fbpx
Wikipedia

Corynebacterium

Corynebacterium (/kɔːˈrnəbækˌtɪəriəm, -ˈrɪn-/) is a genus of Gram-positive bacteria and most are aerobic. They are bacilli (rod-shaped), and in some phases of life they are, more specifically, club-shaped, which inspired the genus name (coryneform means "club-shaped").

Corynebacterium
Corynebacterium ulcerans colonies on a blood agar plate
Scientific classification
Domain: Bacteria
Phylum: Actinomycetota
Class: Actinomycetia
Order: Mycobacteriales
Family: Corynebacteriaceae
Lehmann and Neumann 1907 (Approved Lists 1980)[2]
Genus: Corynebacterium
Lehmann and Neumann 1896 (Approved Lists 1980)[1]
Type species
Corynebacterium diphtheriae
(Kruse 1886) Lehmann and Neumann 1896 (Approved Lists 1980)
Species

See text.

Synonyms
  • Bacterionema Gilmour et al. 1961 (Approved Lists 1980)
  • Caseobacter Crombach 1978 (Approved Lists 1980)
  • Turicella Funke et al. 1994

They are widely distributed in nature in the microbiota of animals (including the human microbiota) and are mostly innocuous, most commonly existing in commensal relationships with their hosts.[3] Some, such as C. glutamicum, are commercially and industrially useful.[4][5][6][7] Others can cause human disease, including, most notably, diphtheria, which is caused by C. diphtheriae. As with various species of microbiota (including their relatives in the genera Arcanobacterium and Trueperella), they usually are not pathogenic, but can occasionally opportunistically capitalize on atypical access to tissues (via wounds) or weakened host defenses.

Taxonomy edit

The genus Corynebacterium was created by Lehmann and Neumann in 1896 as a taxonomic group to contain the bacterial rods responsible for causing diphtheria. The genus was defined based on morphological characteristics. Based on studies of 16S rRNA, they have been grouped into the subdivision of Gram-positive Eubacteria with high G:C content, with close phylogenetic relationship to Arthrobacter, Mycobacterium, Nocardia, and Streptomyces.[8]

The term comes from Greek κορύνη, korýnē 'club, mace, staff, knobby plant bud or shoot'[9] and βακτήριον, baktḗrion 'little rod'.[10] The term "diphtheroids" is used to represent corynebacteria that are nonpathogenic; for example, C. diphtheriae would be excluded.[citation needed] The term diphtheroid comes from Greek διφθέρα, diphthérā 'prepared hide, leather'.[11][12]

Genomics edit

Comparative analysis of corynebacterial genomes has led to the identification of several conserved signature indels (CSIs) that are unique to the genus. Two examples of CSIs are a two-amino-acid insertion in a conserved region of the enzyme phosphoribose diphosphate:decaprenyl-phosphate phosphoribosyltransferase and a three-amino-acid insertion in acetate kinase, both of which are found only in Corynebacterium species. Both of these indels serve as molecular markers for species of the genus Corynebacterium. Additionally, 16 conserved signature proteins, which are uniquely found in Corynebacterium species, have been identified. Three of these have homologs found in the genus Dietzia, which is believed to be the closest related genus to Corynebacterium. In phylogenetic trees based on concatenated protein sequences or 16S rRNA, the genus Corynebacterium forms a distinct clade, within which is a distinct subclade, cluster I. The cluster is made up of the species C. diphtheriae, C. pseudotuberculosis, C. ulcerans, C. aurimucosum, C. glutamicum, and C. efficiens. This cluster is distinguished by several conserved signature indels, such as a two-amino-acid insertion in LepA and a seven- or eight-amino-acid insertions in RpoC. Also, 21 conserved signature proteins are found only in members of cluster I. Another cluster has been proposed, consisting of C. jeikeium and C. urealyticum, which is supported by the presence of 19 distinct conserved signature proteins which are unique to these two species.[13] Corynebateria have a high G+C content ranging from 46-74 mol%.[14]

Characteristics edit

The principal features of the genus Corynebacterium were described by Collins and Cummins, for Coryn Taylor in 1986.[15] They are gram-positive, catalase-positive, non-spore-forming, non-motile, rod-shaped bacteria that are straight or slightly curved.[16] Metachromatic granules are usually present representing stored phosphate regions. Their size falls between 2 and 6 μm in length and 0.5 μm in diameter. The bacteria group together in a characteristic way, which has been described as the form of a "V", "palisades", or "Chinese characters". They may also appear elliptical. They are aerobic or facultatively anaerobic, chemoorganotrophs. They are pleomorphic through their lifecycles, they occur in various lengths, and they frequently have thickenings at either end, depending on the surrounding conditions.[17]

Some corynebacteria are lipophilic (such as CDC coryneform groups F-1 and G, C. accolens, C. afermentans subsp. lipophilum, C. bovis,[18] C. jeikeium, C. macginleyi, C. uropygiale,[19] and C. urealyticum), but medically relevant corynebacteria are typically not.[20] The nonlipophilic bacteria may be classified as fermentative (such as C. amycolatum; C. argentoratense, members of the C. diphtheriae group, C. glucuronolyticum, C. glutamicum, C. matruchotii, C. minutissimum, C. striatum, and C. xerosis) or nonfermentative (such as C. afermentans subsp. afermentans, C. auris, C. pseudodiphtheriticum, and C. propinquum).[18]

Cell wall edit

The cell wall is distinctive, with a predominance of mesodiaminopimelic acid in the murein wall[3][16] and many repetitions of arabinogalactan, as well as corynemycolic acid (a mycolic acid with 22 to 26 carbon atoms), bound by disaccharide bonds called L-Rhap-(1 → 4)--D-GlcNAc-phosphate. These form a complex commonly seen in Corynebacterium species: the mycolyl-AG–peptidoglican (mAGP).[21] Unlike most corynebacteria, Corynebacterium kroppenstedtii does not contain mycolic acids.[22]

Culture edit

Corynebacteria grow slowly, even on enriched media. In nutritional requirements, all need biotin to grow. Some strains also need thiamine and PABA.[15] Some of the Corynebacterium species with sequenced genomes have between 2.5 and 3.0 million base pairs. The bacteria grow in Loeffler's medium, blood agar, and trypticase soy agar (TSA). They form small, grayish colonies with a granular appearance, mostly translucent, but with opaque centers, convex, with continuous borders.[16] The color tends to be yellowish-white in Loeffler's medium. In TSA, they can form grey colonies with black centers and dentated borders that either resemble flowers (C. gravis), continuous borders (C. mitis), or a mix between the two forms (C. intermedium).[citation needed]

Habitat edit

Corynebacterium species occur commonly in nature in soil, water, plants, and food products.[3][16] The non-diphtheroid Corynebacterium species can even be found in the mucosa and normal skin flora of humans and animals.[3][16] Unusual habitats, such as the preen gland of birds, have been recently reported for Corynebacterium uropygiale.[19] Some species are known for their pathogenic effects in humans and other animals. Perhaps the most notable one is C. diphtheriae, which acquires the capacity to produce diphtheria toxin only after interacting with a bacteriophage.[23][24] Other pathogenic species in humans include: C. amycolatum, C. striatum, C. jeikeium, C. urealyticum, and C. xerosis;[25][26][27][28][29] all of these are important as pathogens in immunosuppressed patients. Pathogenic species in other animals include C. bovis and C. renale.[30] This genus has been found to be part of the human salivary microbiome.[31]

Role in disease edit

The most notable human infection is diphtheria, caused by C. diphtheriae. It is an acute, contagious infection characterized by pseudomembranes of dead epithelial cells, white blood cells, red blood cells, and fibrin that form around the tonsils and back of the throat.[32] In developed countries, it is an uncommon illness that tends to occur in unvaccinated individuals, especially school-aged children, elderly, neutropenic or immunocompromised patients, and those with prosthetic devices such as prosthetic heart valves, shunts, or catheters. It is more common in developing countries[33] It can occasionally infect wounds, the vulva, the conjunctiva, and the middle ear. It can be spread within a hospital.[34] The virulent and toxigenic strains produce an exotoxin formed by two polypeptide chains, which is itself produced when a bacterium is transformed by a gene from the β prophage.[23][24]

Several species cause disease in animals, most notably C. pseudotuberculosis, which causes the disease caseous lymphadenitis, and some are also pathogenic in humans. Some attack healthy hosts, while others tend to attack the immunocompromised. Effects of infection include granulomatous lymphadenopathy, pneumonitis, pharyngitis, skin infections, and endocarditis. Corynebacterial endocarditis is seen most frequently in patients with intravascular devices.[35] Several species of Corynebacterium can cause trichomycosis axillaris.[36] C. striatum may cause axillary odor.[37] C. minutissimum causes erythrasma.

