fbpx
Wikipedia

Crystallite

A crystallite is a small or even microscopic crystal which forms, for example, during the cooling of many materials. Crystallites are also referred to as grains.

Polycrystalline structures composed of crystallites. Clockwise from top left:
a) malleable iron
b) electrical steel without coating
c) solar cells made of multicrystalline silicon
d) galvanized surface of zinc
e) micrograph of acid etched metal highlighting grain boundaries

Bacillite is a type of crystallite.[1] It is rodlike with parallel longulites.[2]

Structure

The orientation of crystallites can be random with no preferred direction, called random texture, or directed, possibly due to growth and processing conditions. While the structure of a (single) crystal is highly ordered and its lattice is continuous and unbroken, amorphous materials, such as glass and many polymers, are non-crystalline and do not display any structures, as their constituents are not arranged in an ordered manner. Polycrystalline structures and paracrystalline phases are in-between these two extremes. Polycrystalline materials, or polycrystals, are solids that are composed of many crystallites of varying size and orientation. Most materials are polycrystalline, made of a large number crystallites held together by thin layers of amorphous solid. Most inorganic solids are polycrystalline, including all common metals, many ceramics, rocks, and ice.

The areas where crystallites meet are known as grain boundaries.

 
Different degrees of ordered structures: a monocrystalline crystal, polycrystalline structure, and amorphous or non-crystalline solid

Size

 
Transmission electron microscopy (TEM) bright field image of a grain in a permalloy thin film.

Crystallite size in monodisperse microstructures is usually approximated from X-ray diffraction patterns and grain size by other experimental techniques like transmission electron microscopy. Solid objects large enough to see and handle are rarely composed of a single crystal, except for a few cases (gems, silicon single crystals for the electronics industry, certain types of fiber, single crystals of a nickel-based superalloy for turbojet engines, and some ice crystals which can exceed 0.5 meters in diameter).[3] The crystallite size can vary from a few nanometers to several millimeters.

Effects on material physical properties

The extent to which a solid is crystalline (crystallinity) has important effects on its physical properties.[4] Sulfur, while usually polycrystalline, may also occur in other allotropic forms with completely different properties.[5] Although crystallites are referred to as grains, powder grains are different, as they can be composed of smaller polycrystalline grains themselves.[6] Generally, polycrystals cannot be superheated; they will melt promptly once they are brought to a high enough temperature. This is because grain boundaries are amorphous, and serve as nucleation points for the liquid phase. By contrast, if no solid nucleus is present as a liquid cools, it tends to become supercooled. Since this is undesirable for mechanical materials, alloy designers often take steps against it (by grain refinement).

 
Bronze bell with large crystallites on the inside

Material fractures can be either intergranular or a transgranular fracture. There is an ambiguity with powder grains: a powder grain can be made of several crystallites. Thus, the (powder) "grain size" found by laser granulometry can be different from the "grain size" (rather, crystallite size) found by X-ray diffraction (e.g. Scherrer method), by optical microscopy under polarised light, or by scanning electron microscopy (backscattered electrons).

If the individual crystallites are oriented completely at random, a large enough volume of polycrystalline material will be approximately isotropic. This property helps the simplifying assumptions of continuum mechanics to apply to real-world solids. However, most manufactured materials have some alignment to their crystallites, resulting in texture that must be taken into account for accurate predictions of their behavior and characteristics. When the crystallites are mostly ordered with just some random spread of orientations, one has a mosaic crystal. Abnormal grain growth, where a small number of crystallites are significantly larger than the mean crystallite size, is commonly observed in diverse polycrystalline materials, and results in mechanical and optical properties that diverge from similar materials having a monodisperse crystallite size distribution with a similar mean crystallite size.

Coarse grained rocks are formed very slowly, while fine grained rocks are formed quickly, on geological time scales. If a rock forms very quickly, such as the solidification of lava ejected from a volcano, there may be no crystals at all. This is how obsidian forms.

Grain boundaries

Grain boundaries are interfaces where crystals of different orientations meet. A grain boundary is a single-phase interface, with crystals on each side of the boundary being identical except in orientation. The term "crystallite boundary" is sometimes, though rarely, used. Grain boundary areas contain those atoms that have been perturbed from their original lattice sites, dislocations, and impurities that have migrated to the lower energy grain boundary.

Treating a grain boundary geometrically as an interface of a single crystal cut into two parts, one of which is rotated, we see that there are five variables required to define a grain boundary. The first two numbers come from the unit vector that specifies a rotation axis. The third number designates the angle of rotation of the grain. The final two numbers specify the plane of the grain boundary (or a unit vector that is normal to this plane).

