edit

Individuals experiencing episodic bleeding as a result of congenital dysfibrinogenemia should be treated at a center specialized in treating hemophilia. They should avoid all medications that interfere with normal platelet function. During bleeding episodes, treatment with fibrinogen concentrates or in emergencies or when these concentrates are unavailable, infusions of fresh frozen plasma and/or cryoprecipitate (a fibrinogen-rich plasma fraction) to maintain fibrinogen activity levels >1 gram/liter. Tranexamic acid or fibrinogen concentrates are recommended for prophylactic treatment prior to minor surgery while fibrinogen concentrates are recommended prior to major surgery with fibrinogen concentrates usage seeking to maintain fibrinogen activity levels at >1 gram/liter. Women undergoing vaginal or Cesarean child birth should be treated at a hemophilia center with fibrinogen concentrates to maintain fibrinogen activity levels at 1.5 gram/liter. The latter individuals require careful observation for bleeding during their post-partum periods.[5]

Individuals experiencing episodic thrombosis as a result of congenital dysfibrinogenemia should also be treated at a center specialized in treating hemophilia using antithrombotic agents. They should be instructed on antithrombotic behavioral methods fur use in high risk situations such as long car rides and air flights. Venous thrombosis should be treated with low molecular weight heparin for a period that depends on personal and family history of thrombosis events. Prophylactic treatment prior to minor surgery should avoid fibrinogen supplementation and use prophylactic anticoagulation measures; prior to major surgery, fibrinogen supplementation should be used only if serious bleeding occurs; otherwise, prophylactic anticoagulation measures are recommended.[5]

Hereditary fibrinogen Aα-Chain amyloidosis edit

Presentation edit

Individuals with hereditary fibrinogen Aα-chain amyloidosis present with evidence ranging from asymptomatic proteinuria to progressive renal impairment and end-stage kidney disease. They do not evidence pathological bleeding or thrombosis and their amyloidosis is non-systemic in that it is restricted to the kidney. In a report on 474 patients with renal amyloidosis, hereditary fibrinogen Aα chain disease represented only 1.3% of all cases whereas aberrant immunoglobulin-induced renal amyloidosis (e.g. AL amyloidosis) represented 86% of the cases).[17] Hereditary fibrinogen Aα-Chain amyloidosis is, however, the most common form of familial renal amyloidosis.[5][6]

Pathophysiology edit

Certain mutations in the fibrinogen Aα-chain gene cause a form of familial renal amyloidosis termed hereditary fibrinogen Aα-Chain amyloidosis.[6] The disorder is due to autosomal dominant inheritance of Aα chain mutations the most common of which is hemoglobin Indianapolis, a heterozygous missense (c.1718G>T: Arg554Leu) mutation. Other missense mutations causing this disorder are unnamed; they include 1634A>T: Glu526Val; c.1670C>A: Thr538lys; c.1676A.T:Glu540Val; and c1712C>A:Pro552His. A deletion mutation causing a frameshift viz., c.1622delT: Thr525Leu, is also a cause of the disorder. The fibrinogen bearing these mutant Aα-chains is secreted into the circulation and gradually accumulates in, and causes significant injury to, the kidney. The mutant fibrinogen does not appear to accumulate in, or injure, extra-renal tissues.[5][6][17]

Diagnosis edit

The diagnosis of this disorder depends on demonstrating: 1) a dysfunctional plasma fibrinogen, i.e. significantly less functionally-detected compared to immunologically-detected fibrinogen; b) presence of signs and/or symptoms of kidney disease; and c) histological evidence of often massive obliteration of renal glomeruli by amyloid as detected by Congo red staining. There also should be no evidence for systemic amyloidosis. Specialized centers use immunological and genetic studies to define the nature of the renal amyloid deposits, the presence of FGA gene mutations, and the occurrence of these mutations in family members. The disorder exhibits a highly variable penetrance among family members.[17][6] Hereditary fibrinogen Aα-Chain amyloidosis shows variable penetrance among family members, a distinctive histological appearance, proteinuria, progressive renal impairment, and markedly better survival rates than other forms of systemic renal amyloidosis.[6]

Treatment edit

Treatment of hereditary fibrinogen Aα-Chain amyloidosis has relied on chronic maintenance hemodialysis and, where possible, kidney transplantation. While recurrence of amyloidosis in the transplanted kidney occurs and is to be expected, transplant survival rates for this form of amyloidosis are significantly better than those for transplants in other forms of systemic renal amyloidosis. Relatively healthy individuals with hereditary fibrinogen Aα-Chain-related renal amyloidosis may be considered for kidney and liver bi-transplantation with the expectation that survival of the transplanted kidney will be prolonged by replacing the fibrinogen Aα-Chain-producing liver with a non-diseased donor liver.[6]