Industrial uses edit

Nonpathogenic species of Corynebacterium are used for important industrial applications, such as the production of amino acids[38] and nucleotides, bioconversion of steroids,[39] degradation of hydrocarbons,[40] cheese aging,[41] and production of enzymes.[42] Some species produce metabolites similar to antibiotics: bacteriocins of the corynecin-linocin type,[34][43][44] antitumor agents,[45] etc. One of the most studied species is C. glutamicum, whose name refers to its capacity to produce glutamic acid in aerobic conditions.[46]

L-Lysine production is specific to C. glutamicum in which core metabolic enzymes are manipulated through genetic engineering to drive metabolic flux towards the production of NADPH from the pentose phosphate pathway, and L-4-aspartyl phosphate, the commitment step to the synthesis of L-lysine, lysC, dapA, dapC, and dapF. These enzymes are up-regulated in industry through genetic engineering to ensure adequate amounts of lysine precursors are produced to increase metabolic flux. Unwanted side reactions such as threonine and asparagine production can occur if a buildup of intermediates occurs, so scientists have developed mutant strains of C. glutamicum through PCR engineering and chemical knockouts to ensure production of side-reaction enzymes are limited. Many genetic manipulations conducted in industry are by traditional cross-over methods or inhibition of transcriptional activators.[47]

Expression of functionally active human epidermal growth factor has been brought about in C. glutamicum,[48] thus demonstrating a potential for industrial-scale production of human proteins. Expressed proteins can be targeted for secretion through either the general secretory pathway or the twin-arginine translocation pathway.[49]

Unlike gram-negative bacteria, the gram-positive Corynebacterium species lack lipopolysaccharides that function as antigenic endotoxins in humans.[citation needed]

Species edit

Corynebacterium comprises the following species:[50]

  • C. accolens Neubauer et al. 1991
  • C. afermentans Riegel et al. 1993
  • C. alimapuense Claverias et al. 2019
  • "C. alkanolyticum" Lee and Reichenbach 2006
  • C. ammoniagenes (Cooke and Keith 1927) Collins 1987
  • C. amycolatum Collins et al. 1988
  • C. anserum Liu et al. 2021
  • C. appendicis Yassin et al. 2002
  • C. aquatimens Aravena-Román et al. 2012
  • C. aquilae Fernández-Garayzábal et al. 2003
  • C. argentoratense Riegel et al. 1995
  • "C. asperum" De Briel et al. 1992
  • C. atrinae Kim et al. 2015
  • C. atypicum Hall et al. 2003
  • C. aurimucosum Yassin et al. 2002
  • C. auris Funke et al. 1995
  • C. auriscanis Collins et al. 2000
  • C. belfantii Dazas et al. 2018
  • C. beticola Abdou 1969 (Approved Lists 1980)
  • "C. bouchesdurhonense" Ndongo et al. 2017
  • "C. bouchesdurhonense" Lo et al. 2019
  • C. bovis Bergey et al. 1923 (Approved Lists 1980)
  • C. callunae (Lee and Good 1963) Yamada and Komagata 1972 (Approved Lists 1980)
  • C. camporealensis Fernández-Garayzábal et al. 1998
  • C. canis Funke et al. 2010
  • C. capitovis Collins et al. 2001
  • C. casei Brennan et al. 2001
  • C. caspium Collins et al. 2004
  • C. choanae Busse et al. 2019
  • C. ciconiae Fernández-Garayzábal et al. 2004
  • C. comes Schaffert et al. 2021
  • C. confusum Funke et al. 1998
  • C. coyleae Funke et al. 1997
  • C. crudilactis Zimmermann et al. 2016
  • C. cystitidis Yanagawa and Honda 1978 (Approved Lists 1980)
  • "C. defluvii" Yu et al. 2017
  • "C. dentalis" Benabdelkader et al. 2020
  • C. deserti Zhou et al. 2012
  • C. diphtheriae (Kruse 1886) Lehmann and Neumann 1896 (Approved Lists 1980)
  • C. doosanense Lee et al. 2009
  • C. durum Riegel et al. 1997
  • C. efficiens Fudou et al. 2002
  • C. endometrii Ballas et al. 2020
  • C. epidermidicanis Frischmann et al. 2012
  • C. faecale Chen et al. 2016
  • C. falsenii Sjödén et al. 1998
  • C. felinum Collins et al. 2001
  • C. flavescens Barksdale et al. 1979 (Approved Lists 1980)
  • C. fournieri corrig. Diop et al. 2018
  • C. frankenforstense Wiertz et al. 2013
  • C. freiburgense Funke et al. 2009
  • C. freneyi Renaud et al. 2001
  • C. gerontici Busse et al. 2019
  • C. glaucum Yassin et al. 2003
  • C. glucuronolyticum Funke et al. 1995
  • C. glutamicum (Kinoshita et al. 1958) Abe et al. 1967 (Approved Lists 1980)
  • C. glyciniphilum (ex Kubota et al. 1972) Al-Dilaimi et al. 2015
  • C. gottingense Atasayar et al. 2017
  • C. guangdongense Li et al. 2016
  • "C. haemomassiliense" Boxberger et al. 2020
  • C. halotolerans Chen et al. 2004
  • C. hansenii Renaud et al. 2007
  • C. heidelbergense Braun et al. 2021
  • C. hindlerae Bernard et al. 2021
  • C. humireducens Wu et al. 2011
  • "C. ihumii" Padmanabhan et al. 2014
  • C. ilicis Mandel et al. 1961 (Approved Lists 1980)
  • C. imitans Funke et al. 1997
  • "C. incognitum" Boxberger et al. 2021
  • C. jeddahense Edouard et al. 2017
  • C. jeikeium Jackman et al. 1988
  • C. kalinowskii Schaffert et al. 2021
  • "C. kefirresidentii" Blasche et al. 2017
  • C. kroppenstedtii Collins et al. 1998
  • C. kutscheri (Migula 1900) Bergey et al. 1925 (Approved Lists 1980)
  • C. lactis Wiertz et al. 2013
  • "C. lactofermentum" Gubler et al. 1994
  • C. jeikliangguodongiiium Zhu et al. 2020
  • C. lipophiloflavum Funke et al. 1997
  • C. lizhenjunii Zhou et al. 2021
  • C. lowii Bernard et al. 2016
  • C. lubricantis Kämpfer et al. 2009
  • C. lujinxingii Zhang et al. 2021
  • C. macginleyi Riegel et al. 1995
  • C. marinum Du et al. 2010
  • C. maris Ben-Dov et al. 2009
  • C. massiliense Merhej et al. 2009
  • C. mastitidis Fernandez-Garayzabal et al. 1997
  • C. matruchotii (Mendel 1919) Collins 1983
  • C. minutissimum (ex Sarkany et al. 1962) Collins and Jones 1983
  • C. mucifaciens Funke et al. 1997
  • C. mustelae Funke et al. 2010
  • C. mycetoides (ex Castellani 1942) Collins 1983
  • C. nasicanis Baumgardt et al. 2015
  • "C. neomassiliense" Boxberger et al. 2020
  • C. nuruki Shin et al. 2011
  • C. occultum Schaffert et al. 2021
  • C. oculi Bernard et al. 2016
  • C. otitidis (Funke et al. 1994) Baek et al. 2018
  • "C. pacaense" Bellali et al. 2019
  • "C. parakroppenstedtii" Luo et al. 2022
  • "C. parvulum" Nakamura et al. 1983
  • C. pelargi Kämpfer et al. 2015
  • C. phocae Pascual et al. 1998
  • "C. phoceense" Cresci et al. 2016
  • C. pilbarense Aravena-Roman et al. 2010
  • C. pilosum Yanagawa and Honda 1978 (Approved Lists 1980)
  • C. pollutisoli Negi et al. 2016
  • C. propinquum Riegel et al. 1994
  • "C. provencense" Ndongo et al. 2017
  • "C. provencense" Lo et al. 2019
  • C. pseudodiphtheriticum Lehmann and Neumann 1896 (Approved Lists 1980)
  • "C. pseudokroppenstedtii" Luo et al. 2022
  • C. pseudopelargi Busse et al. 2019
  • C. pseudotuberculosis (Buchanan 1911) Eberson 1918 (Approved Lists 1980)
  • C. pyruviciproducens Tong et al. 2010
  • C. qintianiae Zhou et al. 2021
  • C. renale (Migula 1900) Ernst 1906 (Approved Lists 1980)
  • C. resistens Otsuka et al. 2005
  • C. riegelii Funke et al. 1998
  • C. rouxii Badell et al. 2020
  • C. sanguinis Jaén-Luchoro et al. 2020
  • "C. segmentosum" Collins et al. 1998
  • "C. senegalense" Ndiaye et al. 2019
  • C. silvaticum Dangel et al. 2020
  • C. simulans Wattiau et al. 2000
  • C. singulare Riegel et al. 1997
  • C. sphenisci Goyache et al. 2003
  • C. spheniscorum Goyache et al. 2003
  • C. sputi Yassin and Siering 2008
  • C. stationis (ZoBell and Upham 1944) Bernard et al. 2010
  • C. striatum (Chester 1901) Eberson 1918 (Approved Lists 1980)
  • C. suicordis Vela et al. 2003
  • C. sundsvallense Collins et al. 1999
  • C. suranareeae Nantapong et al. 2020
  • C. tapiri Baumgardt et al. 2015
  • C. terpenotabidum Takeuchi et al. 1999
  • C. testudinoris Collins et al. 2001
  • C. thomssenii Zimmermann et al. 1998
  • C. timonense Merhej et al. 2009
  • C. trachiae Kämpfer et al. 2015
  • C. tuberculostearicum Feurer et al. 2004
  • C. tuscaniense corrig. Riegel et al. 2006
  • "C. uberis" Kittl et al. 2022
  • C. ulcerans (ex Gilbert and Stewart 1927) Riegel et al. 1995
  • C. ulceribovis Yassin 2009
  • C. urealyticum Pitcher et al. 1992
  • C. ureicelerivorans Yassin 2007
  • "C. urinapleomorphum" Morand et al. 2017
  • C. urinipleomorphum corrig. Niang et al. 2021
  • C. urogenitale Ballas et al. 2020
  • C. uropygiale Braun et al. 2016
  • C. uterequi Hoyles et al. 2013
  • C. variabile corrig. (Müller 1961) Collins 1987
  • C. vitaeruminis corrig. (Bechdel et al. 1928) Lanéelle et al. 1980
  • C. wankanglinii Zhang et al. 2021
  • C. xerosis (Lehmann and Neumann 1896) Lehmann and Neumann 1899 (Approved Lists 1980)
  • C. yudongzhengii Zhu et al. 2020
  • C. zhongnanshanii Zhang et al. 2021

