fbpx
Wikipedia

Welding defect

In metalworking, a welding defect is any flaw that compromises the usefulness of a weldment. There is a great variety of welding defects. Welding imperfections are classified according to ISO 6520,[1] while their acceptable limits are specified in ISO 5817[2] and ISO 10042.[3]

Major causes

According to the American Society of Mechanical Engineers (ASME), causes of welding defects can be broken down as follows: 41% poor process conditions, 32% operator error, 12% wrong technique, 10% incorrect consumables and 5% bad weld grooves.[4]

Hydrogen embrittlement

Residual stresses

The magnitude of stress that can be formed from welding can be roughly calculated using:[5]

 

Where   is Young's modulus,   is the coefficient of thermal expansion, and   is the temperature change. For steel this calculates out to be approximately 3.5 GPa (510,000 psi).

Types

Cracks

 

Defects related to fracture.

Arc strikes

An Arc Strike is a discontinuity resulting from an arc, consisting of any localized remelted metal, heat affected metal, or change in the surface profile of any metal object.[6] Arc Strikes result in localized base metal heating and very rapid cooling. When located outside the intended weld area, they may result on hardening or localized cracking, and may serve as potential sites for initiating fracture. In Statically Loaded Structures, arc strikes need not be removed, unless such removal is required in contract documents. However, in Cyclically Loaded Structures, arc strikes may result in stress concentrations that would be detrimental to the serviceability of such structures and should be ground smooth and visually inspected for cracks.[7]

Cold cracking

Cold cracking which also known as delayed cracking, Hydrogen Assisted Cracking (HAC) or Hydrogen Induced Cracking (HIC) is type of defect that often develop after solidification of the weld, when the temperature starts to drop from about 190 °C (375 °F) but the phenomenon often arises at room temperature, and even more, and it can take up to 24 hours after complete cooling.[8] That is why some code require testing on welding work object 48 hours after the welding process. This type of crack usually observed in HAZ especially for carbon steel which has limited hardenability. However, for other alloy steel with high degree of hardenability, cold cracking could occurs in both weld metal and HAZ. Also this crack mechanism could propagate both between grains and through grains.[9] Factors that can contribute to the occurrence of cold crack are:[10]

  • The amount of hydrogen (H2) dissolved in weld metal

Dissolved hydrogen in weld metal is related to hydrogen embrittlement. Hydrogen content can be reduced by using hydrogen free consumable. In the case of welding filler (especially SMAW) has been exposed to the atmosphere, proper baking of electrode is recommended to eliminate moisture from flux. Preheating of base material also one of the techniques to relesare hydrogen from working object.

  • Residual tensile stress

Residual tensile stress could cause crack to propagate without any applied stress. To counter this, preheating of base metal could reduce the different thermal expansion coefficient which will affected cooling rate of weld metal. The utilizing of low yield streng filler metal also preferable to combat this, because the magnitude of residual stresses can be equal to σyield of the metal. Therefore, the use of austenitic stainless steel or nickel base filler could be considered due to its ductile nature. Also, Post Weld Heat Treatment (PWHT) will release any residual stresses on weld joint.

  • Hardness of weld metal and Heat Affected Zone (HAZ)

Hardness is correlated with brittleness of material. To reduce excessive hardness, preheat and pwht method can be applied to working object. The hardness value that has lower cracking tendency is below 350 VHN[10]

  • Structure of weld metal and HAZ

Cold cracking in steels and is associated with the formation of martensite as the weld cools. Martensite has a very low solubility of hydrogen which can make it trapped inside solid. Slower cooling rates during welding process is preferable to avoid martensite structure to form. In addition, slow cooling rate means longer time at an elevated temperature, which allows more hydrogen to “escape". Slower cooling rate is achieved by using high heat input and maintain it during welding process.

Alloy composition of base metal also has important role to determine the likelihood for cold crack to occur which relates to hardenability of materials. With high cooling rates, the risk of forming a hard brittle structure in the weld metal and HAZ is more possible. The hardenability of a material is usually expressed in terms of its carbon content or, when other elements are taken into account, its carbon equivalent (CE) value.