Acquired dysfibrinogenemia edit

Presentation edit

Acquired dysfibrinogenemia commonly present with signs, symptoms, and/or prior diagnoses of the underlying causative disease or drug intake in an individual with an otherwise unexplained bleeding tendency or episode. Bleeding appears to be more prominent in acquired compared to congenital dysfibrinogenemia; pathological thrombosis, while potentially occurring in these individuals as a complication of their underlying disease, is an uncommon feature of the acquired disorder.[4]

Pathophysiology edit

Acquired dysfibrinogenemia occurs as a known or presumed consequence of an underlying disease which directly or indirectly interferes with the clotting function of fibrinogen. Individuals with acquired dysfibrinogenemias have a greater tendency for bleeding complications than those with congenital fibrinogenemia.[4][18][19] The following Table gives some abnormalities, causes, and apparent pathophysiology along with some comments on examples of acquired dysfibrinogenemia.[3][4]

Abnormality Cause Pathophysiology Comment
incorrect post-translational modification of fibrinogen severe liver disease abnormal fibrinogen sialylation most common cause of acquired dysfibrinogenemia
monoclonal antibody plasma cell dyscrasias such as multiple myeloma and MGUS monoclonal antibody interferes with clotting uncommon
polyclonal antibody autoimmune diseases such as systemic lupus erythematosus, rheumatoid arthritis, ulcerative colitis polyclonal antibody interferes with clotting uncommon
production of abnormal fibrinogen by cancer cervical cancer of epithelium, renal cell carcinoma, others paraneoplastic effect of cancer extremely rare
Drug effect mithramycin, isoniazid, direct thrombin inhibitors (e.g. heparin, dabigatran, bivalirudin, argatroban) unclear extremely rare case reports

Diagnosis edit

Diagnosis of acquired dysfibrinogenemia uses the same laboratory tests that are used for congenital dysfibrinogenemia plus evidence for an underlying causative disease.[4]

Treatment edit

Treatment of acquired dysfibrinogenemia follows the guidelines recommended for congenital dysfibrinogenemia.[4] In addition, treatment of any disease thought to be responsible for the dysfibrinogenemia might be useful. For example, therapeutic plasma exchange and chemotherapy to reduce monoclonal antibody levels has been used successfully to reverse otherwise uncontrollable bleeding in cases of multiple myeloma-associated dysfibrinogenemia.[20][21]