References edit

  1. ^ Lehmann KB, Neumann R (1896). Atlas und Grundriss der Bakteriologie und Lehrbuch der speziellen bakteriologischen Diagnostik [Atlas and outline of bacteriology and textbook of special bacteriological diagnostics] (1st ed.). München: J.F. Lehmann.
  2. ^ Lehmann KB, Neumann R (1907). Lehmann's Medizin, Handatlanten X. Atlas und Grundriss der Bakteriologie und Lehrbuch der speziellen bakteriologischen Diagnostik [Lehmann's Medicine, Handbook X. Atlas and outline of bacteriology and textbook of special bacteriological diagnostics] (4th ed.). Munchen: J. F. Lehmann.
  3. ^ a b c d Collins, M. D. (2004). "Corynebacterium caspium sp. nov., from a Caspian seal (Phoca caspica)". International Journal of Systematic and Evolutionary Microbiology. 54 (3): 925–8. doi:10.1099/ijs.0.02950-0. PMID 15143043.
  4. ^ Poetsch, A. (2011). "Proteomics of corynebacteria: From biotechnology workhorses to pathogens". Proteomics. 11 (15): 3244–3255. doi:10.1002/pmic.201000786. PMID 21674800. S2CID 44274690.
  5. ^ Burkovski A., ed. (2008). Corynebacteria: Genomics and Molecular Biology. Caister Academic Press. ISBN 978-1-904455-30-1.[page needed]
  6. ^ Kinoshita, Shukuo; Udaka, Shigezo; Shimono, Masakazu (1957). "Studies on the amino acid fermentation. Part 1. Production of L-glutamic acid by various microorganisms". The Journal of General and Applied Microbiology. 3 (3): 193–205. doi:10.2323/jgam.3.193. PMID 15965888.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  7. ^ Kinoshita, Shukuo (1972-11-24). "Amino-acid Producnon by the Fermentation Process". Nature. 240 (5378): 211. doi:10.1038/240211a0. PMID 4569416.
  8. ^ Woese, C. R. (1987). "Bacterial evolution". Microbiological Reviews. 51 (2): 221–71. doi:10.1128/MMBR.51.2.221-271.1987. PMC 373105. PMID 2439888.
  9. ^ κορύνη. Liddell, Henry George; Scott, Robert; A Greek–English Lexicon at the Perseus Project.
  10. ^ βακτήριον, βακτηρία in Liddell and Scott.
  11. ^ διφθέρα in Liddell and Scott.
  12. ^ Harper, Douglas. "diphtheria". Online Etymology Dictionary.
  13. ^ Gao, B.; Gupta, R. S. (2012). "Phylogenetic Framework and Molecular Signatures for the Main Clades of the Phylum Actinobacteria". Microbiology and Molecular Biology Reviews. 76 (1): 66–112. doi:10.1128/MMBR.05011-11. PMC 3294427. PMID 22390973.
  14. ^ Bernard, K.A.; Funke, G. (2012). "Genus I. Corynebacterium". In Goodfellow, M.; Kampfer, P.; Busse, H.J.; Trujillo, M.E.; Suzuki, K.; Ludwig, W.; Whitman, W.B. (eds.). Bergey's Manual of Systematic Bacteriology (2nd ed.). Springer. p. 245.
  15. ^ a b Collins, M. D.; Cummins, C. S. (1986). "Genus Corynebacterium Lehmann and Neumann 1896, 350AL". In Sneath, P. H. A.; Mair, N. S.; Sharpe, M. E.; Holt, J. G. (eds.). Bergey's Manual of Systematic Bacteriology. Vol. 2. Baltimore: Williams & Wilkins. pp. 1266–76.
  16. ^ a b c d e Yassin, A. F. (2003). "Corynebacterium glaucum sp. nov". International Journal of Systematic and Evolutionary Microbiology. 53 (3): 705–9. doi:10.1099/ijs.0.02394-0. PMID 12807190.
  17. ^ Keddie, R. M.; Cure, G. L. (1977). "The Cell Wall Composition and Distribution of Free Mycolic Acids in Named Strains of Coryneform Bacteria and in Isolates from Various Natural Sources". Journal of Applied Bacteriology. 42 (2): 229–52. doi:10.1111/j.1365-2672.1977.tb00689.x. PMID 406255.
  18. ^ a b Funke, G; von Graevenitz, A; Clarridge Je, 3rd; Bernard, K. A. (1997). "Clinical microbiology of coryneform bacteria". Clinical Microbiology Reviews. 10 (1): 125–59. doi:10.1128/CMR.10.1.125. PMC 172946. PMID 8993861.{{cite journal}}: CS1 maint: numeric names: authors list (link)
  19. ^ a b Braun, Markus Santhosh; Zimmermann, Stefan; Danner, Maria; Rashid, Harun-or; Wink, Michael (2016). "Corynebacterium uropygiale sp. nov., isolated from the preen gland of turkeys (Meleagris gallopavo)". Systematic and Applied Microbiology. 39 (2): 88–92. doi:10.1016/j.syapm.2015.12.001. PMID 26776107.
  20. ^ Bernard, Kathryn (2012). "The Genus Corynebacterium and Other Medically Relevant Coryneform-Like Bacteria". Journal of Clinical Microbiology. 50 (10): 3152–3158. doi:10.1128/JCM.00796-12. ISSN 0095-1137. PMC 3457441. PMID 22837327.
  21. ^ Seidel, M.; Alderwick, L. J.; Sahm, H.; Besra, G. S.; Eggeling, L. (2006). "Topology and mutational analysis of the single Emb arabinofuranosyltransferase of Corynebacterium glutamicum as a model of Emb proteins of Mycobacterium tuberculosis". Glycobiology. 17 (2): 210–9. doi:10.1093/glycob/cwl066. PMID 17088267.
  22. ^ Collins, M. D.; Falsen, E.; Akervall, E.; et al. (1998). "Note: Corynebacterium kroppenstedtii sp. nov., a novel corynebacterium that does not contain mycolic acids". International Journal of Systematic Bacteriology. 48 (4): 1449–54. doi:10.1099/00207713-48-4-1449. PMID 9828448.
  23. ^ a b Costa, J. J.; Michel, J. L.; Rappuoli, R; Murphy, J. R. (1981). "Restriction map of corynebacteriophages beta c and beta vir and physical localization of the diphtheria tox operon". Journal of Bacteriology. 148 (1): 124–30. doi:10.1128/JB.148.1.124-130.1981. PMC 216174. PMID 6270058.
  24. ^ a b SIB: Viral exotoxin. Expasy: ViralZone. Accessed 2 Feb 2021
  25. ^ Oteo, Jesús; Aracil, Belén; Ignacio Alós, Juan; Luis Gómez-Garcés, Jose (2001). "Bacteriemias significativas por Corynebacterium amycolatum: Un patógeno emergente" [Significant bacteremias by Corynebacterium amycolatum: an emergent pathogen]. Enfermedades Infecciosas y Microbiología Clínica (in Spanish). 19 (3): 103–6. doi:10.1016/S0213-005X(01)72578-5. PMID 11333587. S2CID 72540272.
  26. ^ Lagrou, K; Verhaegen, J; Janssens, M; Wauters, G; Verbist, L (1998). "Prospective Study of Catalase-positive Coryneform Organisms in Clinical Specimens: Identification, Clinical Relevance, and Antibiotic Susceptibility". Diagnostic Microbiology and Infectious Disease. 30 (1): 7–15. doi:10.1016/S0732-8893(97)00193-4. PMID 9488824.
  27. ^ Boc, SF; Martone, JD (1995). "Osteomyelitis caused by Corynebacterium jeikeium". Journal of the American Podiatric Medical Association. 85 (6): 338–9. doi:10.7547/87507315-85-6-338. PMID 7602508.
  28. ^ Kono, M.; Sasatsu, M.; Aoki, T. (1983). "R Plasmids in Corynebacterium xerosis Strains". Antimicrobial Agents and Chemotherapy. 23 (3): 506–8. doi:10.1128/aac.23.3.506. PMC 184682. PMID 6847177.
  29. ^ Pitcher, D.G. (1983). "Deoxyribonucleic acid base composition of Corynebacterium diphtheriaeand other corynebacteria with cell wall type IV". FEMS Microbiology Letters. 16 (2–3): 291–5. doi:10.1111/j.1574-6968.1983.tb00305.x.
  30. ^ Hirsbrunner, G; Lang, J; Nicolet, J; Steiner, A (1996). "Nephrektomie nach chronischer, unilateraler, eitriger Pyelonephritis beim Rind" [Nephrectomy for chronic, unilateral suppurative pyleonephritis in cattle]. Tierarztliche Praxis (in German). 24 (1): 17–21. PMID 8720950.
  31. ^ Wang, Kun; Lu, Wenxin; Tu, Qichao; et al. (10 March 2016). "Preliminary analysis of salivary microbiome and their potential roles in oral lichen planus". Scientific Reports. 6 (1): 22943. Bibcode:2016NatSR...622943W. doi:10.1038/srep22943. PMC 4785528. PMID 26961389.
  32. ^ "Difteria: MedlinePlus enciclopedia médica". www.nlm.nih.gov.
  33. ^ Iizuka, Hideyo; Furuta, Joana Akiko; Oliveira, Edison P. Tavares de (1980). "Difteria: Situação imunitária de uma população infantil urbana de São Paulo, SP, Brasil" [Diphtheria. Immunity in an infant population in the City of S. Paulo, SP, Brazil]. Revista de Saúde Pública (in Portuguese). 14 (4): 462–8. doi:10.1590/S0034-89101980000400005. PMID 7268290.
  34. ^ a b Kerry-Williams, S. M.; Noble, W. C. (2009). "Plasmids in group JK coryneform bacteria isolated in a single hospital". Journal of Hygiene. 97 (2): 255–63. doi:10.1017/S0022172400065347. PMC 2083551. PMID 3023480.
  35. ^ León, Cristóbal; Ariza, Javier (2004). "Guías para el tratamiento de las infecciones relacionadas con catéteres intravasculares de corta permanencia en adultos: Conferencia de consenso SEIMC-SEMICYUC" [Guidelines for the treatment of infections related to short-stay intravascular catheters in adults: consensus conference SEIMC-SEMICYUC]. Enfermedades Infecciosas y Microbiología Clínica (in Spanish). 22 (2): 92–7. doi:10.1016/S0213-005X(04)73041-4. PMID 14756991.
  36. ^ Trichomycosis axillaris at eMedicine
  37. ^ Natsch, A.; Gfeller, H.; Gygax, P.; Schmid, J. (2005). "Isolation of a bacterial enzyme releasing axillary malodor and its use as a screening target for novel deodorant formulations1". International Journal of Cosmetic Science. 27 (2): 115–22. doi:10.1111/j.1467-2494.2004.00255.x. PMID 18492161. S2CID 22554216.
  38. ^ Yamada, K.; Kinoshita, S.; Tsunoda, T.; Aida, K., eds. (1972). The Microbial Production of Amino Acids. New York: Wiley.
  39. ^ Constantinides, Alkis (1980). "Steroid transformation at high substrate concentrations using immobilized Corynebacterium simplex cells". Biotechnology and Bioengineering. 22 (1): 119–36. doi:10.1002/bit.260220110. PMID 7350926. S2CID 29703826.
  40. ^ Cooper, D. G.; Zajic, J. E.; Gracey, D. E. (1979). "Analysis of corynomycolic acids and other fatty acids produced by Corynebacterium lepus grown on kerosene". Journal of Bacteriology. 137 (2): 795–801. doi:10.1128/JB.137.2.795-801.1979. PMC 218359. PMID 422512.
  41. ^ Lee, Chang-Won; Lucas, Serge; Desmazeaud, Michel J. (1985). "Phenylalanine and tyrosine catabolism in some cheese coryneform bacteria". FEMS Microbiology Letters. 26 (2): 201–5. doi:10.1111/j.1574-6968.1985.tb01591.x.
  42. ^ Khurana, Sumit; Sanli, Gulsah; Powers, David B.; et al. (2000). "Molecular modeling of substrate binding in wild-type and mutant Corynebacteria 2,5-diketo-D-gluconate reductases". Proteins: Structure, Function, and Genetics. 39 (1): 68–75. CiteSeerX 10.1.1.661.3412. doi:10.1002/(SICI)1097-0134(20000401)39:1<68::AID-PROT7>3.0.CO;2-Y. PMID 10737928. S2CID 24526523.
  43. ^ Kerry-Williams, S.M.; Noble, W.C. (1984). "Plasmid-associated bacteriocin production in a JK-type coryneform bacterium". FEMS Microbiology Letters. 25 (2–3): 179–82. doi:10.1111/j.1574-6968.1984.tb01451.x.
  44. ^ Suzuki, Takeo; Honda, Haruo; Katsumata, Ryoichi (1972). "Production of Antibacterial Compounds Analogous to Chloramphenicol by a n-Paraffin-grown Bacterium". Agricultural and Biological Chemistry. 36 (12): 2223–8. doi:10.1271/bbb1961.36.2223.
  45. ^ Milas, Luka; Scott, Martin T. (1978). "Antitumor Activity of Corynebacterium Parvum". In Ford, Marvella E.; Watson, Dennis K. (eds.). Cancer Disparities. Advances in Cancer Research. Vol. 26 (1st ed.). pp. 257–306. doi:10.1016/S0065-230X(08)60090-1. ISBN 978-0-12-809878-3. PMID 343523.
  46. ^ Abe, Shigeo; Takayama, KEN-Ichiro; Kinoshita, Shukuo (1967). "Taxonomical Studies on Glutamic Acid-Producing Bacteria". The Journal of General and Applied Microbiology. 13 (3): 279–301. doi:10.2323/jgam.13.279.
  47. ^ Kjeldsen, Kjeld Raunkjær (2009). Optimization of an industrial L-lysine producing Corynebacterium glutamicum strain (PhD Thesis). Technical University of Denmark. OCLC 826400572.[page needed]
  48. ^ Date, M.; Itaya, H.; Matsui, H.; Kikuchi, Y. (2006). "Secretion of human epidermal growth factor by Corynebacterium glutamicum". Letters in Applied Microbiology. 42 (1): 66–70. doi:10.1111/j.1472-765X.2005.01802.x. PMID 16411922. S2CID 20867427.
  49. ^ Meissner, Daniel; Vollstedt, Angela; Van Dijl, Jan Maarten; Freudl, Roland (2007). "Comparative analysis of twin-arginine (Tat)-dependent protein secretion of a heterologous model protein (GFP) in three different Gram-positive bacteria". Applied Microbiology and Biotechnology. 76 (3): 633–42. doi:10.1007/s00253-007-0934-8. PMID 17453196. S2CID 6238466.
  50. ^ Euzéby JP, Parte AC. "Corynebacterium". List of Prokaryotic names with Standing in Nomenclature (LPSN). Retrieved June 21, 2022.

