fbpx
Wikipedia

Peregrinus maidis

Peregrinus maidis, commonly known as the corn planthopper, is a species of insect in the order Hemiptera and the family Delphacidae.[2] It is widespread throughout most tropical and subtropical regions on earth, including southern North America, South America, Africa, Australia, Southeast Asia and China.[2] P. maidis are a commercially important pest of maize and its relatives.[3] In addition to physical plant damage,[1] P. maidis is the vector for several species-specific maize viruses, including maize stripe virus, maize mosaic virus[3] and the non-pathogenic Peregrinus maidis reovirus.[4]

Peregrinus maidis
Scientific classification
Kingdom:
Phylum:
Class:
Order:
Suborder:
Superfamily:
Family:
Genus:
Peregrinus
Species:
P. maidis
Binomial name
Peregrinus maidis
(Ashmead, 1890)[1]
Synonyms
  • Delphax maidis Ashmead, 1890
  • Delphax psylloides Lethierryi, 1894
  • Pundaluoya simplicia Distant, 1906

Description edit

P. maidis demonstrate sexual dimorphism in body size between males and females.[5] Males have a body length of 2mm with a 6mm wingspan, whereas females are slightly larger at 3mm long and 7mm wingspan.[1] The species is mainly yellow with dark brown to black markings, but colouration ranges from greenish-yellow to brownish-yellow. The forewings are longer than the body. The hind tibiae possess multiple spines and a large movable spur.[1]

Distribution and habitat edit

P. maidis are found in most tropical and subtropical regions throughout the world including the southeast United States, Hawaii, Central and South America, Africa, Australia, Southeast Asia and southern China.[2] The species thrives in low elevation, high humidity locations and populations will decrease at altitudes above 800m.[3] It is suspected that P. maidis cannot move into higher latitudes due to an inability to overwinter.[6]

P. maidis are thought to have originated in Australia as a pest of sorghum but quickly spread with the widespread cultivation of the closely related sugarcane and maize plants.[3][6] This specificity to feed on a single tribe of plants results in P. maidis being classified as an oligophagous herbivore.[3] Attempts to rear the species on other host plants has resulted in decreased fecundity, body size, life span, and slower nymph development.[6]

Life cycle edit

Females lay 20-30 eggs within the midribs of their host-plant's leaves.[7] Under normal conditions, development from hatchling to adult takes approximately 20 days.[8] However, development of P. maidis nymphs is highly temperature dependent. Normal development occurs between 20-27 °C and has five juvenile instar stages. Extreme temperatures (below 10 °C and above 30 °C) result in a loss of the fifth instar and a direct molt from fourth instar to adult, but full development is extended dramatically to 74 days. Rearing at a temperature of 15 °C results in an extra, sixth, instar and a 65-day development time. P. maidis occupies warm climates and is able to reproduce year round, but development is affected by temperature changes.[8] Another factor that affects development is nutrient availability. Increased levels of Nitrogen fertilizers in plant tissues result in shorter development times, more eggs produced, and increases in juvenile survival rates and adult body size.[7]

Similar to other planthoppers, two different types (morphs) of adult P. maidis can develop depending on environmental conditions.[9] The first, brachypterous, have short, underdeveloped wings and most often develop as a response to high quality host plants, low conspecific density, and no need for dispersal. The second, macropterous, have fully developed wings and emerge when dispersal is required due to high population density or low quality host plants. The purpose of the macropters is to disperse and lay eggs on corn seedlings, whereas the brachypters are to simply feed on the growing plant and reproduce. Once the plant starts to age, more macropters are produced and the cycle continues.[9]

Interactions with humans edit

Role as a pest edit

P. maidis are an economically important pest of maize. Infestations will physically damage the host plant because the insect breaks through the vascular tissue with its tibia spur and feeds on the sap exuded.[1] The physical results on the plant includes wilting, yellowing of the leaves, stem weakness, and even death.[3] Damage is more severe in young or drought-stressed plants. In addition to physical damage, P. maidis can also introduce mold and infection to the plant while piercing the tissues. P. maidis feeding behaviour alone can result in a 10-15% crop loss.[3]

Role as a disease vector edit

P. maidis is a vector for several species-specific maize viruses. Peregrinus maidis reovirus (PgMV) from the family Reoviridae, is a non-pathogenic virus transmitted by the insect.[4] Maize mosaic rhabdovirus (MMV) (family: Rhabdoviridae) and maize tenuivirus (MStV) (genus: Tenuivirus) are important viruses that are pathogenic and can reduce crop yield by 9-90%.[3] It has been suggested that the spread of P. maidis and these two viruses to the New World contributed to the collapse of the Mayan civilization.[10]