References edit

  1. ^ "Dysfibrinogenemia". Genetic and Rare Diseases (GARD). NIH. Retrieved 19 March 2019.[permanent dead link]
  2. ^ Dysfibrinogenemia at eMedicine
  3. ^ a b c d Caimi G, Canino B, Lo Presti R, Urso C, Hopps E (2017). "Clinical conditions responsible for hyperviscosity and skin ulcers complications" (PDF). Clinical Hemorheology and Microcirculation. 67 (1): 25–34. doi:10.3233/CH-160218. hdl:10447/238851. PMID 28550239.
  4. ^ a b c d e f g h i j Besser MW, MacDonald SG (2016). "Acquired hypofibrinogenemia: current perspectives". Journal of Blood Medicine. 7: 217–225. doi:10.2147/JBM.S90693. PMC 5045218. PMID 27713652.
  5. ^ a b c d e f g h i j k l Casini A, Neerman-Arbez M, Ariëns RA, de Moerloose P (2015). "Dysfibrinogenemia: from molecular anomalies to clinical manifestations and management". Journal of Thrombosis and Haemostasis. 13 (6): 909–19. doi:10.1111/jth.12916. PMID 25816717. S2CID 10955092.
  6. ^ a b c d e f g h Gillmore JD, Lachmann HJ, Rowczenio D, Gilbertson JA, Zeng CH, Liu ZH, Li LS, Wechalekar A, Hawkins PN (2009). "Diagnosis, pathogenesis, treatment, and prognosis of hereditary fibrinogen A alpha-chain amyloidosis". Journal of the American Society of Nephrology. 20 (2): 444–51. doi:10.1681/ASN.2008060614. PMC 2637055. PMID 19073821.
  7. ^ McDonagh, J (2001). "Dysfibrinogenemia and other disorders of fibrinogen structure or function". In Colman R, Hirsh J, Marder V, Clowes A, George J (eds.). Hemostasis and Thrombosis (4th ed.). Philadelphia: Lippincott Williams & Wilkins. pp. 855–92. ISBN 978-0-7817-1455-6.
  8. ^ Hayes, T (2002). "Dysfibrinogenemia and thrombosis". Archives of Pathology & Laboratory Medicine. 126 (11): 1387–90. doi:10.5858/2002-126-1387-DAT. PMID 12421146.
  9. ^ a b c d e Casini A, de Moerloose P, Neerman-Arbez M (2016). "Clinical Features and Management of Congenital Fibrinogen Deficiencies". Seminars in Thrombosis and Hemostasis. 42 (4): 366–74. doi:10.1055/s-0036-1571339. PMID 27019462. S2CID 12038872.
  10. ^ a b Repetto O, De Re V (2017). "Coagulation and fibrinolysis in gastric cancer". Annals of the New York Academy of Sciences. 1404 (1): 27–48. Bibcode:2017NYASA1404...27R. doi:10.1111/nyas.13454. PMID 28833193. S2CID 10878584.
  11. ^ a b c Neerman-Arbez M, de Moerloose P, Casini A (2016). "Laboratory and Genetic Investigation of Mutations Accounting for Congenital Fibrinogen Disorders". Seminars in Thrombosis and Hemostasis. 42 (4): 356–65. doi:10.1055/s-0036-1571340. PMID 27019463. S2CID 12693693.
  12. ^ Duval C, Ariëns RA (2017). "Fibrinogen splice variation and cross-linking: Effects on fibrin structure/function and role of fibrinogen γ' as thrombomobulin II" (PDF). Matrix Biology. 60–61: 8–15. doi:10.1016/j.matbio.2016.09.010. PMID 27784620.
  13. ^ Mosesson MW (2005). "Fibrinogen and fibrin structure and functions". Journal of Thrombosis and Haemostasis. 3 (8): 1894–904. doi:10.1111/j.1538-7836.2005.01365.x. PMID 16102057. S2CID 22077267.
  14. ^ a b Ruiz-Saez A (2013). "Occurrence of thrombosis in rare bleeding disorders". Seminars in Thrombosis and Hemostasis. 39 (6): 684–92. doi:10.1055/s-0033-1353391. PMID 23929306. S2CID 8840970.
  15. ^ Tengborn L, Blombäck M, Berntorp E (2015). "Tranexamic acid--an old drug still going strong and making a revival". Thrombosis Research. 135 (2): 231–42. doi:10.1016/j.thromres.2014.11.012. PMID 25559460.
  16. ^ Blombäck M, Blombäck B, Mammen EF, Prasad AS (1968). "Fibrinogen Detroit--a molecular defect in the N-terminal disulphide knot of human fibrinogen?". Nature. 218 (5137): 134–7. Bibcode:1968Natur.218..134B. doi:10.1038/218134a0. PMID 5645286. S2CID 4165737.
  17. ^ a b c Said SM, Sethi S, Valeri AM, Leung N, Cornell LD, Fidler ME, Herrera Hernandez L, Vrana JA, Theis JD, Quint PS, Dogan A, Nasr SH (2013). "Renal amyloidosis: origin and clinicopathologic correlations of 474 recent cases". Clinical Journal of the American Society of Nephrology. 8 (9): 1515–23. doi:10.2215/CJN.10491012. PMC 3805078. PMID 23704299.
  18. ^ Ashby MA, Lazarchick J (1986). "Acquired dysfibrinogenemia secondary to mithramycin toxicity". The American Journal of the Medical Sciences. 292 (1): 53–5. doi:10.1097/00000441-198607000-00011. PMID 2940861.
  19. ^ "UpToDate".
  20. ^ Kotlín R, Sobotková A, Riedel T, Salaj P, Suttnar J, Reicheltová Z, Májek P, Khaznadar T, Dyr JE (2008). "Acquired dysfibrinogenemia secondary to multiple myeloma". Acta Haematologica. 120 (2): 75–81. doi:10.1159/000160182. PMID 18841003. S2CID 45965368.
  21. ^ Post GR, James L, Alapat D, Guillory V, Cottler-Fox M, Nakagawa M (2013). "A case of acquired dysfibrinogenemia in multiple myeloma treated with therapeutic plasma exchange". Transfusion and Apheresis Science. 48 (1): 35–8. doi:10.1016/j.transci.2012.06.021. PMID 22842111.