CEIIW = C + Mn/6 + (Cr + Mo + V)/5 + (Ni + Cu)/15[8]

(Where the concentration is given in weight percent)

Then, depending on their carbon content with additional element resulting in carbon equivalent index, steels can be classified into three zones from the standpoint of their cold cracking behavior as shown in Graville diagram.[11]

Zone I includes low carbon steels and low-alloy steels which have a carbon content lower than 0.10%. Materials that lies in this region considered as not crack sensitive.

Zone II includes most carbon steels with a carbon content above 0.10%. Steels of this zone is can be prone to cold crack. Then it is preferable to use low hydrogen filler and slow the cooling rate during welding process.

Zone III includes alloy steels with a carbon content above 0.10% and high carbon equivalent index. Material in this zone is considered hard to weld because the formation of martensitic is unavoidable even under controlled cooling. Therefore, additional procedure like preheat and PWHT is needed during welding process of this particular material.

Crater crack

Crater cracks occur when a welding arc is broken, a crater will form if adequate molten metal is available to fill the arc cavity.[12]

Hat crack

 

Hat cracks get their name from the shape of the cross-section of the weld, because the weld flares out at the face of the weld. The crack starts at the fusion line and extends up through the weld. They are usually caused by too much voltage or not enough speed.[12]

Hot cracking

Hot cracking, also known as solidification cracking, can occur with all metals, and happens in the fusion zone of a weld. To diminish the probability of this type of cracking, excess material restraint should be avoided, and a proper filler material should be utilized.[13] Other causes include too high welding current, poor joint design that does not diffuse heat, impurities (such as sulfur and phosphorus), preheating, speed is too fast, and long arcs.[14]

Underbead crack

An underbead crack, also known as a heat-affected zone (HAZ) crack,[15] is a crack that forms a short distance away from the fusion line; it occurs in low alloy and high alloy steel. The exact causes of this type of crack are not completely understood, but it is known that dissolved hydrogen must be present. The other factor that affects this type of crack is internal stresses resulting from: unequal contraction between the base metal and the weld metal, restraint of the base metal, stresses from the formation of martensite, and stresses from the precipitation of hydrogen out of the metal.[16]

Longitudinal crack

Longitudinal cracks run along the length of a weld bead. There are three types: check cracks, root cracks, and full centerline cracks. Check cracks are visible from the surface and extend partially into the weld. They are usually caused by high shrinkage stresses, especially on final passes, or by a hot cracking mechanism. Root cracks start at the root and extent part way into the weld. They are the most common type of longitudinal crack because of the small size of the first weld bead. If this type of crack is not addressed then it will usually propagate into subsequent weld passes, which is how full cracks (a crack from the root to the surface) usually form.[12]

Reheat cracking

Reheat cracking is a type of cracking that occurs in HSLA steels, particularly chromium, molybdenum and vanadium steels, during postheating. The phenomenon has also been observed in austenitic stainless steels. It is caused by the poor creep ductility of the heat affected zone. Any existing defects or notches aggravate crack formation. Things that help prevent reheat cracking include heat treating first with a low temperature soak and then with a rapid heating to high temperatures, grinding or peening the weld toes, and using a two layer welding technique to refine the HAZ grain structure.[17][18]

Root and toe cracks

A root crack is the crack formed by the short bead at the root(of edge preparation) beginning of the welding, low current at the beginning and due to improper filler material used for welding. The major reason for these types of cracks is hydrogen embrittlement. These types of defects can be eliminated using high current at the starting and proper filler material. Toe crack occurs due to moisture content present in the welded area, it is a part of the surface crack so can be easily detected. Preheating and proper joint formation is a must for eliminating these types of defects.

Transverse crack

Transverse cracks are perpendicular to the direction of the weld. These are generally the result of longitudinal shrinkage stresses acting on weld metal of low ductility. Crater cracks occur in the crater when the welding arc is terminated prematurely. Crater cracks are normally shallow, hot cracks usually forming single or star cracks. These cracks usually start at a crater pipe and extend longitudinal in the crater. However, they may propagate into longitudinal weld cracks in the rest of the weld.