Further reading edit

  • Burkovski, Andreas, ed. (2008). Corynebacteria: Genomics and Molecular Biology. Caister Academic Press. ISBN 978-1-904455-30-1.
  • Ryan KJ, Ray CG, eds. (2004). Sherris Medical Microbiology (4th ed.). McGraw Hill. ISBN 978-0-8385-8529-0.
  • Database of Corynebacterial Transcription Factors and Regulatory Networks
  • Rollins, David M. University of Maryland: Pathogentic Microbiology: Corynebacterium [1]
  • Khamis, A.; Raoult, D.; Scola, B. La (2004). "rpoB gene sequencing for identification of Corynebacterium species". Journal of Clinical Microbiology. 42 (9): 3925–3931. doi:10.1128/jcm.42.9.3925-3931.2004. PMC 516356. PMID 15364970.
  • Poetsch, A.; Haußmann, U.; Burkovski, A. (2011). "Proteomics of corynebacteria: From biotechnology workhorses to pathogens". Proteomics. 2011 (11): 3244–3255. doi:10.1002/pmic.201000786. PMID 21674800. S2CID 44274690.
  • Goldenberger, D.; et al. (2014). "Extended characterization of Corynebacterium pyruviciproducens based on clinical strains from Canada and Switzerland". Journal of Clinical Microbiology. 52 (9): 3180–3183. doi:10.1128/jcm.00792-14. PMC 4313134. PMID 24951802.
  • Hacker, E.; et al. (2015). "Colonization of human epithelial cell lines by Corynebacterium ulcerans from human and animal sources". Microbiology. 161 (8): 1582–1591. doi:10.1099/mic.0.000121. PMID 26066797.
  • Bernard, K. A.; Munro, C.; Wiebe, D.; Ongsanso, E. (2002). "Characteristics of rare or recently described Corynebacterium species recovered from human clinical material in Canada". Journal of Clinical Microbiology. 40 (11): 4375–4381. doi:10.1128/jcm.40.11.4375-4381.2002. PMC 139690. PMID 12409436.
  • Bittel, M.; Gastiger, S.; Amin, B.; Hofmann, J.; Burkovski, A. (2018). "Surface and Extracellular Proteome of the Emerging Pathogen Corynebacterium ulcerans". Proteomes. 6 (2): 18. doi:10.3390/proteomes6020018. PMC 6027474. PMID 29673200.
  • Ventura, M.; et al. (2007). "Genomics of Actinobacteria: Tracing the Evolutionary History of an Ancient Phylum". Microbiology and Molecular Biology Reviews. 71 (3): 495–548. doi:10.1128/mmbr.00005-07. PMC 2168647. PMID 17804669.
  • Hansmeier, N.; Chao, T. C.; Kalinowski, J.; et al. (2006). "Mapping and comprehensive analysis of the extracellular and cell surface proteome of the human pathogen Corynebacterium diphtheriae". Proteomics. 2006 (6): 2465–2476. doi:10.1002/pmic.200500360. PMID 16544277. S2CID 22745961.
  • Riegel, P.; Ruimy, R.; Christen, R.; Monteil, H. (1996). "Species identities and antimicrobial susceptibilities of Corynebacteria isolated from various clinical sources". European Journal of Clinical Microbiology and Infectious Diseases. 15 (8): 657–662. doi:10.1007/bf01691153. PMID 8894575. S2CID 9243014.
  • Carfora, V.; et al. (2018). "Non-toxigenic Corynebacterium ulcerans sequence types 325 and 339 isolated from two dogs with ulcerative lesions in Italy. [Internet]". Journal of Veterinary Diagnostic Investigation. 30 (3): 447–450. doi:10.1177/1040638718764786. PMC 6505817. PMID 29528813.
  • Nishio, Y.; et al. (2007). "Evolutionary process of amino acid biosynthesis in Corynebacterium at the whole genome level. [Internet]". Molecular Biology and Evolution. 21 (9): 1683–1691. doi:10.1093/molbev/msh175. PMID 15163767.