External links edit

dysfibrinogenemia, this, article, needs, editing, comply, with, wikipedia, manual, style, particular, problems, with, using, medmos, please, help, improve, content, february, 2018, learn, when, remove, this, template, message, been, suggested, that, this, arti. This article needs editing to comply with Wikipedia s Manual of Style In particular it has problems with not using MEDMOS Please help improve the content February 2018 Learn how and when to remove this template message It has been suggested that this article should be split into articles titled Dysfibrinogenemia and Hereditary fibrinogen Aa Chain amyloidosis discuss March 2019 The dysfibrinogenemias consist of three types of fibrinogen disorders in which a critical blood clotting factor fibrinogen circulates at normal levels but is dysfunctional Congenital dysfibrinogenemia is an inherited disorder in which one of the parental genes produces an abnormal fibrinogen This fibrinogen interferes with normal blood clotting and or lysis of blood clots The condition therefore may cause pathological bleeding and or thrombosis 2 3 4 Acquired dysfibrinogenemia is a non hereditary disorder in which fibrinogen is dysfunctional due to the presence of liver disease autoimmune disease a plasma cell dyscrasias or certain cancers It is associated primarily with pathological bleeding 5 Hereditary fibrinogen Aa Chain amyloidosis is a sub category of congenital dysfibrinogenemia in which the dysfunctional fibrinogen does not cause bleeding or thrombosis but rather gradually accumulates in and disrupts the function of the kidney 6 DysfibrinogenemiaOther namesDysfibrinogenemia familial 1 Congenital dysfibrinogenemia is the commonest of these three disorders Some 100 different genetic mutations occurring in more than 400 families have been found to cause it 5 7 All of these mutations as well as those causing hereditary fibrinogen Aa Chain amyloidosis exhibit partial penetrance i e only some family members with one of these mutant genes develop dysfibrinogenemia related symptoms 8 6 While both of these congenital disorders as well as acquired dysfibrinogenemia are considered very rare it is estimated that 0 8 of individuals with venous thrombosis have either a congenital or acquired dysfibrinogenemia Hence the dysfibrinogenemia disorders may be highly under diagnosed conditions due to isolated thrombotic events that are not appreciated as reflecting an underlying fibrinogen disorder 3 Congenital dysfibrinogenemia is distinguished from a similar inherited disorder congenital hypodysfibrinogenemia Both disorders involve the circulation of dysfunctional fibrinogen but in congenital hypodysfibrinogenemia plasma fibrinogen levels are low while in congenital dysfibrinogenemia they are normal Furthermore the two disorders involve different gene mutations and inheritance patterns as well as somewhat different symptoms 3 9 Contents 1 Fibrinogen 2 Congenital dysfibrinogenemia 2 1 Presentation 2 2 Pathophysiology 2 3 Diagnosis 2 4 Treatment 2 4 1 Asymptomatic individuals 2 4 2 Symptomatic individuals 3 Hereditary fibrinogen Aa Chain amyloidosis 3 1 Presentation 3 2 Pathophysiology 3 3 Diagnosis 3 4 Treatment 4 Acquired dysfibrinogenemia 4 1 Presentation 4 2 Pathophysiology 4 3 Diagnosis 4 4 Treatment 5 References 6 External linksFibrinogen editMain article Fibrinogen Fibrinogen is a glycoprotein made and secreted into the blood primarily by liver hepatocyte cells Endothelium cells also make what appears to be small amounts of fibrinogen but this fibrinogen has not been fully characterized blood platelets and their precursors bone marrow megakaryocytes although once thought to make fibrinogen are now known to take up and store but not make the glycoprotein 9 10 The final secreted hepatocyte derived glycoprotein is made of two trimers each of which is composed of three polypeptide chains Aa also termed a encoded by the FGA gene Bb also termed b encoded by the FGB gene and g encoded by the FGG gene All three genes are located on the long i e p arm of human chromosome 4 at positions 4q31 3 4q31 3 and 4q32 1 respectively and may contain mutations that are the cause of congenital dysfibrinogenemia The heximer is assembled as a protein in the endoplasmic reticulum of hepatocytes and then transferred to the Golgi where Polysaccharides i e complex sugars and sialic acid are added by respective glycosylation and sialylation enzyme pathways thereby converting the heximer to a functional fibrinogen glycoprotein The final circulating glycoprotein notated as AaBbg 2 abg 2 Aa2Bb2g2 or a2b2g2 is arranged as a long flexible rod with nodules at both ends termed D domains and central nodule termed the E domain 11 12 The normal process of blood clot formation involves the coordinated operation of two separate pathways that feed into a final common pathway 1 primary hemostasis i e the adhesion activation and aggregation of circulating blood platelets at sites of vascular injury and 2 secondary hemostasis i e cleavage of the Aa and Bb chains of fibrinogen by thrombin to form individual fibrin