Distortion

Welding methods that involve the melting of metal at the site of the joint necessarily are prone to shrinkage as the heated metal cools. Shrinkage then introduces residual stresses and distortion. Distortion can pose a major problem, since the final product is not the desired shape. To alleviate certain types of distortion the workpieces can be offset so that after welding the product is the correct shape.[19] The following pictures describe various types of welding distortion:[20]

Gas inclusion

Gas inclusions is a wide variety of defects that includes porosity, blow holes, and pipes (or wormholes). The underlying cause for gas inclusions is the entrapment of gas within the solidified weld. Gas formation can be from any of the following causes- high sulphur content in the workpiece or electrode, excessive moisture from the electrode or workpiece, too short of an arc, or wrong welding current or polarity.[15]

Inclusions

There are two types of inclusions: linear inclusions and rounded inclusions. Inclusions can be either isolated or cumulative. Linear inclusions occur when there is slag or flux in the weld. Slag forms from the use of a flux, which is why this type of defect usually occurs in welding processes that use flux, such as shielded metal arc welding, flux-cored arc welding, and submerged arc welding, but it can also occur in gas metal arc welding. This defect usually occurs in welds that require multiple passes and there is poor overlap between the welds. The poor overlap does not allow the slag from the previous weld to melt out and rise to the top of the new weld bead. It can also occur if the previous weld left an undercut or an uneven surface profile. To prevent slag inclusions the slag should be cleaned from the weld bead between passes via grinding, wire brushing, or chipping.[21]

Isolated inclusions occur when rust or mill scale is present on the base metal.[22]

Lack of fusion and incomplete penetration

Lack of fusion is the poor adhesion of the weld bead to the base metal; incomplete penetration is a weld bead that does not start at the root of the weld groove. Incomplete penetration forms channels and crevices in the root of the weld which can cause serious issues in pipes because corrosive substances can settle in these areas. These types of defects occur when the welding procedures are not adhered to; possible causes include the current setting, arc length, electrode angle, and electrode manipulation.[23] Defects can be varied and classified as critical or non critical. Porosity (bubbles) in the weld are usually acceptable to a certain degree. Slag inclusions, undercut, and cracks are usually unacceptable. Some porosity, cracks, and slag inclusions are visible and may not need further inspection to require their removal. Small defects such as these can be verified by Liquid Penetrant Testing (Dye check). Slag inclusions and cracks just below the surface can be discovered by Magnetic Particle Inspection. Deeper defects can be detected using the Radiographic (X-rays) and/or Ultrasound (sound waves) testing techniques.

Lamellar tearing

Lamellar tearing is a type of welding defect that occurs in rolled steel plates that have been welded together due to shrinkage forces perpendicular to the faces of the plates.[24] Since the 1970s, changes in manufacturing practices limiting the amount of sulfur used have greatly reduced the incidence of this problem.[25]

Lamellar tearing is caused mainly by sulfurous inclusions in the material. Other causes include an excess of hydrogen in the alloy. This defect can be mitigated by keeping the amount of sulfur in the steel alloy below 0.005%.[25] Adding rare earth elements, zirconium, or calcium to the alloy to control the configuration of sulfur inclusions throughout the metal lattice can also mitigate the problem.[26]

Modifying the construction process to use cast or forged parts in place of welded parts can eliminate this problem, as Lamellar tearing only occurs in welded parts.[24]

Undercut

 

Undercutting is when the weld reduces the cross-sectional thickness of the base metal and which reduces the strength of the weld and workpieces. One reason for this type of defect is excessive current, causing the edges of the joint to melt and drain into the weld; this leaves a drain-like impression along the length of the weld. Another reason is if a poor technique is used that does not deposit enough filler metal along the edges of the weld. A third reason is using an incorrect filler metal, because it will create greater temperature gradients between the center of the weld and the edges. Other causes include too small of an electrode angle, a dampened electrode, excessive arc length, and slow speed.[27]