MMV is not transmitted from parent to offspring; instead, individuals become infected with the virus when they feed on an infected plant.[9] Any juvenile instar stage can become infected, but the virus has a 3-week latency period before it can be transmitted to another plant. Therefore, usually only adults are able to pass the infection onto a healthy plant. Macropterous adults dispersing to a new plant actively avoid plants that are showing symptoms of MMV infection. These adults demonstrate a preference for asymptomatic plants. They are most likely responding to a cue about the quality of the host plant.[9]

Human resistance to pest edit

Research is exploring how to reduce crop loss by P. maidis and the diseases they carry.[7][11] Farmers should avoid using nitrogen fertilizers which have been shown to directly increase the success of P. maidis.[7] Unfortunately, no natural plant resistance exists so entomologists are searching for a synthetic alternative.[11] Recently, scientists have introduced corn that possess a modified resistance gene that has demonstrated some success. The genetically modified corn had decreased infection and transmission of MMV, but did not affect the fitness of P. maidis or the ability for the insect to be infected by MMV. Instead, the gene increased the plant’s resistance to the virus, which decreased the disease transmission rate.[11]

 

References edit

  1. ^ a b c d e Ashmead, W. H. (1890). "The corn delphacid, Delphax maidis". Psyche: A Journal of Entomology. 5 (167–168): 321–324. doi:10.1155/1890/28515.
  2. ^ a b c Metcalf, Z. P. (1943). General Catalogue of the Hemiptera (Facicle 4). Northampton, MA: George Banta Publishing Company.
  3. ^ a b c d e f g h Singh, B. U.; Seetharama, N (2008). "Host plant interactions of the corn planthopper, Peregrinus maidis Ashim. (Homoptera: Delphacidae) in maize and sorghum agroecosystems". Arthropod-Plant Interactions. 2 (3): 163–196. doi:10.1007/s11829-007-9026-z. S2CID 6934442.
  4. ^ a b Noda, H; Nakashima, N (1995). "Non-pathogenic reoviruses of leafhoppers and planthoppers". Virology. 6 (2): 109–116. doi:10.1006/smvy.1995.0014.
  5. ^ Tsai, J. H.; Wilson, S. W.; Faan, H. C. (1986). "Peregrinus maidis (Homoptera: Delphacidae) from southern China". Journal of the New York Entomological Society. 94: 442–443.
  6. ^ a b c Tsai, J. H. (1996). "Development and oviposition of Peregrinus maidis (Homoptera: Delphacidae) on various host plants". Florida Entomologist. 79 (1): 19–26. doi:10.2307/3495750. JSTOR 3495750.
  7. ^ a b c d Wang, J. J.; Tsai, J. H.; Broschat, T. K. (2006). "Effect of nitrogen fertilizer of corn on the development, survivorship, fecundity and body weight of Peregrinus maidis (Hom. Delphacidae)". Journal of Applied Entomology. 130: 20–25. doi:10.1111/j.1439-0418.2005.01030.x. S2CID 83908987.
  8. ^ a b Tsai, J. H.; Wilson, S. W. (1986). "Biology of Peregrinus maidis with descriptions of immature stages (Homoptera: Delphacidae)". Annals of the Entomological Society of America. 79 (3): 395–401. doi:10.1093/aesa/79.3.395.
  9. ^ a b c d Higashi, C. H. V.; Bressan, A. (2013). "Infection rates and comparative population dynamics of Peregrinus maidis (Hemiptera: Delphacidae) on corn plants with and without symptoms of maize mosaic virus (Rhabdoviridae: Nucleorhabdovirus) infection". Environmental Entomology. 42 (5): 949–956. doi:10.1603/en12321. PMID 24331606.
  10. ^ Brewbaker, J. L. (1979). "Diseases of maize in the wet lowland tropics and the collapse of the classic Maya civilization". Society for Economic Botany. 33 (2): 101–118. doi:10.1007/bf02858277. S2CID 186228505.
  11. ^ a b c Higashi, C. H. V.; Brewbaker, J. L.; Bressan, A. (2013). "Influence of the corn resistance gene Mv on the fitness of Peregrinus maidis (Hemiptera: Delphacidae) and on the transmission of maize mosaic virus (Rhabdoviridae: Nucleorhabdovirus)". Journal of Economic Entomology. 106 (4): 1878–1886. doi:10.1603/ec12497. PMID 24020306.