corynebacterium, ɔː, ɪər, genus, gram, positive, bacteria, most, aerobic, they, bacilli, shaped, some, phases, life, they, more, specifically, club, shaped, which, inspired, genus, name, coryneform, means, club, shaped, ulcerans, colonies, blood, agar, platesc. Corynebacterium k ɔː ˈ r aɪ n e b ae k ˌ t ɪer i e m ˈ r ɪ n is a genus of Gram positive bacteria and most are aerobic They are bacilli rod shaped and in some phases of life they are more specifically club shaped which inspired the genus name coryneform means club shaped CorynebacteriumCorynebacterium ulcerans colonies on a blood agar plateScientific classificationDomain BacteriaPhylum ActinomycetotaClass ActinomycetiaOrder MycobacterialesFamily CorynebacteriaceaeLehmann and Neumann 1907 Approved Lists 1980 2 Genus CorynebacteriumLehmann and Neumann 1896 Approved Lists 1980 1 Type speciesCorynebacterium diphtheriae Kruse 1886 Lehmann and Neumann 1896 Approved Lists 1980 SpeciesSee text SynonymsBacterionema Gilmour et al 1961 Approved Lists 1980 Caseobacter Crombach 1978 Approved Lists 1980 Turicella Funke et al 1994They are widely distributed in nature in the microbiota of animals including the human microbiota and are mostly innocuous most commonly existing in commensal relationships with their hosts 3 Some such as C glutamicum are commercially and industrially useful 4 5 6 7 Others can cause human disease including most notably diphtheria which is caused by C diphtheriae As with various species of microbiota including their relatives in the genera Arcanobacterium and Trueperella they usually are not pathogenic but can occasionally opportunistically capitalize on atypical access to tissues via wounds or weakened host defenses Contents 1 Taxonomy 2 Genomics 3 Characteristics 3 1 Cell wall 3 2 Culture 4 Habitat 5 Role in disease 6 Industrial uses 7 Species 8 References 9 Further readingTaxonomy editThe genus Corynebacterium was created by Lehmann and Neumann in 1896 as a taxonomic group to contain the bacterial rods responsible for causing diphtheria The genus was defined based on morphological characteristics Based on studies of 16S rRNA they have been grouped into the subdivision of Gram positive Eubacteria with high G C content with close phylogenetic relationship to Arthrobacter Mycobacterium Nocardia and Streptomyces 8 The term comes from Greek korynh koryne club mace staff knobby plant bud or shoot 9 and bakthrion baktḗrion little rod 10 The term diphtheroids is used to represent corynebacteria that are nonpathogenic for example C diphtheriae would be excluded citation needed The term diphtheroid comes from Greek dif8era diphthera prepared hide leather 11 12 Genomics editComparative analysis of corynebacterial genomes has led to the identification of several conserved signature indels CSIs that are unique to the genus Two examples of CSIs are a two amino acid insertion in a conserved region of the enzyme phosphoribose diphosphate decaprenyl phosphate phosphoribosyltransferase and a three amino acid insertion in acetate kinase both of which are found only in Corynebacterium species Both of these indels serve as molecular markers for species of the genus Corynebacterium Additionally 16 conserved signature proteins which are uniquely found in Corynebacterium species have been identified Three of these have homologs found in the genus Dietzia which is believed to be the closest related genus to Corynebacterium In phylogenetic trees based on concatenated protein sequences or 16S rRNA the genus Corynebacterium forms a distinct clade within which is a distinct subclade cluster I The cluster is made up of the species C diphtheriae C pseudotuberculosis C ulcerans C aurimucosum C glutamicum and C efficiens This cluster is distinguished by several conserved signature indels such as a two amino acid insertion in LepA and a seven or eight amino acid insertions in RpoC Also 21 conserved signature proteins are found only in members of cluster I Another cluster has been proposed consisting of C jeikeium and C urealyticum which is supported by the presence of 19 distinct conserved signature proteins which are unique to these two species 13 Corynebateria have a high G C content ranging from 46 74 mol 14 Characteristics editThe principal features of the genus Corynebacterium were described by Collins and Cummins for Coryn Taylor in 1986 15 They are gram positive catalase positive non spore forming non motile rod shaped bacteria that are straight or slightly curved 16 Metachromatic granules are usually present representing stored phosphate regions Their size falls between 2 and 6 mm in length and 0 5 mm in diameter The bacteria group together in a characteristic way which has been described as the form of a V palisades or Chinese characters They may also appear elliptical They are aerobic or facultatively anaerobic chemoorganotrophs They are pleomorphic through their lifecycles they occur in various lengths and they frequently have thickenings at either end depending on the surrounding conditions 17 Some corynebacteria are lipophilic such as CDC coryneform groups F 1 and G C accolens C afermentans subsp lipophilum C bovis 18 C jeikeium C macginleyi C uropygiale 19 and C urealyticum but medically relevant corynebacteria are typically not 20 The nonlipophilic bacteria may be classified as fermentative such as C amycolatum C argentoratense members of the C diphtheriae group C glucuronolyticum C glutamicum C matruchotii C minutissimum C striatum and C xerosis or nonfermentative such as C afermentans subsp afermentans C auris C pseudodiphtheriticum and C propinquum 18 Cell wall edit The cell wall is distinctive with a predominance of mesodiaminopimelic acid in the murein wall 3 16 and many repetitions of arabinogalactan as well as corynemycolic acid a mycolic acid with 22 to 26 carbon atoms bound by disaccharide bonds called L Rhap 1 4 D GlcNAc phosphate These form a complex commonly seen in Corynebacterium species the mycolyl AG peptidoglican mAGP 21 Unlike most corynebacteria Corynebacterium kroppenstedtii does not contain mycolic acids 22 Culture edit Corynebacteria grow slowly even on enriched media In nutritional requirements all need biotin to grow Some strains also need thiamine and PABA 15 Some of the Corynebacterium species with sequenced genomes have between 2 5 and 3 0 million base pairs The bacteria grow in Loeffler s medium blood agar and trypticase soy agar TSA They form small grayish colonies with a granular appearance mostly translucent but with opaque centers convex with continuous borders 16 The color tends to be yellowish white in Loeffler s medium In TSA they can form grey colonies with black centers and dentated borders that either resemble flowers C gravis continuous borders C mitis or a mix between the two forms C intermedium citation needed Habitat editCorynebacterium species occur commonly in nature in soil water plants and food products 3 16 The non diphtheroid Corynebacterium species can even be found in the mucosa and normal skin flora of humans and animals 3 16 Unusual habitats such as the preen gland of birds have been recently reported for Corynebacterium uropygiale 19 Some species are known for their pathogenic effects in humans and other animals Perhaps the most notable one is C diphtheriae which acquires the capacity to produce diphtheria toxin only after interacting with a bacteriophage 23 24 Other pathogenic species in humans include C amycolatum C striatum C jeikeium C urealyticum and C xerosis 25 26 27 28 29 all of these are important as pathogens in immunosuppressed patients Pathogenic species in other animals include C bovis and C renale 