References

  1. ^ BS EN ISO 6520-1: "Welding and allied processes — Classification of geometric imperfections in metallic materials — Part 1: Fusion welding"(2007)
  2. ^ BS EN ISO 5817: "Welding — Fusion-welded joints in steel, nickel, titanium and their alloys (beam welding excluded) — Quality levels for imperfections" (2007)
  3. ^ BS EN ISO 10042: "Welding. Arc-welded joints in aluminium and its alloys. Quality levels for imperfections" (2005)
  4. ^ Matthews, Clifford (2001), ASME engineer's data book, ASME Press, p. 211, ISBN 978-0-7918-0155-0.
  5. ^ Bull, Steve (2000-03-16), Magnitude of stresses generated, University of Newcastle upon Tyne, from the original on 2009-04-16, retrieved 2009-12-06.
  6. ^ AWS A3.0: 2020 - Standard Welding Terms and Definitions
  7. ^ aisc.org/steel-solutions-center/engineering-faqs/8.5.-repairs
  8. ^ a b Cold Cracking of Weld (PDF).
  9. ^ Pluvinage, Guy; Capelle, Julien; Schmitt, Christian (2016-01-01), Makhlouf, Abdel Salam Hamdy; Aliofkhazraei, Mahmood (eds.), "Chapter 3 - Methods for assessing defects leading to gas pipe failure", Handbook of Materials Failure Analysis with Case Studies from the Oil and Gas Industry, Butterworth-Heinemann, pp. 55–89, doi:10.1016/b978-0-08-100117-2.00003-0, ISBN 978-0-08-100117-2, retrieved 2022-05-21
  10. ^ a b Lec 40 - Cracking of Welded Joints II: Cold Cracks, retrieved 2022-05-21
  11. ^ Kurji, R.; Coniglio, N. (2014-11-14). "Towards the establishment of weldability test standards for hydrogen-assisted cold cracking". The International Journal of Advanced Manufacturing Technology. 77 (9–12): 1581–1597. doi:10.1007/s00170-014-6555-3. ISSN 0268-3768. S2CID 253678716.
  12. ^ a b c Raj, Jayakumar & Thavasimuthu 2002, p. 128.
  13. ^ Cary & Helzer 2005, pp. 404–405.
  14. ^ Bull, Steve (2000-03-16), Factors promoting hot cracking, University of Newcastle upon Tyne, from the original on 2009-04-16, retrieved 2009-12-06.
  15. ^ a b Raj, Jayakumar & Thavasimuthu 2002, p. 126.
  16. ^ Rampaul 2003, p. 208.
  17. ^ Bull, Steve (2000-03-16), Reheat cracking, University of Newcastle upon Tyne, from the original on 2009-04-16, retrieved 2009-12-06.
  18. ^ Bull, Steve (2000-03-16), Reheat cracking, University of Newcastle upon Tyne, from the original on 2009-04-16, retrieved 2009-12-06.
  19. ^ Weman 2003, pp. 7–8.
  20. ^ Bull, Steve (2000-03-16), Welding Faults and Defects, University of Newcastle upon Tyne, from the original on 2009-04-16, retrieved 2009-12-06.
  21. ^ , archived from the original on 2009-12-05, retrieved 2009-12-05.
  22. ^ Bull, Steve (2000-03-16), Welding Faults and Defects, University of Newcastle upon Tyne, from the original on 2009-04-16.
  23. ^ Rampaul 2003, p. 216.
  24. ^ a b Bull, Steve (2000-03-16), Welding Faults and Defects, University of Newcastle upon Tyne, from the original on 2009-04-16.
  25. ^ a b Still, J. R., Understanding Hydrogen Failures, retrieved 2009-12-03.
  26. ^ Ginzburg, Vladimir B.; Ballas, Robert (2000), Flat rolling fundamentals, CRC Press, p. 142, ISBN 978-0-8247-8894-0.
  27. ^ Rampaul 2003, pp. 211–212.

Bibliography

  • Cary, Howard B.; Helzer, Scott C. (2005), Modern Welding Technology, Upper Saddle River, New Jersey: Pearson Education, ISBN 0-13-113029-3.
  • Raj, Baldev; Jayakumar, T.; Thavasimuthu, M. (2002), Practical non-destructive testing (2nd ed.), Woodhead Publishing, ISBN 978-1-85573-600-9.
  • Rampaul, Hoobasar (2003), Pipe welding procedures (2nd ed.), Industrial Press, ISBN 978-0-8311-3141-8.
  • Moreno, Preto (2013), Welding Defects (1st ed.), Aracne, ISBN 978-88-548-5854-1.
  • Weman, Klas (2003), Welding processes handbook, New York, NY: CRC Press, ISBN 0-8493-1773-8.