peregrinus, maidis, commonly, known, corn, planthopper, species, insect, order, hemiptera, family, delphacidae, widespread, throughout, most, tropical, subtropical, regions, earth, including, southern, north, america, south, america, africa, australia, southea. Peregrinus maidis commonly known as the corn planthopper is a species of insect in the order Hemiptera and the family Delphacidae 2 It is widespread throughout most tropical and subtropical regions on earth including southern North America South America Africa Australia Southeast Asia and China 2 P maidis are a commercially important pest of maize and its relatives 3 In addition to physical plant damage 1 P maidis is the vector for several species specific maize viruses including maize stripe virus maize mosaic virus 3 and the non pathogenic Peregrinus maidis reovirus 4 Peregrinus maidisScientific classificationKingdom AnimaliaPhylum ArthropodaClass InsectaOrder HemipteraSuborder AuchenorrhynchaSuperfamily FulgoroideaFamily DelphacidaeGenus PeregrinusSpecies P maidisBinomial namePeregrinus maidis Ashmead 1890 1 SynonymsDelphax maidis Ashmead 1890 Delphax psylloides Lethierryi 1894 Pundaluoya simplicia Distant 1906 Contents 1 Description 2 Distribution and habitat 3 Life cycle 4 Interactions with humans 4 1 Role as a pest 4 2 Role as a disease vector 4 3 Human resistance to pest 5 ReferencesDescription editP maidis demonstrate sexual dimorphism in body size between males and females 5 Males have a body length of 2mm with a 6mm wingspan whereas females are slightly larger at 3mm long and 7mm wingspan 1 The species is mainly yellow with dark brown to black markings but colouration ranges from greenish yellow to brownish yellow The forewings are longer than the body The hind tibiae possess multiple spines and a large movable spur 1 Distribution and habitat editP maidis are found in most tropical and subtropical regions throughout the world including the southeast United States Hawaii Central and South America Africa Australia Southeast Asia and southern China 2 The species thrives in low elevation high humidity locations and populations will decrease at altitudes above 800m 3 It is suspected that P maidis cannot move into higher latitudes due to an inability to overwinter 6 P maidis are thought to have originated in Australia as a pest of sorghum but quickly spread with the widespread cultivation of the closely related sugarcane and maize plants 3 6 This specificity to feed on a single tribe of plants results in P maidis being classified as an oligophagous herbivore 3 Attempts to rear the species on other host plants has resulted in decreased fecundity body size life span and slower nymph development 6 Life cycle editFemales lay 20 30 eggs within the midribs of their host plant s leaves 7 Under normal conditions development from hatchling to adult takes approximately 20 days 8 However development of P maidis nymphs is highly temperature dependent Normal development occurs between 20 27 C and has five juvenile instar stages Extreme temperatures below 10 C and above 30 C result in a loss of the fifth instar and a direct molt from fourth instar to adult but full development is extended dramatically to 74 days Rearing at a temperature of 15 C results in an extra sixth instar and a 65 day development time P maidis occupies warm climates and is able to reproduce year round but development is affected by temperature changes 8 Another factor that affects development is nutrient availability Increased levels of Nitrogen fertilizers in plant tissues result in shorter development times more eggs produced and increases in juvenile survival rates and adult body size 7 Similar to other planthoppers two different types morphs of adult P maidis can develop depending on environmental conditions 9 The first brachypterous have short underdeveloped wings and most often develop as a response to high quality host plants low conspecific density and no need for dispersal The second macropterous have fully developed wings and emerge when dispersal is required due to high population density or low quality host plants The purpose of the macropters is to disperse and lay eggs on corn seedlings whereas the brachypters are to simply feed on the growing plant and reproduce Once the plant starts to age more macropters are produced and the cycle continues 9 Interactions with humans editRole as a pest edit P maidis are an economically important pest of maize Infestations will physically damage the host plant because the insect breaks through the vascular tissue with its tibia spur and feeds on the sap exuded 1 The physical results