fbpx
Wikipedia

Cluster II (spacecraft)

Cluster II[2] is a space mission of the European Space Agency, with NASA participation, to study the Earth's magnetosphere over the course of nearly two solar cycles. The mission is composed of four identical spacecraft flying in a tetrahedral formation. As a replacement for the original Cluster spacecraft which were lost in a launch failure in 1996, the four Cluster II spacecraft were successfully launched in pairs in July and August 2000 onboard two Soyuz-Fregat rockets from Baikonur, Kazakhstan. In February 2011, Cluster II celebrated 10 years of successful scientific operations in space. As of October 2020, its mission has been extended until the end of 2022.[3] China National Space Administration/ESA Double Star mission operated alongside Cluster II from 2004 to 2007.

Cluster II
Artist's impression of the Cluster constellation.
Mission typeMagnetospheric research
OperatorESA with NASA collaboration
COSPAR IDFM6 (SALSA): 2000-041A
FM7 (SAMBA): 2000-041B
FM5 (RUMBA): 2000-045A
FM8 (TANGO): 2000-045B
SATCAT no.FM6 (SALSA): 26410
FM7 (SAMBA): 26411
FM5 (RUMBA): 26463
FM8 (TANGO): 26464
Websitehttp://sci.esa.int/cluster
Mission durationplanned: 5 years
elapsed: 22 years, 7 months and 21 days
Spacecraft properties
ManufacturerAirbus (ex. Dornier)[1]
Launch mass1,200 kg (2,600 lb)[1]
Dry mass550 kg (1,210 lb)[1]
Payload mass71 kg (157 lb)[1]
Dimensions2.9 m × 1.3 m (9.5 ft × 4.3 ft)[1]
Power224 watts[1]
Start of mission
Launch dateFM6: 16 July 2000, 12:39 UTC (2000-07-16UTC12:39Z)
FM7: 16 July 2000, 12:39 UTC (2000-07-16UTC12:39Z)
FM5: 09 August 2000, 11:13 UTC (2000-08-09UTC11:13Z)
FM8: 09 August 2000, 11:13 UTC (2000-08-09UTC11:13Z)
RocketSoyuz-U/Fregat
Launch siteBaikonur 31/6
ContractorStarsem
Orbital parameters
Reference systemGeocentric
RegimeElliptical Orbit
Perigee altitudeFM6: 16,118 km (10,015 mi)
FM7: 16,157 km (10,039 mi)
FM5: 16,022 km (9,956 mi)
FM8: 12,902 km (8,017 mi)
Apogee altitudeFM6: 116,740 km (72,540 mi)
FM7: 116,654 km (72,485 mi)
FM5: 116,786 km (72,567 mi)
FM8: 119,952 km (74,535 mi)
InclinationFM6: 135 degrees
FM7: 135 degrees
FM5: 138 degrees
FM8: 134 degrees
PeriodFM6: 3259 minutes
FM7: 3257 minutes
FM5: 3257 minutes
FM8: 3258 minutes
Epoch13 March 2014, 11:15:07 UTC

ESA solar system insignia for Cluster II  

Mission overview

The four identical Cluster II satellites study the impact of the Sun's activity on the Earth's space environment by flying in formation around Earth. For the first time in space history, this mission is able to collect three-dimensional information on how the solar wind interacts with the magnetosphere and affects near-Earth space and its atmosphere, including aurorae.

The spacecraft are cylindrical (2.9 x 1.3 m, see online 3D model) and are spinning at 15 rotations per minute. After launch, their solar cells provided 224 watts power for instruments and communications. Solar array power has gradually declined as the mission progressed, due to damage by energetic charged particles, but this was planned for and the power level remains sufficient for science operations. The four spacecraft maneuver into various tetrahedral formations to study the magnetospheric structure and boundaries. The inter-spacecraft distances can be altered and has varied from around 4 to 10,000 km. The propellant for the transfer to the operational orbit, and the maneuvers to vary inter-spacecraft separation distances made up approximately half of the spacecraft's launch weight.

The highly elliptical orbits of the spacecraft initially reached a perigee of around 4 RE (Earth radii, where 1 RE = 6371 km) and an apogee of 19.6 RE. Each orbit took approximately 57 hours to complete. The orbit has evolved over time; the line of apsides has rotated southwards so that the distance at which the orbit crossed the magnetotail current sheet progressively reduced, and a wide range of dayside magnetopause crossing latitudes were sampled. Gravitational effects impose a long term cycle of change in the perigee (and apogee) distance, which saw the perigees reduce to a few 100 km in 2011 before beginning to rise again. The orbit plane has rotated away from 90 degrees inclination. Orbit modifications by ESOC have altered the orbital period to 54 hours. All these changes have allowed Cluster to visit a much wider set of important magnetospheric regions than was possible for the initial 2-year mission, improving the scientific breadth of the mission.

The European Space Operations Centre (ESOC) acquires telemetry and distributes to the online data centers the science data from the spacecraft. The Joint Science Operations Centre JSOC at Rutherford Appleton Laboratory in the UK coordinates scientific planning and in collaboration with the instrument teams provides merged instrument commanding requests to ESOC.

The Cluster Science Archive is the ESA long term archive of the Cluster and Double Star science missions. Since 1 November 2014, it is the sole public access point to the Cluster mission scientific data and supporting datasets. The Double Star data are publicly available via this archive. The Cluster Science Archive is located alongside all the other ESA science archives at the European Space Astronomy Center, located near Madrid, Spain. From February 2006 to October 2014, the Cluster data could be accessed via the Cluster Active Archive.

History

The Cluster mission was proposed to ESA in 1982 and approved in 1986, along with the Solar and Heliospheric Observatory (SOHO), and together these two missions constituted the Solar Terrestrial Physics "cornerstone" of ESA's Horizon 2000 missions programme. Though the original Cluster spacecraft were completed in 1995, the explosion of the Ariane 5 rocket carrying the satellites in 1996 delayed the mission by four years while new instruments and spacecraft were built.

On July 16, 2000, a Soyuz-Fregat rocket from the Baikonur Cosmodrome launched two of the replacement Cluster II spacecraft, (Salsa and Samba) into a parking orbit from where they maneuvered under their own power into a 19,000 by 119,000 kilometer orbit with a period of 57 hours. Three weeks later on August 9, 2000, another Soyuz-Fregat rocket lifted the remaining two spacecraft (Rumba and Tango) into similar orbits. Spacecraft 1, Rumba, is also known as the Phoenix spacecraft, since it is largely built from spare parts left over after the failure of the original mission. After commissioning of the payload, the first scientific measurements were made on February 1, 2001.

The European Space Agency ran a competition to name the satellites across all of the ESA member states.[4] Ray Cotton, from the United Kingdom, won the competition with the names Rumba, Tango, Salsa and Samba.[5] Ray's town of residence, Bristol, was awarded with scale models of the satellites in recognition of the winning entry,[6][7] as well as the city's connection with the satellites. However, after many years of being stored away, they were finally given a home at the Rutherford Appleton Laboratory.

Originally planned to last until the end of 2003, the mission has been extended several times. The first extension took the mission from 2004 until 2005, and the second from 2005 to June 2009. The mission has now been extended until the end of 2020.[8]

Scientific objectives

Previous single and two-spacecraft missions were not capable of providing the data required to accurately study the boundaries of the magnetosphere. Because the plasma comprising the magnetosphere cannot be viewed using remote sensing techniques, satellites must be used to measure it in-situ. Four spacecraft allow scientists make the 3D, time-resolved measurements needed to create a realistic picture of the complex plasma interactions occurring between regions of the magnetosphere and between the magnetosphere and the solar wind.

Each satellite carries a scientific payload of 11 instruments designed to study the small-scale plasma structures in space and time in the key plasma regions: solar wind, bow shock, magnetopause, polar cusps, magnetotail, plasmapause boundary layer and over the polar caps and the auroral zones.

  • The bow shock is the region in space between the Earth and the sun where the solar wind decelerates from super- to sub-sonic before being deflected around the Earth. In traversing this region, the spacecraft make measurements which help characterize processes occurring at the bow shock, such as the origin of hot flow anomalies and the transmission of electromagnetic waves through the bow shock and the magnetosheath from the solar wind.
  • Behind the bow shock is the thin plasma layer separating the Earth and solar wind magnetic fields known as the magnetopause. This boundary moves continuously due to the constant variation in solar wind pressure. Since the plasma and magnetic pressures within the solar wind and the magnetosphere, respectively, should be in equilibrium, the magnetosphere should be an impenetrable boundary. However, plasma has been observed crossing the magnetopause into the magnetosphere from the solar wind. Cluster's four-point measurements make it possible to track the motion of the magnetopause as well as elucidate the mechanism for plasma penetration from the solar wind.
  • In two regions, one in the northern hemisphere and the other in the south, the magnetic field of the Earth is perpendicular rather than tangential to the magnetopause. These polar cusps allow solar wind particles, consisting of ions and electrons, to flow into the magnetosphere. Cluster records the particle distributions, which allow the turbulent regions at the exterior cusps to be characterized.
  • The regions of the Earth's magnetic field that are stretched by the solar wind away from the Sun are known collectively as the magnetotail. Two lobes that reach past the Moon in length form the outer magnetotail while the central plasma sheet forms the inner magnetotail, which is highly active. Cluster monitors particles from the ionosphere and the solar wind as they pass through the magnetotail lobes. In the central plasma sheet, Cluster determines the origins of ion beams and disruptions to the magnetic field-aligned currents caused by substorms.
  • The precipitation of charged particles in the atmosphere creates a ring of light emission around the magnetic pole known as the auroral zone. Cluster measures the time variations of transient particle flows and electric and magnetic fields in the region.