External links

  • Understanding Hydrogen Failures
  • Radiograph Interpretation - Welds

welding, defect, metalworking, welding, defect, flaw, that, compromises, usefulness, weldment, there, great, variety, welding, defects, welding, imperfections, classified, according, 6520, while, their, acceptable, limits, specified, 5817, 10042, contents, maj. In metalworking a welding defect is any flaw that compromises the usefulness of a weldment There is a great variety of welding defects Welding imperfections are classified according to ISO 6520 1 while their acceptable limits are specified in ISO 5817 2 and ISO 10042 3 Contents 1 Major causes 1 1 Hydrogen embrittlement 1 2 Residual stresses 2 Types 2 1 Cracks 2 1 1 Arc strikes 2 1 2 Cold cracking 2 1 3 Crater crack 2 1 4 Hat crack 2 1 5 Hot cracking 2 1 6 Underbead crack 2 1 7 Longitudinal crack 2 1 8 Reheat cracking 2 1 9 Root and toe cracks 2 1 10 Transverse crack 2 2 Distortion 2 3 Gas inclusion 2 4 Inclusions 2 5 Lack of fusion and incomplete penetration 2 6 Lamellar tearing 2 7 Undercut 3 References 3 1 Bibliography 4 External linksMajor causes EditAccording to the American Society of Mechanical Engineers ASME causes of welding defects can be broken down as follows 41 poor process conditions 32 operator error 12 wrong technique 10 incorrect consumables and 5 bad weld grooves 4 Hydrogen embrittlement Edit Main article Hydrogen embrittlement Residual stresses Edit Main article Residual stress The magnitude of stress that can be formed from welding can be roughly calculated using 5 E a D T displaystyle E alpha Delta T Where E displaystyle E is Young s modulus a displaystyle alpha is the coefficient of thermal expansion and D T displaystyle Delta T is the temperature change For steel this calculates out to be approximately 3 5 GPa 510 000 psi Types EditCracks Edit Defects related to fracture Arc strikes Edit An Arc Strike is a discontinuity resulting from an arc consisting of any localized remelted metal heat affected metal or change in the surface profile of any metal object 6 Arc Strikes result in localized base metal heating and very rapid cooling When located outside the intended weld area they may result on hardening or localized cracking and may serve as potential sites for initiating fracture In Statically Loaded Structures arc strikes need not be removed unless such removal is required in contract documents However in Cyclically Loaded Structures arc strikes may result in stress concentrations that would be detrimental to the serviceability of such structures and should be ground smooth and visually inspected for cracks 7 Cold cracking Edit This section may require copy editing August 2022 Learn how and when to remove this template message Cold cracking which also known as delayed cracking Hydrogen Assisted Cracking HAC or Hydrogen Induced Cracking HIC is type of defect that often develop after solidification of the weld when the temperature starts to drop from about 190 C 375 F but the phenomenon often arises at room temperature and even more and it can take up to 24 hours after complete cooling 8 That is why some code require testing on welding work object 48 hours after the welding process This type of crack usually observed in HAZ especially for carbon steel which has limited hardenability However for other alloy steel with high degree of hardenability cold cracking could occurs in both weld metal and HAZ Also this crack mechanism could propagate both between grains and through grains 9 Factors that can contribute to the occurrence of cold crack are 10 The amount of hydrogen H2 dissolved in weld metalDissolved hydrogen in weld metal is related to hydrogen embrittlement Hydrogen content can be reduced by using hydrogen free consumable In the case of welding filler especially SMAW has been exposed to the atmosphere proper baking of electrode is recommended to eliminate moisture from flux Preheating of base material also one of the techniques to relesare hydrogen from working object Residual tensile stressResidual tensile stress could cause crack to propagate without any applied stress To counter this preheating of base metal could reduce the different thermal expansion coefficient which will affected cooling rate of weld metal The utilizing of low yield streng filler metal also preferable to combat this because the magnitude of residual stresses can be equal to syield of the metal Therefore the use of austenitic stainless steel or nickel base filler could be considered due to its ductile nature Also Post Weld Heat Treatment PWHT will release any residual stresses on weld joint Hardness of weld metal and Heat Affected Zone HAZ Hardness is correlated with brittleness of material To reduce excessive hardness preheat and pwht method can