Grain boundaries disrupt the motion of dislocations through a material. Dislocation propagation is impeded because of the stress field of the grain boundary defect region and the lack of slip planes and slip directions and overall alignment across the boundaries. Reducing grain size is therefore a common way to improve strength, often without any sacrifice in toughness because the smaller grains create more obstacles per unit area of slip plane. This crystallite size-strength relationship is given by the Hall–Petch relationship. The high interfacial energy and relatively weak bonding in grain boundaries makes them preferred sites for the onset of corrosion and for the precipitation of new phases from the solid.

Grain boundary migration plays an important role in many of the mechanisms of creep. Grain boundary migration occurs when a shear stress acts on the grain boundary plane and causes the grains to slide. This means that fine-grained materials actually have a poor resistance to creep relative to coarser grains, especially at high temperatures, because smaller grains contain more atoms in grain boundary sites. Grain boundaries also cause deformation in that they are sources and sinks of point defects. Voids in a material tend to gather in a grain boundary, and if this happens to a critical extent, the material could fracture.

During grain boundary migration, the rate determining step depends on the angle between two adjacent grains. In a small angle dislocation boundary, the migration rate depends on vacancy diffusion between dislocations. In a high angle dislocation boundary, this depends on the atom transport by single atom jumps from the shrinking to the growing grains.[7]

Grain boundaries are generally only a few nanometers wide. In common materials, crystallites are large enough that grain boundaries account for a small fraction of the material. However, very small grain sizes are achievable. In nanocrystalline solids, grain boundaries become a significant volume fraction of the material, with profound effects on such properties as diffusion and plasticity. In the limit of small crystallites, as the volume fraction of grain boundaries approaches 100%, the material ceases to have any crystalline character, and thus becomes an amorphous solid.

Grain boundaries are also present in magnetic domains in magnetic materials. A computer hard disk, for example, is made of a hard ferromagnetic material that contains regions of atoms whose magnetic moments can be realigned by an inductive head. The magnetization varies from region to region, and the misalignment between these regions forms boundaries that are key to data storage. The inductive head measures the orientation of the magnetic moments of these domain regions and reads out either a “1” or “0”. These bits are the data being read. Grain size is important in this technology because it limits the number of bits that can fit on one hard disk. The smaller the grain sizes, the more data that can be stored.

Because of the dangers of grain boundaries in certain materials such as superalloy turbine blades, great technological leaps were made to minimize as much as possible the effect of grain boundaries in the blades. The result was directional solidification processing in which grain boundaries were eliminated by producing columnar grain structures aligned parallel to the axis of the blade, since this is usually the direction of maximum tensile stress felt by a blade during its rotation in an airplane. The resulting turbine blades consisted of a single grain, improving reliability.

See also

Footnotes

  1. ^ "Bacillite | geology". Encyclopedia Britannica. Retrieved 2021-09-06.
  2. ^ Manutchehr-Danai, Mohsen (2013-03-09). Dictionary of Gems and Gemology. Springer Science & Business Media. p. 34. ISBN 978-3-662-04288-5.
  3. ^ J. R. Petit, R. Souchez, N. I. Barkov, V. Ya. Lipenkov, D. Raynaud, M. Stievenard, N. I. Vassiliev, V. Verbeke, and F. Vimeux (10 December 1999). "More Than 200 Meters of Lake Ice Above Subglacial Lake Vostok, Antarctica". Science. 286 (5447): 2138–41. doi:10.1126/science.286.5447.2138. PMID 10591641.{{cite journal}}: CS1 maint: uses authors parameter (link)
  4. ^ Purdue University Categories of Solids
  5. ^ C.Michael Hogan. 2011. Sulfur October 28, 2012, at the Wayback Machine. Encyclopedia of Earth, eds. A.Jorgensen and C.J.Cleveland, National Council for Science and the environment, Washington DC
  6. ^ (PDF). Archived from the original (PDF) on 2011-05-21. Retrieved 2014-10-27.
  7. ^ Doherty, R.D.; Hughes, D.A.; Humphreys, F.J.; Jonas, J.J.; Jensen, D.Juul; Kassner, M.E.; King, W.E.; McNelley, T.R.; McQueen, H.J.; Rollett, A.D. (1997). "Current issues in recrystallization: A review". Materials Science and Engineering: A. 238 (2): 219–274. doi:10.1016/S0921-5093(97)00424-3. S2CID 17885466.

References

  • Allen, Samuel and Thomas, Edwin. The Structure of Materials. New York: John Wiley & Sons, Inc. 1999.
  • Jiles, David. Introduction to Magnetism and Magnetic Materials. London: Chapman & Hall/CRC, 1998.