Instrumentation on each Cluster satellite

Number Acronym Instrument Measurement Purpose
1 ASPOC Active Spacecraft Potential Control experiment Regulation of spacecraft's electrostatic potential Enables the measure by PEACE of cold electrons (a few eV temperature), otherwise hidden by spacecraft photoelectrons
2 CIS Cluster Ion Spectroscopy experiment Ion times-of-flight (TOFs) and energies from 0 to 40 keV Composition and 3D distribution of ions in plasma
3 DWP Digital Wave Processing instrument Coordinates the operations of the EFW, STAFF, WBD and WHISPER instruments. At the lowest level, DWP provides electrical signals to synchronise instrument sampling. At the highest level, DWP enables more complex operational modes by means of macros.
4 EDI Electron Drift Instrument Electric field E magnitude and direction E vector, gradients in local magnetic field B
5 EFW Electric Field and Wave experiment Electric field E magnitude and direction E vector, spacecraft potential, electron density and temperature
6 FGM Fluxgate Magnetometer Magnetic field B magnitude and direction B vector and event trigger to all instruments except ASPOC
7 PEACE Plasma Electron and Current Experiment Electron energies from 0.0007 to 30 keV 3D distribution of electrons in plasma
8 RAPID Research with Adaptive Particle Imaging Detectors Electron energies from 39 to 406 keV, ion energies from 20 to 450 keV 3D distributions of high-energy electrons and ions in plasma
9 STAFF Spatio-Temporal Analysis of Field Fluctuation experiment Magnetic field B magnitude and direction of EM fluctuations, cross-correlation of E and B Properties of small-scale current structures, source of plasma waves and turbulence
10 WBD Wide Band Data receiver High time resolution measurements of both electric and magnetic fields in selected frequency bands from 25 Hz to 577 kHz. It provides a unique new capability to perform Very-long-baseline interferometry (VLBI) measurements. Properties of natural plasma waves (e.g. auroral kilometric radiation) in the Earth magnetosphere and its vicinity including: source location and size and propagation.
11 WHISPER Waves of High Frequency and Sounder for Probing of Density by Relaxation Electric field E spectrograms of terrestrial plasma waves and radio emissions in the 2–80 kHz range; triggering of plasma resonances by an active sounder. Source location of waves by triangulation; electron density within the range 0.2–80 cm−3

Double Star mission with China

In 2003 and 2004, the China National Space Administration launched the Double Star satellites, TC-1 and TC-2, that worked together with Cluster to make coordinated measurements mostly within the magnetosphere. TC-1 stopped operating on 14 October 2007. The last data from TC-2 was received in 2008. TC-2 made a contribution to magnetar science[9][10] as well as to magnetospheric physics. The TC-1 examined density holes near the Earth's bow shock that can play a role in bow shock formation[11][12] and looked at neutral sheet oscillations.[13]

Awards

Cluster team awards

  • 2019 Royal Astronomical Society Group Achievement Award
  • 2015 ESA 15th anniversary award
  • 2013 ESA team award
  • 2010 International Academy of Astronautics Laurels for team achievements for Cluster and Double Star teams
  • 2005 ESA Cluster 5th anniversary award
  • 2004 NASA group achievement award
  • 2000 Popular science best of what's new award
  • 2000 ESA Cluster launch award

Individual awards

  • 2023 Hermann Opgenoorth (Univ. of Umea, Sweden), former Cluster Ground Based Working Group lead, was awarded the 2023 EGU Julius Bartels Medal
  • 2020 Daniel Graham (Swedish Institute of Space Physics, Uppsala, Sweden) was awarded the COSPAR Zeldovich medal
  • 2019 Margaret Kivelson (UCLA, USA), Cluster FGM CoI, received RAS gold medal
  • 2018 Hermann Opgenoorth (Univ. of Umea, Sweden), former Cluster Ground Based Working Group lead, was awarded the 2018 Baron Marcel Nicolet Space Weather and Space Climate medal 2018-11-26 at the Wayback Machine
  • 2016 Stephen Fuselier (SWRI, USA), Cluster CIS CoI, received EGU Hannes Alfvén Meda
  • 2016 Mike Hapgood, Cluster mission scientific operations expert was awarded the Baron Marcel Nicolet Medal for Space Weather and Space Climate
  • 2014 Rumi Nakamura (IWF, Austria), Cluster CIS/EDI/FGM CoI, received EGU Julius Bartels Medal
  • 2013 Mike Hapgood (RAL, UK), Cluster JSOC project scientist
  • 2013 Göran Marklund, EFW Co-I, received the EGU Hannes Alfvén Medal 2013.
  • 2013 Steve Milan, Cluster Ground based representative of the Cluster mission
  • 2012 Andrew Fazakerley, Cluster and Double Star PI (PEACE), received the Royal Astronomical Society Chapman Medal
  • 2012 Zuyin Pu (Pekin U., China), RAPID/CIS/FGM CoI, received AGU International Award
  • 2012 Jolene Pickett (Iowa U., USA), a Cluster WBD PI, received the State of Iowa Board of Regents Staff Excellence
  • 2012 Jonathan Eastwood (Imperial College, UK), FGM Co-I, received COSPAR Yakov B. Zeldovich medal
  • 2008 Andre Balogh (Imperial College, UK), Cluster FGM PI, received RAS Chapman medal
  • 2006 Steve Schwartz (QMW, UK), Cluster UK data system scientist and PEACE co-I, received RAS Chapman medal

Discoveries and mission milestones

2022

  • October 14 - New insights on the formation of transpolar auroral arc [14]
  • September 20 - A highway for atmospheric ion escape from Earth during the impact of an interplanetary coronal mass ejection [15]
  • August 03 - Joint Cluster/ground-based studies in the first 20 years of the Cluster mission [16]
  • July 18 – In situ observation of a magnetopause indentation that is correspondent to throat aurora and is caused by magnetopause reconnection[17]
  • June 16 - Kelvin-Helmholtz vortices as an interplay of Magnetosphere-Ionosphere coupling [18]
  • June 02 - ESA highlight: Magnetic vortices explain mysterious auroral beads [19]
  • May 16 - The influence of localized dynamics on dusk-dawn convection in the Earth’s magnetotail [20]
  • April 1 - Dawn-dusk ion flow asymmetry in the plasma sheet [21]
  • February 1 - South Pole Station ground-based and Cluster satellite measurements of leaked and escaping Auroral Kilometric Radiation [22]
  • January 1 - Massive multi-mission statistical study and analytical modeling of the Earth's magnetopause [23]

2021

  • December 15 - ESA highlight: Swarm and Cluster get to the bottom of geomagnetic storms [24]
  • November 7 - Unique MMS and Cluster observations about magnetic reconnection extent at the magnetopause [25]
  • November 2 - Spatial distribution of energetic protons in the magnetosphere based on 17 years of data [26]
  • October 11 - Unique MMS and Cluster observation of disturbances in the near-Earth magnetotail before a magnetic substorm [27]
  • September 7 - AGU EOS spotlight: Understanding Aurora Formation with ESA’s Cluster Mission [28]
  • May 2 - Cluster and MMS uncover anisotropic spatial correlation functions at kinetic range in the magnetosheath turbulence [29]
  • April 9 - The Solar-cycle Variations of the Anisotropy of Taylor Scale and Correlation Scale in the Solar Wind Turbulence [30]
  • February 18 - Heavy Metal and Rock in Space: Cluster RAPID Observations of Fe and Si [31]

2020

  • December 1 - Cluster, Helios and Ulysses reveal characteristics of solar wind supra thermal halo electrons[32]
  • November 1 - Cluster, Swam and CHAMP join forces to explain hemispheric asymmetries in the Earth magnetotail[33]
  • October 21 - Space plasma regimes classified with Cluster data[34]
  • October 1 - Effects of Solar Activity on Taylor Scale and Correlation Scale in Solar Wind Magnetic Fluctuations [35]
  • September 1 - Van Allen Probes and Cluster join forces to study Outer Radiation Belt Electrons[36]
  • August 9 - Cluster’s 20 years of studying Earth’s magnetosphere, celebrating 20 years after the launch of the second pair of Cluster spacecraft
  • July 31 - ESA science highlight: Auroral substorms triggered by short circuiting of plasma flows[37]
  • July 16 - BBC skyatnight podcast with Dr. Mike Hapgood on 20 years of ESA’s Cluster mission, celebrating 20 years after the launch of the first pair of Cluster satellites
  • April 20 - What drives some of the largest and most dynamic auroral forms?[38]
  • March 19 - ESA science highlight: Iron is everywhere in Earth's vicinity, suggest two decades of Cluster data[39]
  • February 27 - What makes Kelvin Helmholtz vortices grow at the Earth's magnetopause?[40]