be applied to working object The hardness value that has lower cracking tendency is below 350 VHN 10 Structure of weld metal and HAZCold cracking in steels and is associated with the formation of martensite as the weld cools Martensite has a very low solubility of hydrogen which can make it trapped inside solid Slower cooling rates during welding process is preferable to avoid martensite structure to form In addition slow cooling rate means longer time at an elevated temperature which allows more hydrogen to escape Slower cooling rate is achieved by using high heat input and maintain it during welding process Alloy composition of base metal also has important role to determine the likelihood for cold crack to occur which relates to hardenability of materials With high cooling rates the risk of forming a hard brittle structure in the weld metal and HAZ is more possible The hardenability of a material is usually expressed in terms of its carbon content or when other elements are taken into account its carbon equivalent CE value CEIIW C Mn 6 Cr Mo V 5 Ni Cu 15 8 Where the concentration is given in weight percent Then depending on their carbon content with additional element resulting in carbon equivalent index steels can be classified into three zones from the standpoint of their cold cracking behavior as shown in Graville diagram 11 Zone I includes low carbon steels and low alloy steels which have a carbon content lower than 0 10 Materials that lies in this region considered as not crack sensitive Zone II includes most carbon steels with a carbon content above 0 10 Steels of this zone is can be prone to cold crack Then it is preferable to use low hydrogen filler and slow the cooling rate during welding process Zone III includes alloy steels with a carbon content above 0 10 and high carbon equivalent index Material in this zone is considered hard to weld because the formation of martensitic is unavoidable even under controlled cooling Therefore additional procedure like preheat and PWHT is needed during welding process of this particular material Crater crack Edit Crater cracks occur when a welding arc is broken a crater will form if adequate molten metal is available to fill the arc cavity 12 Hat crack Edit Hat cracks get their name from the shape of the cross section of the weld because the weld flares out at the face of the weld The crack starts at the fusion line and extends up through the weld They are usually caused by too much voltage or not enough speed 12 Hot cracking Edit Hot cracking also known as solidification cracking can occur with all metals and happens in the fusion zone of a weld To diminish the probability of this type of cracking excess material restraint should be avoided and a proper filler material should be utilized 13 Other causes include too high welding current poor joint design that does not diffuse heat impurities such as sulfur and phosphorus preheating speed is too fast and long arcs 14 Underbead crack Edit An underbead crack also known as a heat affected zone HAZ crack 15 is a crack that forms a short distance away from the fusion line it occurs in low alloy and high alloy steel The exact causes of this type of crack are not completely understood but it is known that dissolved hydrogen must be present The other factor that affects this type of crack is internal stresses resulting from unequal contraction between the base metal and the weld metal restraint of the base metal stresses from the formation of martensite and stresses from the precipitation of hydrogen out of the metal 16 Longitudinal crack Edit Longitudinal cracks run along the length of a weld bead There are three types check cracks root cracks and full centerline cracks Check cracks are visible from the surface and extend partially into the weld They are usually caused by high shrinkage stresses especially on final passes or by a hot cracking mechanism Root cracks start at the root and extent part way into the weld They are the most common type of longitudinal crack because of the small size of the first weld bead If this type of crack is not addressed then it will usually propagate into subsequent weld passes which is how full cracks a crack from the root to the surface usually form 12 Reheat cracking Edit Reheat cracking is a type of cracking that occurs in HSLA steels particularly chromium molybdenum and vanadium steels during postheating The phenomenon has also been observed in austenitic stainless steels It is caused by the poor creep ductility of the heat affected zone Any existing defects or notches aggravate crack formation Things that help prevent reheat cracking include heat treating first with a low temperature soak and then with a rapid heating to high temperatures grinding or peening the