Further reading

crystallite, crystallite, small, even, microscopic, crystal, which, forms, example, during, cooling, many, materials, also, referred, grains, polycrystalline, structures, composed, crystallites, clockwise, from, left, malleable, ironb, electrical, steel, witho. A crystallite is a small or even microscopic crystal which forms for example during the cooling of many materials Crystallites are also referred to as grains Polycrystalline structures composed of crystallites Clockwise from top left a malleable ironb electrical steel without coatingc solar cells made of multicrystalline silicond galvanized surface of zince micrograph of acid etched metal highlighting grain boundaries Bacillite is a type of crystallite 1 It is rodlike with parallel longulites 2 Contents 1 Structure 1 1 Size 1 2 Effects on material physical properties 2 Grain boundaries 3 See also 4 Footnotes 5 References 6 Further readingStructure EditThe orientation of crystallites can be random with no preferred direction called random texture or directed possibly due to growth and processing conditions While the structure of a single crystal is highly ordered and its lattice is continuous and unbroken amorphous materials such as glass and many polymers are non crystalline and do not display any structures as their constituents are not arranged in an ordered manner Polycrystalline structures and paracrystalline phases are in between these two extremes Polycrystalline materials or polycrystals are solids that are composed of many crystallites of varying size and orientation Most materials are polycrystalline made of a large number crystallites held together by thin layers of amorphous solid Most inorganic solids are polycrystalline including all common metals many ceramics rocks and ice The areas where crystallites meet are known as grain boundaries Different degrees of ordered structures a monocrystalline crystal polycrystalline structure and amorphous or non crystalline solid Size Edit Transmission electron microscopy TEM bright field image of a grain in a permalloy thin film Crystallite size in monodisperse microstructures is usually approximated from X ray diffraction patterns and grain size by other experimental techniques like transmission electron microscopy Solid objects large enough to see and handle are rarely composed of a single crystal except for a few cases gems silicon single crystals for the electronics industry certain types of fiber single crystals of a nickel based superalloy for turbojet engines and some ice crystals which can exceed 0 5 meters in diameter 3 The crystallite size can vary from a few nanometers to several millimeters Effects on material physical properties Edit The extent to which a solid is crystalline crystallinity has important effects on its physical properties 4 Sulfur while usually polycrystalline may also occur in other allotropic forms with completely different properties 5 Although crystallites are referred to as grains powder grains are different as they can be composed of smaller polycrystalline grains themselves 6 Generally polycrystals cannot be superheated they will melt promptly once they are brought to a high enough temperature This is because grain boundaries are amorphous and serve as nucleation points for the liquid phase By contrast if no solid nucleus is present as a liquid cools it tends to become supercooled Since this is undesirable for mechanical materials alloy designers often take steps against it by grain refinement Bronze bell with large crystallites on the inside Material fractures can be either intergranular or a transgranular fracture There is an ambiguity with powder grains a powder grain can be made of several crystallites Thus the powder grain size found by laser granulometry can be different from the grain size rather crystallite size found by X ray diffraction e g Scherrer method by optical microscopy under polarised light or by scanning electron microscopy backscattered electrons If the individual crystallites are oriented completely at random a large enough volume of polycrystalline material will be approximately isotropic This property helps the simplifying assumptions of continuum mechanics to apply to real world solids However most manufactured materials have some alignment to their crystallites resulting in texture that must be taken into account for accurate predictions of their behavior and characteristics When the crystallites are mostly ordered with just some random spread of orientations one has a mosaic crystal Abnormal grain growth where a small number of crystallites are significantly larger than the mean crystallite size is commonly observed in diverse polycrystalline materials and results in mechanical and optical properties that diverge from similar materials having a monodisperse crystallite size distribution with a similar mean crystallite size Coarse grained rocks are formed very slowly while fine grained rocks are formed quickly on geological time scales If a rock forms very quickly such as the solidification of lava ejected from a volcano there may be no crystals at all This is how obsidian forms Grain boundaries EditThis article appears to contradict the article Grain boundary Please see discussion on the linked talk page October 2008 Learn how and when to remove this template message Main article Grain boundary Grain boundaries are interfaces where crystals of different orientations meet A grain boundary is a single phase interface with crystals on each side of the boundary being identical except in orientation The term crystallite boundary is sometimes though rarely used Grain boundary areas contain those atoms that have been perturbed from their original lattice sites dislocations and impurities that have migrated to the lower energy grain boundary Treating a grain boundary geometrically