2019

  • December 23 - Magnetized dust clouds penetrate the terrestrial bow shock[41]
  • November 18 - ESA science highlight: Earth’s magnetic song recorded for the first time during a solar storm[42]
  • October 10 - What is the source of the energetic oxygen ions found in the high-altitude cusp region? [43]
  • August 27 - ESA science highlight: Cluster and XMM pave the way for SMILE[44]
  • August 20 - Asymmetric transport of the Earth's polar outflows by the interplanetary magnetic field[45]
  • August 5 - Energetic electron acceleration found by Cluster in unconfined reconnection jets for the first time[46]
  • May 1 - Kelvin‐Helmholtz waves magnetic curvature and vorticity: Four‐spacecraft Cluster observations[47]
  • March 4 - ESA science highlight: Cluster helps solve mysteries of geomagnetic storms[48]
  • February 27 - ESA science highlight: Cluster reveals inner workings of Earth's cosmic particle accelerator[49]
  • February 13 - Statistical survey of the terrestrial bow shock observed by the Cluster spacecraft[50]
  • January 14 - Super-efficient electron acceleration by an isolated magnetic reconnection[51]

2018

  • November 28 – Complete picture of the O+ circulation (and escape) in the outer magnetosphere and its dependence on geomagnetic activity[52]
  • November 8 - ESA science highlight: Windy with a chance of magnetic storms – space weather science with Cluster
  • September 30 - O+ escape during the extreme space weather event of 4–10 September 2017[53]
  • August 8 - Statistical survey of day-side magnetospheric current flow using Cluster observations: bow shock[54]
  • June 20 – Detection of magnetic nulls around reconnection fronts (open access)[55]
  • May 21 – Tailward propagation of magnetic energy density variations with respect to substorm onset times (open access)[56]
  • April 24 – Kelvin–Helmholtz Instability: lessons learned and ways forward[57]
  • March 29 – Three-dimensional density and compressible magnetic structure in solar wind turbulence[58]
  • February 8 – ESA spotlight on... Understanding Earth: what the Cluster mission has taught us so far
  • January 29 – ESA research highlight: Cluster measures turbulence in Earth's magnetic environment[59]
  • January 22 – Science nugget of the 2013-2014 Cluster Inner Magnetosphere campaign[60]

2017

  • December 11, 2017 – Empirical modeling of the quiet and storm time geosynchronous magnetic field[61]
  • December 6, 2017 – Direct measurement of anisotropic and asymmetric wave vector spectrum in ion-scale solar wind turbulence[62]
  • October 30, 2017 – Coherent structures at ion scales in the fast solar wind: Cluster observations[63]
  • September 18, 2017 – An intense magnetic substorm scrutinized by a fleet of satellites including Cluster and MMS (open access)[64]
  • August 28, 2017 – Relationship between electron field‐aligned anisotropy and dawn‐dusk magnetic field: nine years of Cluster observations in the Earth magnetotail[65]
  • August 1, 2017 – Collisionless shock velocity estimation at Venus and Earth (open access)[66]
  • June 16, 2017 – Cover of GRL: Global ULF waves generated by a hot flow anomaly[67]
  • April 10, 2017 - ESA research highlight: O marks the spot for magnetic reconnection[68]
  • April 7, 2017 – EOS research spotlight: Explaining unexpected twists in the Sun's Magnetic Field[69]
  • March 23, 2017 – Occurrence frequency and location of magnetic islands at the dayside magnetopause[70]
  • February 18, 2017 – Magnetic reconnection and their associated auroral enhancements (open access)[71]

2016

  • October 3, 2016 – What happens to the Earth's magnetosphere when its bow shock disappears?[72]
  • September 6, 2016 – Embry-Riddle University (FL, USA) science highlight: Space plasma hurricanes could lead to new sources of energy[73]
  • July 20, 2016 – Cluster and MMS join forces to understand the origin of northern lights[74]
  • July 8 – Transport of solar wind H+ and He++ ions across Earth's bow shock[75]
  • July 7 – ESA science highlight: the curious case of Earth's leaking atmosphere[76][77]
  • June 11 – Substructures within a dipolarization front revealed by high-temporal resolution Cluster observations[78]
  • May 11 – Cone angle control of the interaction of magnetic clouds with the Earth's bow shock[79]
  • March 21 – The particle carriers of field‐aligned currents in the Earth's magnetotail during a substorm[80]
  • February 29 – The role of ionospheric O+ outflow in the generation of earthward propagating plasmoids[77]
  • January 11 – A statistical study of plasmaspheric plumes and ionospheric outflows observed at the dayside magnetopause[76]

2015

  • December 7 - Coalescence of magnetic flux ropes in the ion diffusion region of magnetic reconnection[81]
  • October 22 - Wide-banded Non-Thermal Continuum (NTC) radiation: local to remote observations by the four Cluster satellites[82]
  • September 3 - Statistics and accuracy of magnetic null identification in multispacecraft data (open access)[83]
  • August 22 - Cusp dynamics under northward IMF using three‐dimensional global particle‐in‐cell simulations (open access)[84]
  • July 14 - Cluster solves the mystery of equatorial noise[85]
  • July 1 - Seven ESA satellites team up to explore the Earth's magnetic field[86]
  • April 9 - Heart of the black auroras revealed by Cluster[87]
  • March 25 - Cluster satellite catches up
  • February 19 - Magnetospheric signatures of ionospheric density cavities observed by Cluster (open access)[88]
  • February 16 - Solar illumination control of ionospheric outflow above polar cap arcs (open access)[89]
  • January 16 – Rejigging the Cluster quartet at the bow shock and in the solar wind

2014

  • December 18 – Origin of high-latitude auroras revealed[90]
  • November 20 - The Cluster mission is extended by ESA up to 2018
  • September 4 - Full particle electromagnetic simulations of entropy generation across a collisionless shock[91]
  • August 28 – A mixed-up magnetic storm[92]
  • July 1 - Dawn–dusk asymmetries in the coupled solar wind–magnetosphere–ionosphere system: a review[93]
  • June 15 - [94]
  • May 28 - Evidence of strong energetic ion acceleration in the near‐Earth magnetotail (free access)[95]
  • May 7 - Cluster helps to model Earth's mysterious magnetosphere[96]
  • March 15 - Direct calculation of the ring current distribution and magnetic structure seen by Cluster during geomagnetic storms (open access)[97]
  • January 13 - Low-altitude electron acceleration due to multiple flow bursts in the magnetotail (open access)[98]

2013

  • November 26 - Cluster takes a tilt at radio wave sources[99]
  • November 15 – On the relation between asymmetries in the ring current and magnetopause current (free access)[100]
  • September 20 - ESA's Cluster satellites in closest-ever 'dance in space'
  • September 10 – Cluster shows plasmasphere interacting with Van Allen belts[101]
  • July 18 - Wobbly magnetic reconnection speeds up electrons[102]
  • July 2 - Cluster discovers steady leak in the Earth's plasmasphere[103]
  • May 2 - Cluster hears the heartbeat of magnetic reconnection[104]
  • April 15 - From solar activity to stunning aurora (ESA Space Science's image of the week)
  • April 10 – Cluster finds source of aurora energy boost[105]

2012

  • December 18 – The solar wind is swirly[106]
  • October 24 - Cluster observes a 'porous' magnetopause[107]
  • August 1 – Cluster looks into waves in the magnetosphere's thin boundaries[108]
  • July 2 - Hidden Portals in Earth's Magnetic Field (NASA science cast video)
  • June 6 – Origin of particle acceleration in cusps of Earth's magnetosphere uncovered[109]
  • March 7 - Earth’s magnetic field provides vital protection[110]
  • February 27 - Northern lights mystery may be solved (Space.com)[111]
  • February 23 - Surprise Ions (Science News for kids) 2012-07-10 at the Wayback Machine
  • January 26 - Giant veil of cold plasma discovered high above Earth (National Geographic)
  • January 24 – Elusive matter found to be abundant far above Earth (AGU press release) 2012-10-24 at the Wayback Machine[112]

2011

  • November 16 – Cluster reveals Earth's bow shock is remarkably thin[113]
  • September 6 – Ultra fast substorm auroras explained[114]
  • August 31 - 40 year old Mariner 5 solar wind problem finds answer[115]
  • July 5–10 - Aurora explorer: the Cluster mission exhibit at the Royal Society summer science exhibition 2011
  • July 4 – Cluster observes jet braking and plasma heating[116]
  • June 30 - 'Dirty hack' restores Cluster mission from near loss
  • March 21 - How vital is a planet's magnetic field? New debate rises
  • February 5 – Cluster encounters a natural particle accelerator[117]
  • January 7 - ESA spacecraft model magnetic boundaries[118]

2010

  • November 22 - ESA extends the Cluster mission until December 2014
  • October 4 – Cluster helps disentangle turbulence in the solar wind[119]
  • September 1 - 10 years of success for Cluster quartet[120]
  • July 26 - Cluster makes crucial step in understanding space weather[121][122]
  • July 16 - Cluster's decade of discovery
  • July 8 - Announcement of opportunity for Cluster guest investigators
  • June 3 – The Cluster archive: more than 1000 users[123]
  • April 24 - High-speed plasma jets: origin uncovered[124]
  • March 11 - Shocking recipe for 'killer electrons'[125]
  • January 20 - Multiple rifts in Earth's magnetic shield[126]