strands plus the respective fibrinopeptides A and B formed from this cleavage In the final common pathway fibrin is cross linked by activated clotting factor XIII termed factor XIIIa to form mature gel like fibrin clots Subsequent fibrinolysis pathways act to limit clot formation and dissolve clots no longer needed Fibrinogen and its Aa fibrin chain have several functions in this process 4 10 13 14 Blood clotting fibrinogen concentration is the rate limiting factor in blood clot formation and along with blood platelets is critical to this formation see Coagulation Platelet aggregation fibrinogen promotes platelet aggregation by cross linking platelet Glycoprotein IIb IIIa receptors and thereby promotes blood clot formation through the primary hemostasis pathway Blood clot lysis The Aa fibrin chain formed from fibrinogen binds tissue plasminogen activator an agent that breaks down blood clots to participate thereby in promoting fibrinolysis Based on these fibrinogen functions a fibrinogen mutation may act either to inhibit or promote blood clot formation and or lysis to thereby produce in individuals a diathesis to develop pathological bleeding thrombosis or both conditions 4 Congenital dysfibrinogenemia editPresentation edit Many cases of congenital dysfibrinogenemia are asymptomatic Since manifestations of the disorder generally occur in early adulthood or middle age younger individuals with a gene mutation causing it may not have had time to develop symptoms while previously asymptomatic individuals of advanced age with such a mutation are unlikely to develop symptoms Bleeding episodes in most cases of this disorder are mild and commonly involve easy bruising and menorrhagia Less common manifestations of bleeding may be severe or even life threatening these include excessive bleeding after tooth extraction surgery vaginal birth and miscarriage Rarely these individuals may suffer hemarthrosis or cerebral hemorrhage In one study of 37 individuals gt 50 years old afflicted with this disorder 19 had a history of thrombosis Thrombotic complications occur in both arteries and veins and include transient ischemic attack ischemic stroke myocardial infarction retinal artery thrombosis peripheral artery thrombosis and deep vein thrombosis In one series of 33 individuals with a history of thrombosis due to congenital dysfibrinogenemia five developed chronic pulmonary hypertension due to ongoing pulmonary embolism probably stemming form deep vein thrombosis About 26 of individuals with the disorder suffer both bleeding and thrombosis complications 5 14 Pathophysiology edit Congenital dysfibrinogenemia is most often caused by a single autosomal dominant missense mutation in the Aa Bb or g gene rarely it is caused by a homozygous or compound heterozygous missense mutation a deletion frameshift mutation insert mutation or splice site mutation in one of these genes The most frequent sites for these mutations code for the N terminus of the Aa chain or the C terminus of the g chain that lead to defective assembly of fibrin in early clot formation and thereby a bleeding predisposition 4 Two particular missense mutations represent the majority 74 in one study of 101 individuals of all mutations associated with dysfibrinogenemia and therefore represent prime sites to examine in the initial testing of individuals having a congenital dysfibrinogenmia bleeding disorder These mutations alter the codon coded for the amino acid arginine at either the 35th position of FGA termed Arg35 see fibrinogen Metz1 and fibrinogen Bicetre in the Table below and or the 301st position of FGG termed Arg301 see fibrinogen Baltimore IV in the Table below 11 The following Table lists examples of mutations causing congenital dysfibrinogenemias It gives a the mutated protein s trivial name b the gene mutated i e FGA FGB or FGG its mutation site i e numbered nucleotide in the cloned gene and the names of the nucleotides i e C T A G at these sites before gt after the mutation c the altered fibrinogen peptide Aa Bb or l and the amino acids using standard abbreviations found in the normal mutated circulating fibrinogen d the cause of the mutated fibrinogen s misfunction s e the clinical consequence s of the mutation and f comments Unless noted as a deletion del frame shift fs or homozygous mutation all mutations are heterozygous missense mutations 5 15 Trivial name Gene site of mutation Protein chain site mutation Pathophysiology Clinical disorder Commentfibrinogen Detroit FGA c 114G gt C T Aa Arg19Ser abnormal Polymerization bleeding relatively rare first description of congenital dysfibrinogenmia 16 fibrinogen Metz1 FGA c 103C gt T Aa Arg35Cys delayed release of fibrinopeptide A bleeding relatively commonfibrinogen Bicetrel FGA c 104C gt G Aa Arg35His delayed release of fibrinopeptide A bleeding relatively commonfibrinogen Perth FGA c 1541delC Aa Pro495Leufs thin clot increased clot strength impaired plasmin generation bleeding and thrombosis relatively rarefibrinogen Naples FGB c 292G gt A Bb Ala68thr defective thrombin binding thrombosis relatively rare