as an interface of a single crystal cut into two parts one of which is rotated we see that there are five variables required to define a grain boundary The first two numbers come from the unit vector that specifies a rotation axis The third number designates the angle of rotation of the grain The final two numbers specify the plane of the grain boundary or a unit vector that is normal to this plane Grain boundaries disrupt the motion of dislocations through a material Dislocation propagation is impeded because of the stress field of the grain boundary defect region and the lack of slip planes and slip directions and overall alignment across the boundaries Reducing grain size is therefore a common way to improve strength often without any sacrifice in toughness because the smaller grains create more obstacles per unit area of slip plane This crystallite size strength relationship is given by the Hall Petch relationship The high interfacial energy and relatively weak bonding in grain boundaries makes them preferred sites for the onset of corrosion and for the precipitation of new phases from the solid Grain boundary migration plays an important role in many of the mechanisms of creep Grain boundary migration occurs when a shear stress acts on the grain boundary plane and causes the grains to slide This means that fine grained materials actually have a poor resistance to creep relative to coarser grains especially at high temperatures because smaller grains contain more atoms in grain boundary sites Grain boundaries also cause deformation in that they are sources and sinks of point defects Voids in a material tend to gather in a grain boundary and if this happens to a critical extent the material could fracture During grain boundary migration the rate determining step depends on the angle between two adjacent grains In a small angle dislocation boundary the migration rate depends on vacancy diffusion between dislocations In a high angle dislocation boundary this depends on the atom transport by single atom jumps from the shrinking to the growing grains 7 Grain boundaries are generally only a few nanometers wide In common materials crystallites are large enough that grain boundaries account for a small fraction of the material However very small grain sizes are achievable In nanocrystalline solids grain boundaries become a significant volume fraction of the material with profound effects on such properties as diffusion and plasticity In the limit of small crystallites as the volume fraction of grain boundaries approaches 100 the material ceases to have any crystalline character and thus becomes an amorphous solid Grain boundaries are also present in magnetic domains in magnetic materials A computer hard disk for example is made of a hard ferromagnetic material that contains regions of atoms whose magnetic moments can be realigned by an inductive head The magnetization varies from region to region and the misalignment between these regions forms boundaries that are key to data storage The inductive head measures the orientation of the magnetic moments of these domain regions and reads out either a 1 or 0 These bits are the data being read Grain size is important in this technology because it limits the number of bits that can fit on one hard disk The smaller the grain sizes the more data that can be stored Because of the dangers of grain boundaries in certain materials such as superalloy turbine blades great technological leaps were made to minimize as much as possible the effect of grain boundaries in the blades The result was directional solidification processing in which grain boundaries were eliminated by producing columnar grain structures aligned parallel to the axis of the blade since this is usually the direction of maximum tensile stress felt by a blade during its rotation in an airplane The resulting turbine blades consisted of a single grain improving reliability See also EditAbnormal grain growth Crystallization of polymers Microlite Polycrystalline siliconFootnotes Edit Bacillite geology Encyclopedia Britannica Retrieved 2021 09 06 Manutchehr Danai Mohsen 2013 03 09 Dictionary of Gems and Gemology Springer Science amp Business Media p 34 ISBN 978 3 662 04288 5 J R Petit R Souchez N I Barkov V Ya Lipenkov D Raynaud M Stievenard N I Vassiliev V Verbeke and F Vimeux 10 December 1999 More Than 200 Meters of Lake Ice Above Subglacial Lake Vostok Antarctica Science 286 5447 2138 41 doi 10 1126 science 286 5447 2138 PMID 10591641 a href Template Cite journal html title Template Cite journal cite journal a CS1 maint uses authors parameter link Purdue University Categories of Solids C Michael Hogan 2011 Sulfur Archived October 28 2012 at the Wayback Machine Encyclopedia of Earth eds A Jorgensen and C J Cleveland National Council for Science and the environment Washington DC Definition of polycrystalline graphite PDF Archived from the original PDF on 2011 05 21 Retrieved 2014 10 27 Doherty R D Hughes D A Humphreys F J Jonas J J Jensen D Juul Kassner M E King W E McNelley T R McQueen H J Rollett A D 1997 Current issues in recrystallization A review Materials Science and Engineering A 238 2 219 274 doi 10 1016 S0921 5093 97 00424 3 S2CID 17885466 References EditAllen Samuel and Thomas Edwin The Structure of Materials New York John Wiley amp Sons Inc 1999 Jiles David Introduction to Magnetism and Magnetic Materials London Chapman amp Hall CRC 1998 Further reading EditLau J 2009 Implementation of Two Dimensional Polycrystalline Grains in Object Oriented Micromagnetic Framework Journal of Research of the National Institute of Standards and Technology 114 1 57 67 doi 10 6028 jres 114 005 PMC 4651613 PMID 27504213 Retrieved from https en wikipedia org w index php title Crystallite amp oldid 1107963633, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.