2009

  • October 7 - ESA extends the Cluster mission until December 2012
  • July 16 – Cluster shows how solar wind is heated at electron scales[127]
  • June 18 - Cluster and Double Star: 1000 publications
  • April 29 - Monitoring the impact of extreme solar events[128]
  • March 25 - Cluster's insight into space turbulence[129]
  • February 9 - ESA extends the Cluster mission until the end of 2009
  • January 14 – Cluster detects invisible escaping ions[130]

2008

  • December 15 - The science of space weather[131]
  • December 5 - Looking at Jupiter to understand Earth[132]
  • October 17 - Highlights from Cluster-THEMIS workshop
  • August 27 - Cluster examines Earth-escaping ions[133]
  • August 11 - Electron trapping within reconnection[134][135]
  • June 27 - Beamed radio emission from Earth[136]
  • June 9 - Reconnection - Triggered by Whistlers?[137]
  • March 7 - Solitons found in the magnetopause[138]
  • January 23 - Cluster result impacts future space missions[139]

2007

  • December 6 - Cluster explains nightside ion beams[140]
  • November 21 - Cluster captures the impact of a Coronal Mass Ejection[141][142]
  • November 9 - Cluster probes generalized Ohm's law in space [143]
  • October 22 - Cluster monitors convection cells over the polar caps[144][145]
  • September 11 - Cluster and Double Star pinpoint the source of bright aurorae[146]
  • July 26 - Cluster helps reveal how the Sun shakes the Earth's magnetic field[147][148]
  • June 29 - Cluster unveils a new 3D vision of magnetic reconnection[149]
  • June 21 - Formation flying at closest-ever separation
  • May 11 - Cluster reveals the reformation of the Earth's bow shock[150]
  • April 12 - Cluster finds new clues on what triggers space tsunamis[151]
  • March 26 - First direct evidence in space of magnetic reconnection in turbulent plasma[152]
  • March 12 - A leap forward in probing magnetic reconnection in space[153]
  • February 9 - New insights in the auroral electrical circuit revealed by Cluster[154]

2006

  • December 29 - 1000th Orbit for the Cluster Mission
  • December 6 - Cluster finds magnetic reconnection within giant swirls of plasma[155]
  • November 13 - Cluster takes a new look at the plasmasphere[156][157]
  • October 5 - Double Star and Cluster witness pulsated reconnection for several hours[158]
  • August 24 - Cluster links magnetic substorms and Earthward directed high-speed flows[159]
  • July 18 - Magnetic heart of a 3D reconnection event revealed by Cluster[160]
  • June 20 - Space is fizzy[161]
  • May 19 - New Microscopic Properties of Magnetic Reconnection Derived by Cluster[162]
  • March 30 - Cluster and Double Star reveal the extent of neutral sheet oscillations[163]
  • February 24 - Cluster reveals fundamental 3-D properties of magnetic turbulence[164]
  • February 1 - The Cluster Active Archive goes live
  • January 11 - Cover of Nature Magazine: Feel the Force[165]

2005

  • December 22 - Cluster helps to protect astronauts and satellites against killer electrons[166]
  • September 21 - Double Star and Cluster observe first evidence of crustal cracking
  • August 10 - From ‘macro’ to ‘micro’ – turbulence seen by Cluster[167]
  • July 28 - First direct measurements of the ring current[168]
  • July 14 - Five years of formation flying with Cluster
  • April 28 - Calming effect of a solar storm[169][170]
  • February 18 - Cluster will become the first multi-scale mission
  • February 4 - Direct observation of 3D magnetic reconnection[171]

2004

  • December 12 - Cluster determines the spatial scale of high speed flows in the magnetotail[172]
  • November 24 Four-point observations of solar wind discontinuities[173]
  • September 17 - Cluster locates the source of non-thermal terrestrial continuum radiation by triangulation[174]
  • August 12 - Cluster finds giant gas vortices at the edge of Earth's magnetic bubble[175]
  • June 23 - Cluster discovers internal origin of the plasma sheet oscillations[176]
  • May 13 - Cluster captures a triple cusp[177]
  • April 5 - First attempt to estimate Earth's bow shock thickness[178]

2001–2003

  • 3 December 2003 - Cracks in Earth's magnetic shield (NASA website)[179]
  • 29 June 2003 - Multi-point observations of magnetic reconnection[180]
  • 20 May 2003 - ESA's Cluster solves auroral puzzle[181]
  • 29 January 2003 - Bifurcation of the tail current[182]
  • 28 January 2003 - Electric current measured in space for the first time[183]
  • 29 December 2002 - Thickness of the tail current sheet estimated in space for the first time[184]
  • 1 October 2002 - Telescopic/Microscopic view of a substorm[185]
  • 11 December 2001 - Cluster quartet probes the secrets of the black aurora[186]
  • 31 October 2001 - First measurements of density gradients in space[187]
  • 9 October 2001 - Double cusp observed by Cluster[188]
  • 1 February 2001 – Official start of scientific operations

References

  • Escoubet, C.P.; A. Masson; H. Laakso; M.L. Goldstein (2021). "Cluster after 20 years of operations: Science highlights and technical challenges". Journal of Geophysical Research: Space Physics. 126 (8). Bibcode:2021JGRA..12629474E. doi:10.1029/2021JA029474.
  • Escoubet, C.P.; A. Masson; H. Laakso; M.L. Goldstein (2015). "Recent highlights from Cluster, the first 3-D magnetospheric mission". Annales Geophysicae. 33 (10): 1221–1235. Bibcode:2015AnGeo..33.1221E. doi:10.5194/angeo-33-1221-2015.
  • Escoubet, C.P.; M. Taylor; A. Masson; H. Laakso; J. Volpp; M. Hapgood; M.L. Goldstein (2013). "Dynamical processes in space: Cluster results". Annales Geophysicae. 31 (6): 1045–1059. Bibcode:2013AnGeo..31.1045E. doi:10.5194/angeo-31-1045-2013.
  • Taylor, M.; C.P. Escoubet; H. Laakso; A. Masson; M. Goldstein (2010). "The Cluster Mission: Space Plasma in Three Dimensions". In H. Laakso; et al. (eds.). The Cluster Active Archive. Astrophysics and Space Science Proceedings. Astrophys. & Space Sci. Proc., Springer. pp. 309–330. doi:10.1007/978-90-481-3499-1_21. ISBN 978-90-481-3498-4.
  • Escoubet, C.P.; M. Fehringer; M. Goldstein (2001). "The Cluster mission". Annales Geophysicae. 19 (10/12): 1197–1200. Bibcode:2001AnGeo..19.1197E. doi:10.5194/angeo-19-1197-2001.
  • Escoubet, C.P.; R. Schmidt; M.L. Goldstein (1997). "Cluster - Science and Mission Overview". Space Science Reviews. 79: 11–32. Bibcode:1997SSRv...79...11E. doi:10.1023/A:1004923124586. S2CID 116954846.

Selected publications

All 3618 publications related to the Cluster and the Double Star missions (count as of 31 December 2022) can be found on the publication section of the ESA Cluster mission website. Among these publications, 3125 are refereed publications, 342 proceedings, 121 PhDs and 30 other types of theses.