homozygousfibrinogen BaltimoreIV FGG c 901C gt T l Arg301Cys impaired fiber interactions thrombosis relatively commonfibrinogen Vlissingen FGG c 1033 1038del l del Asn319 Asp320 impaired fiber interactions thrombosis relatively rare nucleotides 1033 1038 and amino acids 319 320 deletedfibrinogen BarccelonaIV FGG c 902G gt A l Arg301His impaired fiber interactions thrombosis relatively commonDiagnosis edit The diagnosis of congenital dysfibrinogenmia is made by clinical laboratory studies that find normal levels of plasma fibrinogen but significant excess in the amount of immunologically detected compared to functionally detected i e able to be clotted fibrinogen The ratio of functionally detected to immunologically detected fibrinogen masses in these cases is lt 0 7 Partial thromboplastin time activated partial thromboplastin time thrombin time and reptilase time tests are usually prolonged regardless of history of bleeding or thrombosis 11 Where available laboratory analyses of the fibrinogen genes and peptide chains solidify the diagnosis Initial examination of these genes or protein chains should search specifically for hot spot mutations i e the most common mutations see Pathophysiology section that comprise the large bulk of mutations in the disorder 5 In cases of dysfibrinogenemia in which acquired disease is suspected diagnosis requires a proper diagnosis of the presence of a causable disease 4 Congenital dysfibrinogenmia is initially distinguished form congenital hypodysfibrinogenemia by the finding of normal immunologically detected levels of fibrinogen in congenital dysfibrinogenemia and sub normal levels of immunologically detected fibrinogen in congenital hypodysfibrinogenemia Both disorders exhibit mass ratios of functionally detected to immunologically detected fibrinogen that are below lt 0 7 Genetic and protein analyses can definitively differentiate the two disorders 9 Treatment edit In a study of 189 individuals diagnosed with congenital dysfibrinogenemia 33 were asymptomatic 47 experienced episodic bleeding and 20 experienced episodic thromboses 9 Due to the rareness of this disorder treatment of individuals with these presentations are based primarily on case reports guidelines set by the United Kingdom and expert opinions rather than controlled clinical studies 5 Asymptomatic individuals edit Treatment of asymptomatic congenital dysfibrinogenemia depends in part on the expectations of developing bleeding and or thrombotic complications as estimated based on the history of family members with the disorder and where available determination of the exact mutation causing the disorder plus the propensity of the particular mutation type to develop these complications 5 In general individuals with this disorder require regular follow up and multidiscipline management prior to surgery pregnancy and giving childbirth Women with the disorder appear to have an increased rate of miscarriages and all individuals with fibrinogen activity in clotting tests below 0 5 grams liter are prone to bleeding and spontaneous abortions Women with multiple miscarriages and individuals with excessively low fibrinogen activity levels should be considered for prophylaxis therapy with fibrinogen replacement during pregnancy delivery and or surgery 5 9 Symptomatic individuals edit Individuals experiencing episodic bleeding as a result of congenital dysfibrinogenemia should be treated at a center specialized in treating hemophilia They should avoid all medications that interfere with normal platelet function During bleeding episodes treatment with fibrinogen concentrates or in emergencies or when these concentrates are unavailable infusions of fresh frozen plasma and or cryoprecipitate a fibrinogen rich plasma fraction to maintain fibrinogen activity levels gt 1 gram liter Tranexamic acid or fibrinogen concentrates are recommended for prophylactic treatment prior to minor surgery while fibrinogen concentrates are recommended prior to major surgery with fibrinogen concentrates usage seeking to maintain fibrinogen activity levels at gt 1 gram liter Women undergoing vaginal or Cesarean child birth should be treated at a hemophilia center with fibrinogen concentrates to maintain fibrinogen activity levels at 1 5 gram liter The latter individuals require careful observation for bleeding during their post partum periods 5 Individuals experiencing episodic thrombosis as a result of congenital dysfibrinogenemia should also be treated at a center specialized in treating hemophilia using antithrombotic agents They should be instructed on antithrombotic behavioral methods fur use in high risk situations such as long car rides and air flights Venous thrombosis should be treated with low molecular weight heparin for a period that depends on personal and family history of thrombosis events Prophylactic treatment prior to minor surgery should avoid fibrinogen supplementation and use prophylactic anticoagulation measures prior to major surgery fibrinogen supplementation should be used only if serious bleeding occurs otherwise prophylactic