30 This genus has been found to be part of the human salivary microbiome 31 Role in disease editMain article Diphtheria The most notable human infection is diphtheria caused by C diphtheriae It is an acute contagious infection characterized by pseudomembranes of dead epithelial cells white blood cells red blood cells and fibrin that form around the tonsils and back of the throat 32 In developed countries it is an uncommon illness that tends to occur in unvaccinated individuals especially school aged children elderly neutropenic or immunocompromised patients and those with prosthetic devices such as prosthetic heart valves shunts or catheters It is more common in developing countries 33 It can occasionally infect wounds the vulva the conjunctiva and the middle ear It can be spread within a hospital 34 The virulent and toxigenic strains produce an exotoxin formed by two polypeptide chains which is itself produced when a bacterium is transformed by a gene from the b prophage 23 24 Several species cause disease in animals most notably C pseudotuberculosis which causes the disease caseous lymphadenitis and some are also pathogenic in humans Some attack healthy hosts while others tend to attack the immunocompromised Effects of infection include granulomatous lymphadenopathy pneumonitis pharyngitis skin infections and endocarditis Corynebacterial endocarditis is seen most frequently in patients with intravascular devices 35 Several species of Corynebacterium can cause trichomycosis axillaris 36 C striatum may cause axillary odor 37 C minutissimum causes erythrasma Industrial uses editNonpathogenic species of Corynebacterium are used for important industrial applications such as the production of amino acids 38 and nucleotides bioconversion of steroids 39 degradation of hydrocarbons 40 cheese aging 41 and production of enzymes 42 Some species produce metabolites similar to antibiotics bacteriocins of the corynecin linocin type 34 43 44 antitumor agents 45 etc One of the most studied species is C glutamicum whose name refers to its capacity to produce glutamic acid in aerobic conditions 46 L Lysine production is specific to C glutamicum in which core metabolic enzymes are manipulated through genetic engineering to drive metabolic flux towards the production of NADPH from the pentose phosphate pathway and L 4 aspartyl phosphate the commitment step to the synthesis of L lysine lysC dapA dapC and dapF These enzymes are up regulated in industry through genetic engineering to ensure adequate amounts of lysine precursors are produced to increase metabolic flux Unwanted side reactions such as threonine and asparagine production can occur if a buildup of intermediates occurs so scientists have developed mutant strains ofC glutamicum through PCR engineering and chemical knockouts to ensure production of side reaction enzymes are limited Many genetic manipulations conducted in industry are by traditional cross over methods or inhibition of transcriptional activators 47 Expression of functionally active human epidermal growth factor has been brought about in C glutamicum 48 thus demonstrating a potential for industrial scale production of human proteins Expressed proteins can be targeted for secretion through either the general secretory pathway or the twin arginine translocation pathway 49 Unlike gram negative bacteria the gram positive Corynebacterium species lack lipopolysaccharides that function as antigenic endotoxins in humans citation needed Species editCorynebacterium comprises the following species 50 C accolens Neubauer et al 1991 C afermentans Riegel et al 1993 C alimapuense Claverias et al 2019 C alkanolyticum Lee and Reichenbach 2006 C ammoniagenes Cooke and Keith 1927 Collins 1987 C amycolatum Collins et al 1988 C anserum Liu et al 2021 C appendicis Yassin et al 2002 C aquatimens Aravena Roman et al 2012 C aquilae Fernandez Garayzabal et al 2003 C argentoratense Riegel et al 1995 C asperum De Briel et al 1992 C atrinae Kim et al 2015 C atypicum Hall et al 2003 C aurimucosum Yassin et al 2002 C auris Funke et al 1995 C auriscanis Collins et al 2000 C belfantii Dazas et al 2018 C beticola Abdou 1969 Approved Lists 1980 C bouchesdurhonense Ndongo et al 2017 C bouchesdurhonense Lo et al 2019 C bovis Bergey et al 1923 Approved Lists 1980 C callunae Lee and Good 1963 Yamada and Komagata 1972 Approved Lists 1980 C camporealensis Fernandez Garayzabal et al 1998 C canis Funke et al 2010 C capitovis Collins et al 2001 C casei Brennan et al 2001 C caspium Collins et al 2004 C choanae Busse et al 2019 C ciconiae Fernandez Garayzabal et al 2004 C comes Schaffert et al 2021 C confusum Funke et al 1998 C coyleae Funke et al 1997 C crudilactis Zimmermann et al 2016 C cystitidis Yanagawa and Honda 1978 Approved Lists 1980 C defluvii Yu et al 2017 C dentalis Benabdelkader et al 2020 C deserti Zhou et al 2012 C diphtheriae Kruse 1886 Lehmann and Neumann 1896 Approved Lists 1980 C doosanense Lee et al 2009 C durum Riegel et al 1997 C efficiens Fudou et al 2002 C endometrii Ballas et al 2020 C epidermidicanis Frischmann et al 2012 C faecale Chen et al 2016 C falsenii Sjoden et al 1998 C felinum Collins et al 2001 C flavescens Barksdale et al 1979 Approved Lists 1980 C fournieri corrig Diop et al 2018 C frankenforstense Wiertz et al 2013 C freiburgense Funke et al 2009 C freneyi Renaud et al 2001 C gerontici Busse et al 2019 C glaucum Yassin et al 2003 C glucuronolyticum Funke et al 1995 C glutamicum Kinoshita et al 1958 Abe et al 1967 Approved Lists 1980 C glyciniphilum ex Kubota et al 1972 Al Dilaimi et al 2015 C gottingense Atasayar et al 2017 C guangdongense Li et al 2016 C haemomassiliense Boxberger et al 2020 C halotolerans Chen et al 2004 C hansenii Renaud et al 2007 C heidelbergense Braun et al 2021 C hindlerae Bernard et al 2021 C humireducens Wu et al 2011 C ihumii Padmanabhan et al 2014 C ilicis Mandel et al 1961 Approved Lists 1980 C imitans Funke et al 1997 C incognitum Boxberger et al 2021 C jeddahense Edouard et al 2017 C jeikeium Jackman et al 1988 C kalinowskii Schaffert et al 2021 C kefirresidentii Blasche et al 2017 C kroppenstedtii Collins et al 1998 C kutscheri Migula 1900 Bergey et al 1925 Approved Lists 1980 C lactis Wiertz et al 2013 C lactofermentum Gubler et al 1994 C jeikliangguodongiiium Zhu et al 2020 C lipophiloflavum Funke et al 1997 C lizhenjunii Zhou et al 2021 C lowii Bernard et al 2016 C lubricantis Kampfer et al 2009 C lujinxingii Zhang et al 2021 C macginleyi Riegel et al 1995 C marinum Du et al 2010 C maris Ben Dov et al 2009 C massiliense Merhej et al 2009 C mastitidis Fernandez Garayzabal et al 1997 C matruchotii Mendel 1919 Collins 1983 C minutissimum ex Sarkany et al 1962 Collins and Jones 1983 C mucifaciens Funke et al 1997 C mustelae Funke et al 2010 C mycetoides ex Castellani 1942 Collins 1983 C nasicanis Baumgardt et al 2015 C neomassiliense Boxberger et al 2020 C nuruki Shin et al 2011 C occultum Schaffert et al 2021 C oculi Bernard et al 2016 C otitidis Funke et al 1994 Baek et al 2018 C pacaense Bellali et al 2019 C parakroppenstedtii Luo et al 2022 C parvulum Nakamura et al 1983 C pelargi Kampfer et al 2015 C phocae Pascual et al 1998 C phoceense Cresci et al 2016 C pilbarense Aravena Roman et al 2010 C pilosum Yanagawa and Honda 1978 Approved Lists 1980 C pollutisoli Negi et al 2016 C propinquum Riegel et al 1994 C provencense Ndongo et al 2017 C provencense Lo et al 2019 C pseudodiphtheriticum Lehmann and Neumann 1896 Approved Lists 1980 C pseudokroppenstedtii Luo et al 2022 C pseudopelargi Busse et al 2019 C pseudotuberculosis Buchanan 1911 Eberson 1918 Approved Lists 1980 C pyruviciproducens