  1. ^ a b c d e f "Cluster (Four Spacecraft Constellation in Concert with SOHO)". ESA. Retrieved 2014-03-13.
  2. ^ "Cluster II operations". European Space Agency. Retrieved 29 November 2011.
  3. ^ "Extended Operations Confirmed for Science Missions". ESA. Retrieved 6 July 2021.
  4. ^ "European Space Agency Announces Contest to Name the Cluster Quartet" (PDF). XMM-Newton Press Release. European Space Agency: 4. 2000. Bibcode:2000xmm..pres....4.
  5. ^ "Bristol and Cluster – the link". European Space Agency. Retrieved 2 September 2013.
  6. ^ "Cluster II – Scientific Update and Presentation of Model to the City of Bristol". Spaceref. SpaceRef Interactive Inc. 9 July 2001.
  7. ^ "Cluster – Presentation of model to the city of Bristol and science results overview". European Space Agency.
  8. ^ "Extended life for ESA's science missions". ESA. Retrieved 14 November 2018.
  9. ^ Schwartz, S.; et al. (2005). "A γ-ray giant flare from SGR1806-20: evidence for crustal cracking via initial timescales". The Astrophysical Journal. 627 (2): L129–L132. arXiv:astro-ph/0504056. Bibcode:2005ApJ...627L.129S. doi:10.1086/432374. S2CID 119371524.
  10. ^ "ESA Science & Technology - Double Star and Cluster observe first evidence of crustal cracking". sci.esa.int. September 21, 2005. from the original on 2020-02-01. Retrieved 2021-07-14.
  11. ^ "ESA Science & Technology - Cluster and Double Star discover density holes in the solar wind". sci.esa.int. June 20, 2006. from the original on 2021-08-29. Retrieved 2021-07-14.
  12. ^ Britt, Robert Roy (June 20, 2006). "CNN.com - Earth surrounded by giant fizzy bubbles - Jun 20, 2006". www.cnn.com. from the original on 2006-06-22. Retrieved 2021-07-14.
  13. ^ "ESA Science & Technology - Cluster and Double Star reveal the extent of neutral sheet oscillations". sci.esa.int. March 30, 2006. from the original on 2021-04-18. Retrieved 2021-07-14.
  14. ^ Li, W. (2022). "The Dawn-Dusk Tail Lobe Magnetotail Configuration and the Formation of Aurora Transpolar Arc". Journal of Geophysical Research: Space Physics. 127 (10). Bibcode:2022JGRA..12730676L. doi:10.1029/2022JA030676. S2CID 252929937.
  15. ^ Zhang, H. (2022). "A highway for atmospheric ion escape from Earth during the impact of an interplanetary coronal mass ejection". Astrophysical Journal. 937 (4): 4. Bibcode:2022ApJ...937....4Z. doi:10.3847/1538-4357/ac8a93. S2CID 252306675.
  16. ^ Fear, R.C. (2022). "Joint Cluster/ground-based studies in the first 20 years of the Cluster mission" (PDF). Journal of Geophysical Research: Space Physics. 127 (8). Bibcode:2022JGRA..12729928F. doi:10.1029/2021JA029928. S2CID 251333661.
  17. ^ Qiu, H.; Han, D.-S.; et al. (2022). "In situ observation of a magnetopause indentation that is correspondent to throat aurora and is caused by magnetopause reconnection". Geophys. Res. Lett. 49 (15). Bibcode:2022GeoRL..4999408Q. doi:10.1029/2022GL099408. S2CID 250718001.
  18. ^ Hwang, K.-J.; Weygand, J.M.; Sibeck, D.G.; et al. (2022). "Kelvin-Helmholtz vortices as an interplay of Magnetosphere-Ionosphere coupling". Frontiers in Astronomy and Space Sciences. 9: 895514. Bibcode:2022FrASS...9.5514H. doi:10.3389/fspas.2022.895514.
  19. ^ Petrinec, S.M.; Wing, S.; Johnson, R.; Zhang, Y.; et al. (2022). "Multi-Spacecraft Observations of Fluctuations Occurring Along the Dusk Flank Magnetopause, and Testing the Connection to an Observed Ionospheric Bead". Frontiers in Astronomy and Space Sciences. 9: 827612. Bibcode:2022FrASS...927612P. doi:10.3389/fspas.2022.827612.
  20. ^ Lane, J.H.; Grocott, A.; Case, N.A. (2022). "The influence of localized dynamics on dusk-dawn convection in the Earth's magnetotail". Journal of Geophysical Research: Space Physics. 127 (5). Bibcode:2022JGRA..12730057L. doi:10.1029/2021JA030057. S2CID 248850580.
  21. ^ Chong, G.S.; Pitkänen, T.; Hamrin, M.; Kullen, A. (2022). "Dawn-dusk ion flow asymmetry in the plasma sheet". Journal of Geophysical Research: Space Physics. 127 (4). doi:10.1029/2021JA030208. S2CID 247652250.
  22. ^ LaBelle, J.; Yearby, K.; Pickett, J.S. (2022). "South Pole Station ground-based and Cluster satellite measurements of leaked and escaping Auroral Kilometric Radiation" (PDF). Journal of Geophysical Research: Space Physics. 127 (2). Bibcode:2022JGRA..12729399L. doi:10.1029/2021JA029399. S2CID 246333134.
  23. ^ Nguyen, G.; Aunai, N.; Michotte de Welle, B.; Jeandet, A.; Lavraud, B.; Fontaine, D. (2022). "Massive multi-mission statistical study and analytical modeling of the Earth's magnetopause" (PDF). Journal of Geophysical Research: Space Physics. 127 (1). doi:10.1029/2021JA029773. S2CID 245248549.
  24. ^ Wei, D.; Dunlop, M.; et al. (2021). "Intense dB/dt variations driven by near‐Earth bursty bulk flows (BBFs): A case study". Geophysical Research Letters. 48 (4). Bibcode:2021GeoRL..4891781W. doi:10.1029/2020GL091781. S2CID 234111026.
  25. ^ Toledo-Rodeondo, S.; et al. (2021). "Solar Wind—Magnetosphere Coupling During Radial Interplanetary Magnetic Field Conditions: Simultaneous Multi-Point Observations". Journal of Geophysical Research: Space Physics. 126 (11). Bibcode:2021JGRA..12629506T. doi:10.1029/2021JA029506. hdl:10481/72025. S2CID 243961209.
  26. ^ Kronberg, E.; et al. (2021). "Prediction of Soft Proton Intensities in the Near-Earth Space Using Machine Learning". Astrophysical Journal. 921 (1): 76. arXiv:2105.15108. Bibcode:2021ApJ...921...76K. doi:10.3847/1538-4357/ac1b30. S2CID 235254767.
  27. ^ Nakamura, R.; et al. (2021). "Thin Current Sheet Behind the Dipolarization Front". Journal of Geophysical Research: Space Physics. 126 (10). arXiv:2208.12671. Bibcode:2021JGRA..12629518N. doi:10.1029/2021JA029518. S2CID 241861877.
  28. ^ Marklund, G.; Lindqvist, P.-A. (2021). "Cluster Multi-Probing of the Aurora During Two Decades". Journal of Geophysical Research: Space Physics. 126 (6). Bibcode:2021JGRA..12629497M. doi:10.1029/2021JA029497. S2CID 236271440.
  29. ^ Huang, S.Y.; et al. (2021). "Multi-spacecraft measurement of anisotropic spatial correlation functions at kinetic range in the magnetosheath turbulence". Journal of Geophysical Research: Space Physics. 126 (5). Bibcode:2021JGRA..12628780H. doi:10.1029/2020JA028780. S2CID 235556211.
  30. ^ Zhou, H.; He, H.-Q. (2021). "The Solar-cycle Variations of the Anisotropy of Taylor Scale and Correlation Scale in the Solar Wind Turbulence". Astrophysical Journal Letters. 911 (1): L2. arXiv:2104.04920. Bibcode:2021ApJ...911L...2Z. doi:10.3847/2041-8213/abef00. S2CID 233210154.
  31. ^ Haaland, S.; et al. (2021). "Heavy Metal and Rock in Space: Cluster RAPID Observations of Fe and Si". Journal of Geophysical Research: Space Physics. 126 (3). Bibcode:2021JGRA..12628852H. doi:10.1029/2020JA028852. S2CID 233922057.
  32. ^ Lazar, M.; Pierrard, S. (2020). "Characteristics of solar wind suprathermal halo electrons". Astronomy and Astrophysics. 642 (A130): A130. Bibcode:2020A&A...642A.130L. doi:10.1051/0004-6361/202038830. S2CID 229028809.
  33. ^ Hatch, S.M.; Haaland, S. (2020). "Seasonal and hemispheric asymmetries of F region polar cap plasma density: Swarm and CHAMP observations". Journal of Geophysical Research: Space Physics. 125 (11): e2020JA028084. Bibcode:2020JGRA..12528084H. doi:10.1029/2020JA028084.
  34. ^ Bakrania, M.R.; Rae, I.J.; Walsh, A.P. (2020). "Using Dimensionality Reduction and Clustering Techniques to Classify Space Plasma Regimes". Front. Astron. Space Sci. 7 (80): 80. arXiv:2009.10466. Bibcode:2020FrASS...7...80B. doi:10.3389/fspas.2020.593516.