anticoagulation measures are recommended 5 Hereditary fibrinogen Aa Chain amyloidosis editPresentation edit Individuals with hereditary fibrinogen Aa chain amyloidosis present with evidence ranging from asymptomatic proteinuria to progressive renal impairment and end stage kidney disease They do not evidence pathological bleeding or thrombosis and their amyloidosis is non systemic in that it is restricted to the kidney In a report on 474 patients with renal amyloidosis hereditary fibrinogen Aa chain disease represented only 1 3 of all cases whereas aberrant immunoglobulin induced renal amyloidosis e g AL amyloidosis represented 86 of the cases 17 Hereditary fibrinogen Aa Chain amyloidosis is however the most common form of familial renal amyloidosis 5 6 Pathophysiology edit Certain mutations in the fibrinogen Aa chain gene cause a form of familial renal amyloidosis termed hereditary fibrinogen Aa Chain amyloidosis 6 The disorder is due to autosomal dominant inheritance of Aa chain mutations the most common of which is hemoglobin Indianapolis a heterozygous missense c 1718G gt T Arg554Leu mutation Other missense mutations causing this disorder are unnamed they include 1634A gt T Glu526Val c 1670C gt A Thr538lys c 1676A T Glu540Val and c1712C gt A Pro552His A deletion mutation causing a frameshift viz c 1622delT Thr525Leu is also a cause of the disorder The fibrinogen bearing these mutant Aa chains is secreted into the circulation and gradually accumulates in and causes significant injury to the kidney The mutant fibrinogen does not appear to accumulate in or injure extra renal tissues 5 6 17 Diagnosis edit The diagnosis of this disorder depends on demonstrating 1 a dysfunctional plasma fibrinogen i e significantly less functionally detected compared to immunologically detected fibrinogen b presence of signs and or symptoms of kidney disease and c histological evidence of often massive obliteration of renal glomeruli by amyloid as detected by Congo red staining There also should be no evidence for systemic amyloidosis Specialized centers use immunological and genetic studies to define the nature of the renal amyloid deposits the presence of FGA gene mutations and the occurrence of these mutations in family members The disorder exhibits a highly variable penetrance among family members 17 6 Hereditary fibrinogen Aa Chain amyloidosis shows variable penetrance among family members a distinctive histological appearance proteinuria progressive renal impairment and markedly better survival rates than other forms of systemic renal amyloidosis 6 Treatment edit Treatment of hereditary fibrinogen Aa Chain amyloidosis has relied on chronic maintenance hemodialysis and where possible kidney transplantation While recurrence of amyloidosis in the transplanted kidney occurs and is to be expected transplant survival rates for this form of amyloidosis are significantly better than those for transplants in other forms of systemic renal amyloidosis Relatively healthy individuals with hereditary fibrinogen Aa Chain related renal amyloidosis may be considered for kidney and liver bi transplantation with the expectation that survival of the transplanted kidney will be prolonged by replacing the fibrinogen Aa Chain producing liver with a non diseased donor liver 6 Acquired dysfibrinogenemia editPresentation edit Acquired dysfibrinogenemia commonly present with signs symptoms and or prior diagnoses of the underlying causative disease or drug intake in an individual with an otherwise unexplained bleeding tendency or episode Bleeding appears to be more prominent in acquired compared to congenital dysfibrinogenemia pathological thrombosis while potentially occurring in these individuals as a complication of their underlying disease is an uncommon feature of the acquired disorder 4 Pathophysiology edit Acquired dysfibrinogenemia occurs as a known or presumed consequence of an underlying disease which directly or indirectly interferes with the clotting function of fibrinogen Individuals with acquired dysfibrinogenemias have a greater tendency for bleeding complications than those with congenital fibrinogenemia 4 18 19 The following Table gives some abnormalities causes and apparent pathophysiology along with some comments on examples of acquired dysfibrinogenemia 3 4 Abnormality Cause Pathophysiology Commentincorrect post translational modification of fibrinogen severe liver disease abnormal fibrinogen sialylation most common cause of acquired dysfibrinogenemiamonoclonal antibody plasma cell dyscrasias such as multiple myeloma and MGUS monoclonal antibody interferes with clotting uncommonpolyclonal antibody autoimmune diseases such as systemic lupus erythematosus rheumatoid arthritis ulcerative colitis polyclonal antibody interferes with clotting uncommonproduction of abnormal fibrinogen by cancer cervical cancer of epithelium renal cell carcinoma others paraneoplastic effect of cancer extremely rareDrug effect mithramycin isoniazid direct thrombin inhibitors e g heparin dabigatran bivalirudin argatroban unclear extremely rare case