Tong et al 2010 C qintianiae Zhou et al 2021 C renale Migula 1900 Ernst 1906 Approved Lists 1980 C resistens Otsuka et al 2005 C riegelii Funke et al 1998 C rouxii Badell et al 2020 C sanguinis Jaen Luchoro et al 2020 C segmentosum Collins et al 1998 C senegalense Ndiaye et al 2019 C silvaticum Dangel et al 2020 C simulans Wattiau et al 2000 C singulare Riegel et al 1997 C sphenisci Goyache et al 2003 C spheniscorum Goyache et al 2003 C sputi Yassin and Siering 2008 C stationis ZoBell and Upham 1944 Bernard et al 2010 C striatum Chester 1901 Eberson 1918 Approved Lists 1980 C suicordis Vela et al 2003 C sundsvallense Collins et al 1999 C suranareeae Nantapong et al 2020 C tapiri Baumgardt et al 2015 C terpenotabidum Takeuchi et al 1999 C testudinoris Collins et al 2001 C thomssenii Zimmermann et al 1998 C timonense Merhej et al 2009 C trachiae Kampfer et al 2015 C tuberculostearicum Feurer et al 2004 C tuscaniense corrig Riegel et al 2006 C uberis Kittl et al 2022 C ulcerans ex Gilbert and Stewart 1927 Riegel et al 1995 C ulceribovis Yassin 2009 C urealyticum Pitcher et al 1992 C ureicelerivorans Yassin 2007 C urinapleomorphum Morand et al 2017 C urinipleomorphum corrig Niang et al 2021 C urogenitale Ballas et al 2020 C uropygiale Braun et al 2016 C uterequi Hoyles et al 2013 C variabile corrig Muller 1961 Collins 1987 C vitaeruminis corrig Bechdel et al 1928 Laneelle et al 1980 C wankanglinii Zhang et al 2021 C xerosis Lehmann and Neumann 1896 Lehmann and Neumann 1899 Approved Lists 1980 C yudongzhengii Zhu et al 2020 C zhongnanshanii Zhang et al 2021References edit Lehmann KB Neumann R 1896 Atlas und Grundriss der Bakteriologie und Lehrbuch der speziellen bakteriologischen Diagnostik Atlas and outline of bacteriology and textbook of special bacteriological diagnostics 1st ed Munchen J F Lehmann Lehmann KB Neumann R 1907 Lehmann s Medizin Handatlanten X Atlas und Grundriss der Bakteriologie und Lehrbuch der speziellen bakteriologischen Diagnostik Lehmann s Medicine Handbook X Atlas and outline of bacteriology and textbook of special bacteriological diagnostics 4th ed Munchen J F Lehmann a b c d Collins M D 2004 Corynebacterium caspium sp nov from a Caspian seal Phoca caspica International Journal of Systematic and Evolutionary Microbiology 54 3 925 8 doi 10 1099 ijs 0 02950 0 PMID 15143043 Poetsch A 2011 Proteomics of corynebacteria From biotechnology workhorses to pathogens Proteomics 11 15 3244 3255 doi 10 1002 pmic 201000786 PMID 21674800 S2CID 44274690 Burkovski A ed 2008 Corynebacteria Genomics and Molecular Biology Caister Academic Press ISBN 978 1 904455 30 1 page needed Kinoshita Shukuo Udaka Shigezo Shimono Masakazu 1957 Studies on the amino acid fermentation Part 1 Production of L glutamic acid by various microorganisms The Journal of General and Applied Microbiology 3 3 193 205 doi 10 2323 jgam 3 193 PMID 15965888 a href Template Cite journal html title Template Cite journal cite journal a CS1 maint multiple names authors list link Kinoshita Shukuo 1972 11 24 Amino acid Producnon by the Fermentation Process Nature 240 5378 211 doi 10 1038 240211a0 PMID 4569416 Woese C R 1987 Bacterial evolution Microbiological Reviews 51 2 221 71 doi 10 1128 MMBR 51 2 221 271 1987 PMC 373105 PMID 2439888 korynh Liddell Henry George Scott Robert A Greek English Lexicon at the Perseus Project bakthrion bakthria in Liddell and Scott dif8era in Liddell and Scott Harper Douglas diphtheria Online Etymology Dictionary Gao B Gupta R S 2012 Phylogenetic Framework and Molecular Signatures for the Main Clades of the Phylum Actinobacteria Microbiology and Molecular Biology Reviews 76 1 66 112 doi 10 1128 MMBR 05011 11 PMC 3294427 PMID 22390973 Bernard K A Funke G 2012 Genus I Corynebacterium In Goodfellow M Kampfer P Busse H J Trujillo M E Suzuki K Ludwig W Whitman W B eds Bergey s Manual of Systematic Bacteriology 2nd ed Springer p 245 a b Collins M D Cummins C S 1986 Genus Corynebacterium Lehmann and Neumann 1896 350AL In Sneath P H A Mair N S Sharpe M E Holt J G eds Bergey s Manual of Systematic Bacteriology Vol 2 Baltimore Williams amp Wilkins pp 1266 76 a b c d e Yassin A F 2003 Corynebacterium glaucum sp nov International Journal of Systematic and Evolutionary Microbiology 53 3 705 9 doi 10 1099 ijs 0 02394 0 PMID 12807190 Keddie R M Cure G L 1977 The Cell Wall Composition and Distribution of Free Mycolic Acids in Named Strains of Coryneform Bacteria and in Isolates from Various Natural Sources Journal of Applied Bacteriology 42 2 229 52 doi 10 1111 j 1365 2672 1977 tb00689 x PMID 406255 a b Funke G von Graevenitz A Clarridge Je 3rd Bernard K A 1997 Clinical microbiology of coryneform bacteria Clinical Microbiology Reviews 10 1 125 59 doi 10 1128 CMR 10 1 125 PMC 172946 PMID 8993861 a href Template Cite journal html title Template Cite journal cite journal a CS1 maint numeric names authors list link a b Braun Markus Santhosh Zimmermann Stefan Danner Maria Rashid Harun or Wink Michael 2016 Corynebacterium uropygiale sp nov isolated from the preen gland of turkeys Meleagris gallopavo Systematic and Applied Microbiology 39 2 88 92 doi 10 1016 j syapm 2015 12 001 PMID 26776107 Bernard Kathryn 2012 The Genus Corynebacterium and Other Medically Relevant Coryneform Like Bacteria Journal of Clinical Microbiology 50 10 3152 3158 doi 10 1128 JCM 00796 12 ISSN 0095 1137 PMC 3457441 PMID 22837327 Seidel M Alderwick L J Sahm H Besra G S Eggeling L 2006 Topology and mutational analysis of the single Emb arabinofuranosyltransferase of Corynebacterium glutamicum as a model of Emb proteins of Mycobacterium tuberculosis Glycobiology 17 2 210 9 doi 10 1093 glycob cwl066 PMID 17088267 Collins M D Falsen E Akervall E et al 1998 Note Corynebacterium kroppenstedtii sp nov a novel corynebacterium that does not contain mycolic acids International Journal of Systematic Bacteriology 48 4 1449 54 doi 10 1099 00207713 48 4 1449 PMID 9828448 a b Costa J J Michel J L Rappuoli R Murphy J R 1981 Restriction map of corynebacteriophages beta c and beta vir and physical localization of the diphtheria tox operon Journal of Bacteriology 148 1 124 30 doi 10 1128 JB 148 1 124 130 1981 PMC 216174 PMID 6270058 a b SIB Viral exotoxin Expasy ViralZone Accessed 2 Feb 2021 Oteo Jesus Aracil Belen Ignacio Alos Juan Luis Gomez Garces Jose 2001 Bacteriemias significativas por Corynebacterium amycolatum Un patogeno emergente Significant bacteremias by Corynebacterium amycolatum an emergent pathogen Enfermedades Infecciosas y Microbiologia Clinica in Spanish 19 3 103 6 doi 10 1016 S0213 005X 01 72578 5 PMID 11333587 S2CID 72540272 Lagrou K Verhaegen J Janssens M Wauters G Verbist L 1998 Prospective Study of Catalase positive Coryneform Organisms in Clinical Specimens Identification Clinical Relevance and Antibiotic Susceptibility Diagnostic Microbiology and Infectious Disease 30 1 7 15 doi 10 1016 S0732 8893 97 00193 4 PMID 9488824 Boc SF Martone JD 1995 Osteomyelitis caused by Corynebacterium jeikeium Journal of the American Podiatric Medical Association 85 6 338 9 doi 10 7547 87507315 85 6 338 PMID 7602508 Kono M Sasatsu M Aoki T 1983 R Plasmids in Corynebacterium xerosis Strains Antimicrobial Agents and Chemotherapy 23 3 506 8 doi 10 1128 aac 23 3 506 PMC 184682 PMID 6847177 Pitcher D G 1983 Deoxyribonucleic acid base composition of Corynebacterium diphtheriaeand other corynebacteria with cell wall type IV FEMS Microbiology Letters 16 2 3 291 5 doi 10 1111 j 1574 6968 1983 tb00305 x Hirsbrunner G Lang J Nicolet J Steiner A 1996 Nephrektomie nach chronischer unilateraler eitriger Pyelonephritis beim Rind Nephrectomy for chronic unilateral suppurative pyleonephritis in cattle