  35. ^ Zhou, G.; He, H.-Q.; Wan, W. (2020). "Effects of Solar Activity on Taylor Scale and Correlation Scale in Solar Wind Magnetic Fluctuations". The Astrophysical Journal Letters. 899 (L32): L32. arXiv:2008.08542. Bibcode:2020ApJ...899L..32Z. doi:10.3847/2041-8213/abaaa9.
  36. ^ Aryan, H.; Agapitov, O.V. (2020). "Outer Radiation Belt Electron Lifetime Model Based on Combined Van Allen Probes and Cluster VLF Measurements". Journal of Geophysical Research: Space Physics. 125 (8): e2020JA028018. Bibcode:2020JGRA..12528018A. doi:10.1029/2020JA028018.
  37. ^ Mishin, E.; Streltsov, A. (2020). "Prebreakup Arc Intensification due to Short Circuiting of Mesoscale Plasma Flows Over the Plasmapause". Journal of Geophysical Research: Space Physics. 125 (5): e2019JA027666. Bibcode:2020JGRA..12527666M. doi:10.1029/2019JA027666.
  38. ^ Forsyth, C.; Sergeev, V.A.; Henderson, M.G.; Nishimura, Y.; Gallardo-Lacourt, B. (2020). "Physical Processes of Meso-Scale, Dynamic Auroral Forms". Space Sci. Rev. 216 (3): 46. Bibcode:2020SSRv..216...46F. doi:10.1007/s11214-020-00665-y.
  39. ^ Haaland, S.; Daly, P.W.; Vilenius, E.; Dandouras, I. (2020). "Suprathermal Fe in the Earth's plasma environment: Cluster RAPID observations". Journal of Geophysical Research: Space Physics. 125 (2): e2019JA027596. Bibcode:2020JGRA..12527596H. doi:10.1029/2019JA027596.
  40. ^ Nakamura, T.K.M.; Stawarz, J.E.; Hasegawa, H.; Narita, Y.; Franci, L.; Narita, Y.; Nakamura, R.; Nystrom, W.D (2020). "Effects of Fluctuating Magnetic Field on the Growth of the Kelvin‐Helmholtz Instability at the Earth's Magnetopause". Journal of Geophysical Research: Space Physics. 125 (3): e2019JA027515. Bibcode:2020JGRA..12527515N. doi:10.1029/2019JA027515. S2CID 212953719.
  41. ^ Lai, H.R.; Russell, C.T.; Jia, Y.D.; Connors, M. (2019). "First observations of the disruption of the Earth's foreshock wave field during magnetic clouds". Geophysical Research Letters. 46 (24): 14282–14289. doi:10.1029/2019GL085818. S2CID 213497617.
  42. ^ Turc, L.; Roberts, O.W.; Archer, M.O.; Palmroth, M.; Battarbee, M.; Brito, T.; Ganse, U.; Grandin, M.; Pfau‐Kempf, Y.; Escoubet, C.P.; Dandouras, I. (2019). "First observations of the disruption of the Earth's foreshock wave field during magnetic clouds" (PDF). Geophysical Research Letters. 46 (22): 1612–1624. Bibcode:2019GeoRL..4612644T. doi:10.1029/2019GL084437. hdl:10138/315030. S2CID 212882584.
  43. ^ Duan, S.; Dai, L.; Wang, C.; Cai, C.; He, Z.; Zhang, Y.; Rème, H.; Dandouras, I. (2019). "Conjunction Observations of Energetic Oxygen Ions O+ Accumulated in the Sequential Flux Ropes in the High‐Altitude Cusp" (PDF). Journal of Geophysical Research: Space Physics. 124 (10): 7912–7922. Bibcode:2019JGRA..124.7912D. doi:10.1029/2019JA026989. S2CID 210305167.
  44. ^ Connor, H.K.; Carter, J.A. (2019). "Exospheric neutral hydrogen density at the nominal 10 RE subsolar point deduced from XMM-Newton X-ray observations". Journal of Geophysical Research: Space Physics. 124 (3): 1612–1624. Bibcode:2019JGRA..124.1612C. doi:10.1029/2018JA026187.
  45. ^ Wang, J.; et al. (2019). "Asymmetric transport of the Earth's polar outflows by the interplanetary magnetic field". Astrophysical Journal Letters. 881 (2): L34. Bibcode:2019ApJ...881L..34W. doi:10.3847/2041-8213/ab385d. S2CID 202135965.
  46. ^ Chen, G.; Fu, H.S.; Zhang, Y.; Li, X.; Ge, Y.S.; Du, A.M.; Liu, C.M.; Xu, Y. (2019). "Energetic electron acceleration in unconfined reconnection jets". The Astrophysical Journal. 881 (1): L8. Bibcode:2019ApJ...881L...8C. doi:10.3847/2041-8213/ab3041.
  47. ^ Kieokaew, R.; Foullon, C. (2019). "Kelvin‐Helmholtz waves magnetic curvature and vorticity: Four‐spacecraft Cluster observations". Journal of Geophysical Research: Space Physics. 124 (5): 3347–3359. Bibcode:2019JGRA..124.3347K. doi:10.1029/2019JA026484.
  48. ^ Damiano, P.A.; Chaston, C.C.; Hull, A.J.; Johnson, J.R. (2018). "Electron distributions in kinetic scale field line resonances: A comparison of simulations and observations". Geophysical Research Letters. 45 (12): 5826–5835. Bibcode:2018GeoRL..45.5826D. doi:10.1029/2018GL077748. OSTI 1468802.
  49. ^ Dimmock, A.P.; et al. (2019). "Direct evidence of nonstationary collisionless shocks in space plasmas". Science Advances. 5 (2): eaau9926. Bibcode:2019SciA....5.9926D. doi:10.1126/sciadv.aau9926. PMC 6392793. PMID 30820454.
  50. ^ Kruparova, O.; et al. (2019). "Statistical survey of the terrestrial bow shock observed by the Cluster spacecraft" (PDF). J. Geophysical. Res. 124 (3): 1539–1547. Bibcode:2019JGRA..124.1539K. doi:10.1029/2018JA026272. hdl:11603/12953. S2CID 134189855.
  51. ^ Fu, H.S.; Xu, Y.; Vaivads, A.; Khotyaintsev, Y.V. (2019). "Super-efficient electron acceleration by an isolated magnetic reconnection". Astrophysical Journal Letters. 870 (L22): L22. Bibcode:2019ApJ...870L..22F. doi:10.3847/2041-8213/aafa75.
  52. ^ Slapak, R.; Nilsson, H. (2018). "The Oxygen Ion Circulation in The Outer Terrestrial Magnetosphere and Its Dependence on Geomagnetic Activity". Geophys. Res. Lett. 45 (23): 12, 669–12, 676. Bibcode:2018GeoRL..4512669S. doi:10.1029/2018GL079816.
  53. ^ Schillings, A.; Nilsson, H.; Slapak, R.; Wintoft, P.; Yamauchi, M.; Wik, M.; Dandouras, I.; Carr, C.M. (2018). "O+ escape during the extreme space weather event of 4–10 September 2017". Space Weather. 16 (4): 1363–1376. Bibcode:2018SpWea..16.1363S. doi:10.1029/2018sw001881.
  54. ^ Liebert, E.; Nabert, C.; Glassmeier, K.-H. (2018). "Statistical survey of day-side magnetospheric current flow using Cluster observations: bow shock". Annales Geophysicae. 36 (4): 1073–1080. Bibcode:2018AnGeo..36.1073L. doi:10.5194/angeo-36-1073-2018.
  55. ^ Liu, C.M.; H. S. Fu; D. Cao; Y. Xu; A. Divin (2018). "Detection of magnetic nulls around reconnection fronts". The Astrophysical Journal. 860 (2): 128. Bibcode:2018ApJ...860..128L. doi:10.3847/1538-4357/aac496. S2CID 125461272.
  56. ^ Coxon, J.C.; Freeman, M.P.; Jackman, C.M.; Forsyth, C.; Rae, I.J.; Fear, R.C. (2018). "Tailward propagation of magnetic energy density variations with respect to substorm onset times". Journal of Geophysical Research: Space Physics. 123 (6): 4741–4754. Bibcode:2018JGRA..123.4741C. doi:10.1029/2017JA025147.
  57. ^ Masson, A.; Nykyri, K. (2018). "Kelvin–Helmholtz Instability: lessons learned and ways forward" (PDF). Space Science Reviews. 214 (4): 71. Bibcode:2018SSRv..214...71M. doi:10.1007/s11214-018-0505-6. S2CID 125646793.
  58. ^ Roberts, O. W.; Narita, Y.; Escoubet, C.-P (2018). "Three-dimensional density and compressible magnetic structure in solar wind turbulence". Annales Geophysicae. 36 (2): 527–539. Bibcode:2018AnGeo..36..527R. doi:10.5194/angeo-36-527-2018.
  59. ^ Hadid, L. Z.; Sahraoui, F.; Galtier, S.; Huang, S. Y. (January 2018). "Compressible Magnetohydrodynamic Turbulence in the Earth's Magnetosheath: Estimation of the Energy Cascade Rate Using in situ Spacecraft Data". Physical Review Letters. 120 (5): 055102. arXiv:1710.04691. Bibcode:2018PhRvL.120e5102H. doi:10.1103/PhysRevLett.120.055102. PMID 29481187. S2CID 3676068.
  60. ^ Grigorenko, E.E.; Dubyagin, S.; Malykhin, A.; Khotyaintsev, Y.V.; Kronberg, E.A.; Lavraud, B.; Ganushkina, N.Yu (2018). . Geophysical Research Letters. 45 (2): 602–611. Bibcode:2018GeoRL..45..602G. doi:10.1002/2017GL076303. hdl:2027.42/142547. S2CID 133980983. Archived from the original on 2019-10-31. Retrieved 2019-10-31.
  61. ^ Andreeva V. A.; Tsyganenko N. A. (2017). "Empirical Modeling of the Quiet and Storm Time Geosynchronous Magnetic Field". Space Weather. 16 (1): 16–36. Bibcode:2018SpWea..16...16A. doi:10.1002/2017SW001684.