reportsDiagnosis edit Diagnosis of acquired dysfibrinogenemia uses the same laboratory tests that are used for congenital dysfibrinogenemia plus evidence for an underlying causative disease 4 Treatment edit Treatment of acquired dysfibrinogenemia follows the guidelines recommended for congenital dysfibrinogenemia 4 In addition treatment of any disease thought to be responsible for the dysfibrinogenemia might be useful For example therapeutic plasma exchange and chemotherapy to reduce monoclonal antibody levels has been used successfully to reverse otherwise uncontrollable bleeding in cases of multiple myeloma associated dysfibrinogenemia 20 21 References edit Dysfibrinogenemia Genetic and Rare Diseases GARD NIH Retrieved 19 March 2019 permanent dead link Dysfibrinogenemia at eMedicine a b c d Caimi G Canino B Lo Presti R Urso C Hopps E 2017 Clinical conditions responsible for hyperviscosity and skin ulcers complications PDF Clinical Hemorheology and Microcirculation 67 1 25 34 doi 10 3233 CH 160218 hdl 10447 238851 PMID 28550239 a b c d e f g h i j Besser MW MacDonald SG 2016 Acquired hypofibrinogenemia current perspectives Journal of Blood Medicine 7 217 225 doi 10 2147 JBM S90693 PMC 5045218 PMID 27713652 a b c d e f g h i j k l Casini A Neerman Arbez M Ariens RA de Moerloose P 2015 Dysfibrinogenemia from molecular anomalies to clinical manifestations and management Journal of Thrombosis and Haemostasis 13 6 909 19 doi 10 1111 jth 12916 PMID 25816717 S2CID 10955092 a b c d e f g h Gillmore JD Lachmann HJ Rowczenio D Gilbertson JA Zeng CH Liu ZH Li LS Wechalekar A Hawkins PN 2009 Diagnosis pathogenesis treatment and prognosis of hereditary fibrinogen A alpha chain amyloidosis Journal of the American Society of Nephrology 20 2 444 51 doi 10 1681 ASN 2008060614 PMC 2637055 PMID 19073821 McDonagh J 2001 Dysfibrinogenemia and other disorders of fibrinogen structure or function In Colman R Hirsh J Marder V Clowes A George J eds Hemostasis and Thrombosis 4th ed Philadelphia Lippincott Williams amp Wilkins pp 855 92 ISBN 978 0 7817 1455 6 Hayes T 2002 Dysfibrinogenemia and thrombosis Archives of Pathology amp Laboratory Medicine 126 11 1387 90 doi 10 5858 2002 126 1387 DAT PMID 12421146 a b c d e Casini A de Moerloose P Neerman Arbez M 2016 Clinical Features and Management of Congenital Fibrinogen Deficiencies Seminars in Thrombosis and Hemostasis 42 4 366 74 doi 10 1055 s 0036 1571339 PMID 27019462 S2CID 12038872 a b Repetto O De Re V 2017 Coagulation and fibrinolysis in gastric cancer Annals of the New York Academy of Sciences 1404 1 27 48 Bibcode 2017NYASA1404 27R doi 10 1111 nyas 13454 PMID 28833193 S2CID 10878584 a b c Neerman Arbez M de Moerloose P Casini A 2016 Laboratory and Genetic Investigation of Mutations Accounting for Congenital Fibrinogen Disorders Seminars in Thrombosis and Hemostasis 42 4 356 65 doi 10 1055 s 0036 1571340 PMID 27019463 S2CID 12693693 Duval C Ariens RA 2017 Fibrinogen splice variation and cross linking Effects on fibrin structure function and role of fibrinogen g as thrombomobulin II PDF Matrix Biology 60 61 8 15 doi 10 1016 j matbio 2016 09 010 PMID 27784620 Mosesson MW 2005 Fibrinogen and fibrin structure and functions Journal of Thrombosis and Haemostasis 3 8 1894 904 doi 10 1111 j 1538 7836 2005 01365 x PMID 16102057 S2CID 22077267 a b Ruiz Saez A 2013 Occurrence of thrombosis in rare bleeding disorders Seminars in Thrombosis and Hemostasis 39 6 684 92 doi 10 1055 s 0033 1353391 PMID 23929306 S2CID 8840970 Tengborn L Blomback M Berntorp E 2015 Tranexamic acid an old drug still going strong and making a revival Thrombosis Research 135 2 231 42 doi 10 1016 j thromres 2014 11 012 PMID 25559460 Blomback M Blomback B Mammen EF Prasad AS 1968 Fibrinogen Detroit a molecular defect in the N terminal disulphide knot of human fibrinogen Nature 218 5137 134 7 Bibcode 1968Natur 218 134B doi 10 1038 218134a0 PMID 5645286 S2CID 4165737 a b c Said SM Sethi S Valeri AM Leung N Cornell LD Fidler ME Herrera Hernandez L Vrana JA Theis JD Quint PS Dogan A Nasr SH 2013 Renal amyloidosis origin and clinicopathologic correlations of 474 recent cases Clinical Journal of the American Society of Nephrology 8 9 1515 23 doi 10 2215 CJN 10491012 PMC 3805078 PMID 23704299 Ashby MA Lazarchick J 1986 Acquired dysfibrinogenemia secondary to mithramycin toxicity The American Journal of the Medical Sciences 292 1 53 5 doi 10 1097 00000441 198607000 00011 PMID 2940861 UpToDate Kotlin R Sobotkova A Riedel T Salaj P Suttnar J Reicheltova Z Majek P Khaznadar T Dyr JE 2008 Acquired dysfibrinogenemia secondary to multiple myeloma Acta Haematologica 120 2 75 81 doi 10 1159 000160182 PMID 18841003 S2CID 45965368 Post GR James L Alapat D Guillory V Cottler Fox M Nakagawa M 2013 A case of acquired dysfibrinogenemia in multiple myeloma treated with therapeutic plasma exchange Transfusion and Apheresis Science 48 1 35 8 doi 10 1016 j transci 2012 06 021 PMID 22842111 External links edit Retrieved from https en wikipedia org w index php title Dysfibrinogenemia amp oldid 1208636716, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.