Tierarztliche Praxis in German 24 1 17 21 PMID 8720950 Wang Kun Lu Wenxin Tu Qichao et al 10 March 2016 Preliminary analysis of salivary microbiome and their potential roles in oral lichen planus Scientific Reports 6 1 22943 Bibcode 2016NatSR 622943W doi 10 1038 srep22943 PMC 4785528 PMID 26961389 Difteria MedlinePlus enciclopedia medica www nlm nih gov Iizuka Hideyo Furuta Joana Akiko Oliveira Edison P Tavares de 1980 Difteria Situacao imunitaria de uma populacao infantil urbana de Sao Paulo SP Brasil Diphtheria Immunity in an infant population in the City of S Paulo SP Brazil Revista de Saude Publica in Portuguese 14 4 462 8 doi 10 1590 S0034 89101980000400005 PMID 7268290 a b Kerry Williams S M Noble W C 2009 Plasmids in group JK coryneform bacteria isolated in a single hospital Journal of Hygiene 97 2 255 63 doi 10 1017 S0022172400065347 PMC 2083551 PMID 3023480 Leon Cristobal Ariza Javier 2004 Guias para el tratamiento de las infecciones relacionadas con cateteres intravasculares de corta permanencia en adultos Conferencia de consenso SEIMC SEMICYUC Guidelines for the treatment of infections related to short stay intravascular catheters in adults consensus conference SEIMC SEMICYUC Enfermedades Infecciosas y Microbiologia Clinica in Spanish 22 2 92 7 doi 10 1016 S0213 005X 04 73041 4 PMID 14756991 Trichomycosis axillaris at eMedicine Natsch A Gfeller H Gygax P Schmid J 2005 Isolation of a bacterial enzyme releasing axillary malodor and its use as a screening target for novel deodorant formulations1 International Journal of Cosmetic Science 27 2 115 22 doi 10 1111 j 1467 2494 2004 00255 x PMID 18492161 S2CID 22554216 Yamada K Kinoshita S Tsunoda T Aida K eds 1972 The Microbial Production of Amino Acids New York Wiley Constantinides Alkis 1980 Steroid transformation at high substrate concentrations using immobilized Corynebacterium simplex cells Biotechnology and Bioengineering 22 1 119 36 doi 10 1002 bit 260220110 PMID 7350926 S2CID 29703826 Cooper D G Zajic J E Gracey D E 1979 Analysis of corynomycolic acids and other fatty acids produced by Corynebacterium lepus grown on kerosene Journal of Bacteriology 137 2 795 801 doi 10 1128 JB 137 2 795 801 1979 PMC 218359 PMID 422512 Lee Chang Won Lucas Serge Desmazeaud Michel J 1985 Phenylalanine and tyrosine catabolism in some cheese coryneform bacteria FEMS Microbiology Letters 26 2 201 5 doi 10 1111 j 1574 6968 1985 tb01591 x Khurana Sumit Sanli Gulsah Powers David B et al 2000 Molecular modeling of substrate binding in wild type and mutant Corynebacteria 2 5 diketo D gluconate reductases Proteins Structure Function and Genetics 39 1 68 75 CiteSeerX 10 1 1 661 3412 doi 10 1002 SICI 1097 0134 20000401 39 1 lt 68 AID PROT7 gt 3 0 CO 2 Y PMID 10737928 S2CID 24526523 Kerry Williams S M Noble W C 1984 Plasmid associated bacteriocin production in a JK type coryneform bacterium FEMS Microbiology Letters 25 2 3 179 82 doi 10 1111 j 1574 6968 1984 tb01451 x Suzuki Takeo Honda Haruo Katsumata Ryoichi 1972 Production of Antibacterial Compounds Analogous to Chloramphenicol by a n Paraffin grown Bacterium Agricultural and Biological Chemistry 36 12 2223 8 doi 10 1271 bbb1961 36 2223 Milas Luka Scott Martin T 1978 Antitumor Activity of Corynebacterium Parvum In Ford Marvella E Watson Dennis K eds Cancer Disparities Advances in Cancer Research Vol 26 1st ed pp 257 306 doi 10 1016 S0065 230X 08 60090 1 ISBN 978 0 12 809878 3 PMID 343523 Abe Shigeo Takayama KEN Ichiro Kinoshita Shukuo 1967 Taxonomical Studies on Glutamic Acid Producing Bacteria The Journal of General and Applied Microbiology 13 3 279 301 doi 10 2323 jgam 13 279 Kjeldsen Kjeld Raunkjaer 2009 Optimization of an industrial L lysine producing Corynebacterium glutamicum strain PhD Thesis Technical University of Denmark OCLC 826400572 page needed Date M Itaya H Matsui H Kikuchi Y 2006 Secretion of human epidermal growth factor by Corynebacterium glutamicum Letters in Applied Microbiology 42 1 66 70 doi 10 1111 j 1472 765X 2005 01802 x PMID 16411922 S2CID 20867427 Meissner Daniel Vollstedt Angela Van Dijl Jan Maarten Freudl Roland 2007 Comparative analysis of twin arginine Tat dependent protein secretion of a heterologous model protein GFP in three different Gram positive bacteria Applied Microbiology and Biotechnology 76 3 633 42 doi 10 1007 s00253 007 0934 8 PMID 17453196 S2CID 6238466 Euzeby JP Parte AC Corynebacterium List of Prokaryotic names with Standing in Nomenclature LPSN Retrieved June 21 2022 Further reading edit nbsp Wikispecies has information related to Corynebacterium Burkovski Andreas ed 2008 Corynebacteria Genomics and Molecular Biology Caister Academic Press ISBN 978 1 904455 30 1 Ryan KJ Ray CG eds 2004 Sherris Medical Microbiology 4th ed McGraw Hill ISBN 978 0 8385 8529 0 Database of Corynebacterial Transcription Factors and Regulatory Networks Rollins David M University of Maryland Pathogentic Microbiology Corynebacterium 1 Khamis A Raoult D Scola B La 2004 rpoB gene sequencing for identification of Corynebacterium species Journal of Clinical Microbiology 42 9 3925 3931 doi 10 1128 jcm 42 9 3925 3931 2004 PMC 516356 PMID 15364970 Poetsch A Haussmann U Burkovski A 2011 Proteomics of corynebacteria From biotechnology workhorses to pathogens Proteomics 2011 11 3244 3255 doi 10 1002 pmic 201000786 PMID 21674800 S2CID 44274690 Goldenberger D et al 2014 Extended characterization of Corynebacterium pyruviciproducens based on clinical strains from Canada and Switzerland Journal of Clinical Microbiology 52 9 3180 3183 doi 10 1128 jcm 00792 14 PMC 4313134 PMID 24951802 Hacker E et al 2015 Colonization of human epithelial cell lines by Corynebacterium ulcerans from human and animal sources Microbiology 161 8 1582 1591 doi 10 1099 mic 0 000121 PMID 26066797 Bernard K A Munro C Wiebe D Ongsanso E 2002 Characteristics of rare or recently described Corynebacterium species recovered from human clinical material in Canada Journal of Clinical Microbiology 40 11 4375 4381 doi 10 1128 jcm 40 11 4375 4381 2002 PMC 139690 PMID 12409436 Bittel M Gastiger S Amin B Hofmann J Burkovski A 2018 Surface and Extracellular Proteome of the Emerging Pathogen Corynebacterium ulcerans Proteomes 6 2 18 doi 10 3390 proteomes6020018 PMC 6027474 PMID 29673200 Ventura M et al 2007 Genomics of Actinobacteria Tracing the Evolutionary History of an Ancient Phylum Microbiology and Molecular Biology Reviews 71 3 495 548 doi 10 1128 mmbr 00005 07 PMC 2168647 PMID 17804669 Hansmeier N Chao T C Kalinowski J et al 2006 Mapping and comprehensive analysis of the extracellular and cell surface proteome of the human pathogen Corynebacterium diphtheriae Proteomics 2006 6 2465 2476 doi 10 1002 pmic 200500360 PMID 16544277 S2CID 22745961 Riegel P Ruimy R Christen R Monteil H 1996 Species identities and antimicrobial susceptibilities of Corynebacteria isolated from various clinical sources European Journal of Clinical Microbiology and Infectious Diseases 15 8 657 662 doi 10 1007 bf01691153 PMID 8894575 S2CID 9243014 Carfora V et al 2018 Non toxigenic Corynebacterium ulcerans sequence types 325 and 339 isolated from two dogs with ulcerative lesions in Italy Internet Journal of Veterinary Diagnostic Investigation 30 3 447 450 doi 10 1177 1040638718764786 PMC 6505817 PMID 29528813 Nishio Y et al 2007 Evolutionary process of amino acid biosynthesis in Corynebacterium at the whole genome level Internet Molecular Biology and Evolution 21 9 1683 1691 doi 10 1093 molbev msh175 PMID 15163767 Portal nbsp Biology Retrieved from https en wikipedia org w index php title Corynebacterium amp oldid 1191024688 Taxonomy, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.