  62. ^ Roberts, O.W.; Y. Narita; C.P. Escoubet (2017). "Direct measurement of anisotropic and asymmetric wave vector Spectrum in ion-scale solar wind turbulence". The Astrophysical Journal. 851 (1): L11. Bibcode:2017ApJ...851L..11R. doi:10.3847/2041-8213/aa9bf3.
  63. ^ Perrone, D.; O. Alexandrova; O.W. Roberts; S. Lion; C. Lacombe; A. Walsh; M. Maksimovic; I. Zouganelis (2017). "Coherent structures at ion scales in the fast solar wind: Cluster observations". The Astrophysical Journal. 849 (1): 49. arXiv:1709.09644. Bibcode:2017ApJ...849...49P. doi:10.3847/1538-4357/aa9022. S2CID 119050245.
  64. ^ Perrone, D.; O. Alexandrova; O.W. Roberts; S. Lion; C. Lacombe; A. Walsh; M. Maksimovic; I. Zouganelis (2017). "Near-Earth plasma sheet boundary dynamics during substorm dipolarization". Earth, Planets and Space. 69 (1): 129. Bibcode:2017EP&S...69..129N. doi:10.1186/s40623-017-0707-2. PMC 6961498. PMID 32009832.
  65. ^ Yushkov, E.; A. Petrukovich; A. Artemyev; R. Nakamura (2017). "Relationship between electron field-aligned anisotropy and dawn-dusk magnetic field: nine years of Cluster observations in the Earth magnetotail". Journal of Geophysical Research: Space Physics. 122 (9): 9294–9305. Bibcode:2017JGRA..122.9294Y. doi:10.1002/2016JA023739. S2CID 134267682.
  66. ^ Giagkiozis, S.; S. N. Walker; S. A. Pope; G. Collinson (2017). "Validation of single spacecraft methods for collisionless shock velocity estimation". Journal of Geophysical Research: Space Physics. 122 (8): 8632–8641. Bibcode:2017JGRA..122.8632G. doi:10.1002/2017JA024502.
  67. ^ Zhao, L.L.; Zhang, H.; Zong, Q.G. (2017). "Global ULF waves generated by a hot flow anomaly". Geophysical Research Letters. 44 (11): 5283–5291. Bibcode:2017GeoRL..44.5283Z. doi:10.1002/2017GL073249.
  68. ^ Fu, H.S.; A. Vaivads; Y.V. Khotyaintsev; M. André; J. B. Cao; V. Olshevsky; J. P. Eastwood; A. Retinò (2017). "Intermittent energy dissipation by turbulent reconnection". Geophysical Research Letters. 44 (1): 37–43. Bibcode:2017GeoRL..44...37F. doi:10.1002/2016GL071787. hdl:10044/1/44378. S2CID 125215749.
  69. ^ Turc, L.; D. Fontaine; C.P. Escoubet; E.K.J. Kilpua; A.P. Dimmock (2017). "Statistical study of the alteration of the magnetic structure of magnetic clouds in the Earth's magnetosheath". Journal of Geophysical Research: Space Physics. 122 (3): 2956–2972. Bibcode:2017JGRA..122.2956T. doi:10.1002/2016JA023654. hdl:10138/224163. S2CID 125621578.
  70. ^ Vines, S.K.; S.A. Fuselier; S.M. Petrinec; K.J. Trattner; R.C. Allen (2017). "Occurrence frequency and location of magnetic islands at the dayside magnetopause". Journal of Geophysical Research: Space Physics. 122 (4): 4138–4155. Bibcode:2017JGRA..122.4138V. doi:10.1002/2016JA023524.
  71. ^ Case, N. A.; A. Grocott; S. E. Milan; T. Nagai; J. P. Reistad (2017). "An analysis of magnetic reconnection events and their associated auroral enhancements". Journal of Geophysical Research: Space Physics. 122 (2): 2922–2935. Bibcode:2017JGRA..122.2922C. doi:10.1002/2016JA023586.
  72. ^ Lugaz, N.; C.J. Farrugia; C.-L. Huang; R.M. Winslow; H.E. Spence; N.A. Schwadron (2016). "Earth's magnetosphere and outer radiation belt under sub-Alfvénic solar wind". Nature Communications. 7: 13001. Bibcode:2016NatCo...713001L. doi:10.1038/ncomms13001. PMC 5063966. PMID 27694887.
  73. ^ Moore, T.W.; Nykyri, K.; Dimmock, A.P. (2016). "Cross-scale energy transport in space plasmas". Nature Physics. 12 (12): 1164–1169. Bibcode:2016NatPh..12.1164M. doi:10.1038/nphys3869. S2CID 125684283.
  74. ^ Schmid, D.; R. Nakamura; M. Volwerk; F. Plaschke; Y. Narita; W. Baumjohann; et al. (2016). "A comparative study of dipolarization fronts at MMS and Cluster". Geophysical Research Letters. 43 (12): 6012–6019. Bibcode:2016GeoRL..43.6012S. doi:10.1002/2016GL069520. PMC 4949994. PMID 27478286.
  75. ^ Parks, G.K.; E. Lee; S.Y. Fu; H.E. Kim; Y.Q. Ma; Z.W. Yang; Y. Liu; N. Lin; J. Hong; P. Canu (2016). "Transport of solar wind H+ and He++ ions across Earth's bow shock". The Astrophysical Journal. 825 (2): L27. Bibcode:2016ApJ...825L..27P. doi:10.3847/2041-8205/825/2/L27.
  76. ^ a b Lee, S.H.; H. Zhang; Q.-G. Zong; A. Otto; H. Rème; E. Liebert (2016). "A statistical study of plasmaspheric plumes and ionospheric outflows observed at the dayside magnetopause". Journal of Geophysical Research: Space Physics. 121 (1): 492–506. Bibcode:2016JGRA..121..492L. doi:10.1002/2015JA021540.
  77. ^ a b Zhang, B.; O.J. Brambles; W. Lotko; J.E. Ouellette; J.G. Lyon (2016). "The role of ionospheric O+ outflow in the generation of earthward propagating plasmoids". Journal of Geophysical Research: Space Physics. 121 (2): 1425–1435. Bibcode:2016JGRA..121.1425Z. doi:10.1002/2015JA021667.
  78. ^ Yao, Z.; A.N. Fazakerley; A. Varsani; I.J. Rae; C.J. Owen; et al. (2016). "Substructures within a dipolarization front revealed by high-temporal resolution Cluster observations". Journal of Geophysical Research: Space Physics. 121 (6): 5185–5202. Bibcode:2016JGRA..121.5185Y. doi:10.1002/2015JA022238.
  79. ^ L. Turc; C.P. Escoubet; D. Fontaine; E.K.J. Kilpua; S. Enestam (2016). "Cone angle control of the interaction of magnetic clouds with the Earth's bow shock". Geophysical Research Letters. 43 (10): 4781–4789. Bibcode:2016GeoRL..43.4781T. doi:10.1002/2016GL068818. S2CID 131474026.
  80. ^ Cheng, Z.W.; J.C. Zhang; J.K. Shi; L.M. Kistler; M. Dunlop; I. Dandouras; A. Fazakerley (2016). "The particle carriers of field‐aligned currents in the Earth's magnetotail during a substorm". Journal of Geophysical Research: Space Physics. 121 (4): 3058–3068. Bibcode:2016JGRA..121.3058C. doi:10.1002/2015JA022071.
  81. ^ Wang, R.; Q. Lu; R. Nakamura; C. Huang; A. Du; F. Guo; W. Teh; M. Wu; S. Lu; S. Wang (2015). "Coalescence of magnetic flux ropes in the ion diffusion region of magnetic reconnection". Nature Physics. 12 (3): 263–267. Bibcode:2016NatPh..12..263W. doi:10.1038/nphys3578.
  82. ^ Décréau, P.M.E.; Aoutou, S.; Denazelle, A.; Galkina, I.; Rauch, J.-L.; Vallières, X.; Canu, P.; Rochel Grimald, S.; El-Lemdani Mazouz, F.; Darrouzet, F. (2015). "Wide-banded NTC radiation: local to remote observations by the four Cluster satellites". Annales Geophysicae. 33 (10): 1285–1300. Bibcode:2015AnGeo..33.1285D. doi:10.5194/angeo-33-1285-2015.
  83. ^ Eriksson, E.; A. Vaivads; Y. V. Khotyaintsev; V. M. Khotyayintsev; M. André (2015). "Statistics and accuracy of magnetic null identification in multispacecraft data". Geophysical Research Letters. 42 (17): 6883–6889. Bibcode:2015GeoRL..42.6883E. doi:10.1002/2015GL064959.
  84. ^ Cai, D.; A. Esmaeili; B. Lembège; K.‐I. Nishikawa (2015). "Cusp dynamics under northward IMF using three‐dimensional global particle‐in‐cell simulations" (PDF). Journal of Geophysical Research: Space Physics. 120 (10): 8368–8386. Bibcode:2015JGRA..120.8368C. doi:10.1002/2015JA021230.
  85. ^ Balikhin, M.A.; Y.Y. Shprits; S.N. Walker; L. Chen; N. Cornilleau-Wehrlin; I. Dandouras; O. Santolik; C. Carr; K.H. Yearby; B. Weiss (2015). "Observations of Discrete Harmonics Emerging From Equatorial Noise". Nature Communications. 6: 7703. Bibcode:2015NatCo...6.7703B. doi:10.1038/ncomms8703. PMC 4510698. PMID 26169360.
  86. ^ Dunlop, M.W.; J.-Y. Yang; Y.-Y. Yang; C. Xiong; H. Lühr; Y. V. Bogdanova; C. Shen; N. Olsen; Q.-H. Zhang; J.-B. Cao; H.-S. Fu; W.-L. Liu; C. M. Carr; P. Ritter; A. Masson; R. Haagmans (2015). "Simultaneous field-aligned currents at Swarm and Cluster satellites". Geophysical Research Letters. 42 (10): 3683–3691. Bibcode:2015GeoRL..42.3683D. doi:10.1002/2015GL063738.