weld toes and using a two layer welding technique to refine the HAZ grain structure 17 18 Root and toe cracks Edit A root crack is the crack formed by the short bead at the root of edge preparation beginning of the welding low current at the beginning and due to improper filler material used for welding The major reason for these types of cracks is hydrogen embrittlement These types of defects can be eliminated using high current at the starting and proper filler material Toe crack occurs due to moisture content present in the welded area it is a part of the surface crack so can be easily detected Preheating and proper joint formation is a must for eliminating these types of defects Transverse crack Edit Transverse cracks are perpendicular to the direction of the weld These are generally the result of longitudinal shrinkage stresses acting on weld metal of low ductility Crater cracks occur in the crater when the welding arc is terminated prematurely Crater cracks are normally shallow hot cracks usually forming single or star cracks These cracks usually start at a crater pipe and extend longitudinal in the crater However they may propagate into longitudinal weld cracks in the rest of the weld Distortion Edit Welding methods that involve the melting of metal at the site of the joint necessarily are prone to shrinkage as the heated metal cools Shrinkage then introduces residual stresses and distortion Distortion can pose a major problem since the final product is not the desired shape To alleviate certain types of distortion the workpieces can be offset so that after welding the product is the correct shape 19 The following pictures describe various types of welding distortion 20 Transverse shrinkage Angular distortion Longitudinal shrinkage Fillet distortion Neutral axis distortionGas inclusion Edit Gas inclusions is a wide variety of defects that includes porosity blow holes and pipes or wormholes The underlying cause for gas inclusions is the entrapment of gas within the solidified weld Gas formation can be from any of the following causes high sulphur content in the workpiece or electrode excessive moisture from the electrode or workpiece too short of an arc or wrong welding current or polarity 15 Inclusions Edit There are two types of inclusions linear inclusions and rounded inclusions Inclusions can be either isolated or cumulative Linear inclusions occur when there is slag or flux in the weld Slag forms from the use of a flux which is why this type of defect usually occurs in welding processes that use flux such as shielded metal arc welding flux cored arc welding and submerged arc welding but it can also occur in gas metal arc welding This defect usually occurs in welds that require multiple passes and there is poor overlap between the welds The poor overlap does not allow the slag from the previous weld to melt out and rise to the top of the new weld bead It can also occur if the previous weld left an undercut or an uneven surface profile To prevent slag inclusions the slag should be cleaned from the weld bead between passes via grinding wire brushing or chipping 21 Isolated inclusions occur when rust or mill scale is present on the base metal 22 Lack of fusion and incomplete penetration Edit Lack of fusion is the poor adhesion of the weld bead to the base metal incomplete penetration is a weld bead that does not start at the root of the weld groove Incomplete penetration forms channels and crevices in the root of the weld which can cause serious issues in pipes because corrosive substances can settle in these areas These types of defects occur when the welding procedures are not adhered to possible causes include the current setting arc length electrode angle and electrode manipulation 23 Defects can be varied and classified as critical or non critical Porosity bubbles in the weld are usually acceptable to a certain degree Slag inclusions undercut and cracks are usually unacceptable Some porosity cracks and slag inclusions are visible and may not need further inspection to require their removal Small defects such as these can be verified by Liquid Penetrant Testing Dye check Slag inclusions and cracks just below the surface can be discovered by Magnetic Particle Inspection Deeper defects can be detected using the Radiographic X rays and or Ultrasound sound waves testing techniques Lamellar tearing Edit Lamellar tearing is a type of welding defect that occurs in rolled steel plates that have been welded together due to shrinkage forces perpendicular to the faces of the plates 24 Since the 1970s changes in manufacturing practices limiting the amount of sulfur used have greatly reduced the incidence of this problem 25 Lamellar tearing is caused mainly by sulfurous inclusions in the material