on the plant includes wilting yellowing of the leaves stem weakness and even death 3 Damage is more severe in young or drought stressed plants In addition to physical damage P maidis can also introduce mold and infection to the plant while piercing the tissues P maidis feeding behaviour alone can result in a 10 15 crop loss 3 Role as a disease vector edit P maidis is a vector for several species specific maize viruses Peregrinus maidis reovirus PgMV from the family Reoviridae is a non pathogenic virus transmitted by the insect 4 Maize mosaic rhabdovirus MMV family Rhabdoviridae and maize tenuivirus MStV genus Tenuivirus are important viruses that are pathogenic and can reduce crop yield by 9 90 3 It has been suggested that the spread of P maidis and these two viruses to the New World contributed to the collapse of the Mayan civilization 10 MMV is not transmitted from parent to offspring instead individuals become infected with the virus when they feed on an infected plant 9 Any juvenile instar stage can become infected but the virus has a 3 week latency period before it can be transmitted to another plant Therefore usually only adults are able to pass the infection onto a healthy plant Macropterous adults dispersing to a new plant actively avoid plants that are showing symptoms of MMV infection These adults demonstrate a preference for asymptomatic plants They are most likely responding to a cue about the quality of the host plant 9 Human resistance to pest edit Research is exploring how to reduce crop loss by P maidis and the diseases they carry 7 11 Farmers should avoid using nitrogen fertilizers which have been shown to directly increase the success of P maidis 7 Unfortunately no natural plant resistance exists so entomologists are searching for a synthetic alternative 11 Recently scientists have introduced corn that possess a modified resistance gene that has demonstrated some success The genetically modified corn had decreased infection and transmission of MMV but did not affect the fitness of P maidis or the ability for the insect to be infected by MMV Instead the gene increased the plant s resistance to the virus which decreased the disease transmission rate 11 nbsp References edit a b c d e Ashmead W H 1890 The corn delphacid Delphax maidis Psyche A Journal of Entomology 5 167 168 321 324 doi 10 1155 1890 28515 a b c Metcalf Z P 1943 General Catalogue of the Hemiptera Facicle 4 Northampton MA George Banta Publishing Company a b c d e f g h Singh B U Seetharama N 2008 Host plant interactions of the corn planthopper Peregrinus maidis Ashim Homoptera Delphacidae in maize and sorghum agroecosystems Arthropod Plant Interactions 2 3 163 196 doi 10 1007 s11829 007 9026 z S2CID 6934442 a b Noda H Nakashima N 1995 Non pathogenic reoviruses of leafhoppers and planthoppers Virology 6 2 109 116 doi 10 1006 smvy 1995 0014 Tsai J H Wilson S W Faan H C 1986 Peregrinus maidis Homoptera Delphacidae from southern China Journal of the New York Entomological Society 94 442 443 a b c Tsai J H 1996 Development and oviposition of Peregrinus maidis Homoptera Delphacidae on various host plants Florida Entomologist 79 1 19 26 doi 10 2307 3495750 JSTOR 3495750 a b c d Wang J J Tsai J H Broschat T K 2006 Effect of nitrogen fertilizer of corn on the development survivorship fecundity and body weight of Peregrinus maidis Hom Delphacidae Journal of Applied Entomology 130 20 25 doi 10 1111 j 1439 0418 2005 01030 x S2CID 83908987 a b Tsai J H Wilson S W 1986 Biology of Peregrinus maidis with descriptions of immature stages Homoptera Delphacidae Annals of the Entomological Society of America 79 3 395 401 doi 10 1093 aesa 79 3 395 a b c d Higashi C H V Bressan A 2013 Infection rates and comparative population dynamics of Peregrinus maidis Hemiptera Delphacidae on corn plants with and without symptoms of maize mosaic virus Rhabdoviridae Nucleorhabdovirus infection Environmental Entomology 42 5 949 956 doi 10 1603 en12321 PMID 24331606 Brewbaker J L 1979 Diseases of maize in the wet lowland tropics and the collapse of the classic Maya civilization Society for Economic Botany 33 2 101 118 doi 10 1007 bf02858277 S2CID 186228505 a b c Higashi C H V Brewbaker J L Bressan A 2013 Influence of the corn resistance gene Mv on the fitness of Peregrinus maidis Hemiptera Delphacidae and on the transmission of maize mosaic virus Rhabdoviridae Nucleorhabdovirus Journal of Economic Entomology 106 4 1878 1886 doi 10 1603 ec12497 PMID 24020306 Retrieved from https en wikipedia org w index php title Peregrinus maidis amp oldid 1177883783, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.