Other causes include an excess of hydrogen in the alloy This defect can be mitigated by keeping the amount of sulfur in the steel alloy below 0 005 25 Adding rare earth elements zirconium or calcium to the alloy to control the configuration of sulfur inclusions throughout the metal lattice can also mitigate the problem 26 Modifying the construction process to use cast or forged parts in place of welded parts can eliminate this problem as Lamellar tearing only occurs in welded parts 24 Undercut Edit Undercutting is when the weld reduces the cross sectional thickness of the base metal and which reduces the strength of the weld and workpieces One reason for this type of defect is excessive current causing the edges of the joint to melt and drain into the weld this leaves a drain like impression along the length of the weld Another reason is if a poor technique is used that does not deposit enough filler metal along the edges of the weld A third reason is using an incorrect filler metal because it will create greater temperature gradients between the center of the weld and the edges Other causes include too small of an electrode angle a dampened electrode excessive arc length and slow speed 27 References Edit BS EN ISO 6520 1 Welding and allied processes Classification of geometric imperfections in metallic materials Part 1 Fusion welding 2007 BS EN ISO 5817 Welding Fusion welded joints in steel nickel titanium and their alloys beam welding excluded Quality levels for imperfections 2007 BS EN ISO 10042 Welding Arc welded joints in aluminium and its alloys Quality levels for imperfections 2005 Matthews Clifford 2001 ASME engineer s data book ASME Press p 211 ISBN 978 0 7918 0155 0 Bull Steve 2000 03 16 Magnitude of stresses generated University of Newcastle upon Tyne archived from the original on 2009 04 16 retrieved 2009 12 06 AWS A3 0 2020 Standard Welding Terms and Definitions aisc org steel solutions center engineering faqs 8 5 repairs a b Cold Cracking of Weld PDF Pluvinage Guy Capelle Julien Schmitt Christian 2016 01 01 Makhlouf Abdel Salam Hamdy Aliofkhazraei Mahmood eds Chapter 3 Methods for assessing defects leading to gas pipe failure Handbook of Materials Failure Analysis with Case Studies from the Oil and Gas Industry Butterworth Heinemann pp 55 89 doi 10 1016 b978 0 08 100117 2 00003 0 ISBN 978 0 08 100117 2 retrieved 2022 05 21 a b Lec 40 Cracking of Welded Joints II Cold Cracks retrieved 2022 05 21 Kurji R Coniglio N 2014 11 14 Towards the establishment of weldability test standards for hydrogen assisted cold cracking The International Journal of Advanced Manufacturing Technology 77 9 12 1581 1597 doi 10 1007 s00170 014 6555 3 ISSN 0268 3768 S2CID 253678716 a b c Raj Jayakumar amp Thavasimuthu 2002 p 128 Cary amp Helzer 2005 pp 404 405 Bull Steve 2000 03 16 Factors promoting hot cracking University of Newcastle upon Tyne archived from the original on 2009 04 16 retrieved 2009 12 06 a b Raj Jayakumar amp Thavasimuthu 2002 p 126 Rampaul 2003 p 208 Bull Steve 2000 03 16 Reheat cracking University of Newcastle upon Tyne archived from the original on 2009 04 16 retrieved 2009 12 06 Bull Steve 2000 03 16 Reheat cracking University of Newcastle upon Tyne archived from the original on 2009 04 16 retrieved 2009 12 06 Weman 2003 pp 7 8 Bull Steve 2000 03 16 Welding Faults and Defects University of Newcastle upon Tyne archived from the original on 2009 04 16 retrieved 2009 12 06 Defects imperfections in welds slag inclusions archived from the original on 2009 12 05 retrieved 2009 12 05 Bull Steve 2000 03 16 Welding Faults and Defects University of Newcastle upon Tyne archived from the original on 2009 04 16 Rampaul 2003 p 216 a b Bull Steve 2000 03 16 Welding Faults and Defects University of Newcastle upon Tyne archived from the original on 2009 04 16 a b Still J R Understanding Hydrogen Failures retrieved 2009 12 03 Ginzburg Vladimir B Ballas Robert 2000 Flat rolling fundamentals CRC Press p 142 ISBN 978 0 8247 8894 0 Rampaul 2003 pp 211 212 Bibliography Edit Cary Howard B Helzer Scott C 2005 Modern Welding Technology Upper Saddle River New Jersey Pearson Education ISBN 0 13 113029 3 Raj Baldev Jayakumar T Thavasimuthu M 2002 Practical non destructive testing 2nd ed Woodhead Publishing ISBN 978 1 85573 600 9 Rampaul Hoobasar 2003 Pipe welding procedures 2nd ed Industrial Press ISBN 978 0 8311 3141 8 Moreno Preto 2013 Welding Defects 1st ed Aracne ISBN 978 88 548 5854 1 Weman Klas 2003 Welding processes handbook New York NY CRC Press ISBN 0 8493 1773 8 External links EditUnderstanding Hydrogen Failures Radiograph Interpretation Welds Retrieved from https en wikipedia org w index php title Welding defect amp oldid 1151937953 Cold cracking, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.