  87. ^ Russell, A. J. B.; Karlsson, T.; Wright, A. N. (2015). "Magnetospheric signatures of ionospheric density cavities observed by Cluster" (PDF). Journal of Geophysical Research: Space Physics. 120 (3): 1876–1887. Bibcode:2015JGRA..120.1876R. doi:10.1002/2014JA020937.
  88. ^ Russell, A.J.B.; T. Karlsson; A.N. Wright (2015). "Magnetospheric signatures of ionospheric density cavities observed by Cluster" (PDF). Journal of Geophysical Research: Space Physics. 120 (3): 1876–1887. Bibcode:2015JGRA..120.1876R. doi:10.1002/2014JA020937.
  89. ^ Maes, L.; Maggiolo, R.; De Keyser, J.; Dandouras, I.; Fear, R.C.; Fontaine, D.; Haaland, S. (2015). "Solar illumination control of ionospheric outflow above polar cap arcs". Geophysical Research Letters. 42 (5): 1304–1311. Bibcode:2015GeoRL..42.1304M. doi:10.1002/2014GL062972.
  90. ^ Fear, R.C.; S.E. Milan; R. Maggiolo; A.N. Fazakerley; I. Dandouras; S.B. Mende (2014). "Direct observation of closed magnetic flux trapped in the high latitude magnetosphere" (PDF). Science. 346 (6216): 1506–1510. Bibcode:2014Sci...346.1506F. doi:10.1126/science.1257377. PMID 25525244. S2CID 21017912.
  91. ^ Zhongwei, Y.; Y.D. Liu; G.K. Parks; P. Wu; C. Huang; R. Shi; R. Wang; H. Hu (2014). "Full particle electromagnetic simulations of entropy generation across a collisionless shock". The Astrophysical Journal. 793 (1): L11. Bibcode:2014ApJ...793L..11Y. doi:10.1088/2041-8205/793/1/L11.
  92. ^ Kozyra; et al. (2014). "Solar filament impact on 21 January 2005: Geospace consequences". Journal of Geophysical Research: Space Physics. 119 (7): 2169–9402. Bibcode:2014JGRA..119.5401K. doi:10.1002/2013JA019748. hdl:2027.42/108315. S2CID 52001277.
  93. ^ Walsh, A. P.; Haaland, S.; Forsyth, C.; Keesee, A. M.; Kissinger, J.; Li, K.; Runov, A.; Soucek, J.; Walsh, B. M.; Wing, S.; Taylor, M.G.G.T. (2014). "Dawn–dusk asymmetries in the coupled solar wind–magnetosphere–ionosphere system: a review". Annales Geophysicae. 32 (7): 705–737. arXiv:1701.04701. Bibcode:2014AnGeo..32..705W. doi:10.5194/angeo-32-705-2014. S2CID 55038191.
  94. ^ Graham, D.B.; Yu. V. Khotyaintsev; A. Vaivads; M. Andre; A. N. Fazakerley (2014). "Electron Dynamics in the Diffusion Region of Asymmetric Magnetic Reconnection". Physical Review Letters. 112 (21): 215004. Bibcode:2014PhRvL.112u5004G. doi:10.1103/PhysRevLett.112.215004.
  95. ^ Luo, H.; E. A. Kronberg; E. E. Grigorenko; M. Fränz; P. W. Daly; G. X. Chen; A. M. Du; L. M. Kistler; Y. Wei (2014). "Evidence of strong energetic ion acceleration in the near‐Earth magnetotail". Geophysical Research Letters. 41 (11): 3724–3730. Bibcode:2014GeoRL..41.3724L. doi:10.1002/2014GL060252.
  96. ^ Tsyganenko, N. (2014). "Data-based modeling of the geomagnetosphere with an IMF-dependent magnetopause". Journal of Geophysical Research: Space Physics. 119 (1): 335–354. Bibcode:2014JGRA..119..335T. doi:10.1002/2013JA019346. S2CID 119786539.
  97. ^ Shen, C.; Y.Y. Yang; Z.J. Rong; X. Li; M. Dunlop; C.M. Carr; Z.X. Liu; D.N. Baker; Z.Q. Chen; Y. Ji; G. Zeng (2014). "Direct calculation of the ring current distribution and magnetic structure seen by Cluster during geomagnetic storms". Journal of Geophysical Research: Space Physics. 119 (4): 2458–2465. Bibcode:2014JGRA..119.2458S. doi:10.1002/2013JA019460.
  98. ^ Nakamura, R.; T. Karlsson; M. Hamrin; H. Nilsson; O. Marghitu; O. Amm; C. Bunescu; V. Constantinescu; H.U. Frey; A. Keiling; J. Semeter; E. Sorbalo; J. Vogt; C. Forsyth; M.V. Kubyshkina (2014). "Low-altitude electron acceleration due to multiple flow bursts in the magnetotail". Geophysical Research Letters. 41 (3): 777–784. Bibcode:2014GeoRL..41..777N. doi:10.1002/2013GL058982.
  99. ^ Décréau, P.M.E.; et al. (2013). "Remote sensing of a NTC radio source from a Cluster tilted spacecraft pair". Annales Geophysicae. 31 (11): 2097–2121. Bibcode:2013AnGeo..31.2097D. doi:10.5194/angeo-31-2097-2013.
  100. ^ Haaland, S.; J. Gjerloev (2013). "On the relation between asymmetries in the ring current and magnetopause current". Journal of Geophysical Research: Space Physics. 118 (7): 7593–7604. Bibcode:2013JGRA..118.7593H. doi:10.1002/jgra.50239. hdl:2027.42/99669. S2CID 55200569.
  101. ^ Darrouzet, F.; et al. (2013). "Links between the plasmapause and the radiation belt boundaries as observed by the instruments CIS, RAPID, and WHISPER onboard Cluster". Journal of Geophysical Research: Space Physics. 118 (7): 4176–4188. Bibcode:2013JGRA..118.4176D. doi:10.1002/jgra.50239. hdl:2027.42/99669. S2CID 55200569.
  102. ^ Fu, H.S.; et al. (2013). "Energetic electron acceleration by unsteady magnetic reconnection". Nature Physics. 9 (7): 426–430. Bibcode:2013NatPh...9..426F. doi:10.1038/nphys2664.
  103. ^ Dandouras, I. (2013). "Detection of a plasmaspheric wind in the Earth's magnetosphere by the Cluster spacecraft". Annales Geophysicae. 31 (7): 1143–1153. Bibcode:2013AnGeo..31.1143D. doi:10.5194/angeo-31-1143-2013.
  104. ^ Viberg, H.; et al. (2013). "Mapping High-Frequency Waves in the Reconnection Diffusion Region". Geophysical Research Letters. 40 (6): 1032–1037. Bibcode:2013GeoRL..40.1032V. doi:10.1002/grl.50227.
  105. ^ Cao, J.; et al. (2013). "Kinetic analysis of the energy transport of bursty bulk flows in the plasma sheet". Journal of Geophysical Research: Space Physics. 118 (1): 313–320. Bibcode:2013JGRA..118..313C. doi:10.1029/2012JA018351.
  106. ^ Perri, S.; et al. (2012). "Detection of small scale structures in the dissipation regime of solar wind turbulence". Physical Review Letters. 109 (19): 191101. Bibcode:2012PhRvL.109s1101P. doi:10.1103/PhysRevLett.109.191101. PMID 23215371.
  107. ^ Hwang, K.-J.; et al. (2012). "The first in situ observation of Kelvin-Helmholtz waves at high-latitude magnetopause during strongly dawnward interplanetary magnetic field conditions". Journal of Geophysical Research: Space Physics. 117 (A8): A08233. Bibcode:2012JGRA..117.8233H. doi:10.1029/2011JA017256. hdl:2060/20140009615.
  108. ^ Norgren, C.; et al. (2012). "Lower hybrid drift waves: space observations". Physical Review Letters. 109 (5): 55001. Bibcode:2012PhRvL.109e5001N. doi:10.1103/PhysRevLett.109.055001. PMID 23006181.
  109. ^ Nykyri, K.; et al. (2012). "On the origin of high-energy particles in the cusp diamagnetic cavity". Journal of Atmospheric and Solar-Terrestrial Physics. 87–88 (Special Issue on Physical Process in the Cusp: Plasma Transport and Energization): 70–81. Bibcode:2012JASTP..87...70N. doi:10.1016/j.jastp.2011.08.012.
  110. ^ Wei, Y.; et al. (2012). "Enhanced atmospheric oxygen outflow on Earth and Mars driven by a corotating interaction region". Journal of Geophysical Research: Space Physics. 117 (A16): 3208. Bibcode:2012JGRA..117.3208W. doi:10.1029/2011JA017340.
  111. ^ Egedal, J.; et al. (2012). "Large-scale electron acceleration by parallel electric fields during magnetic reconnection". Nature Physics. 8 (4): 321–324. Bibcode:2012NatPh...8..321E. doi:10.1038/nphys2249.
  112. ^ André, M.; C.M. Cully (February 2012). "Low-energy ions: A previously hidden solar system particle population, in press". Geophysical Research Letters. 39 (3): n/a. Bibcode:2012GeoRL..39.3101A. doi:10.1029/2011GL050242.
  113. ^ Schwartz, S.J.; et al. (2011). "Electron temperature gradient scale at collisionless shocks" (PDF). Physical Review Letters. 107 (21): 215002. Bibcode:2011PhRvL.107u5002S. doi:10.1103/PhysRevLett.107.215002. hdl:10044/1/18881. PMID 22181889.
  114. ^ Shay, M.A.; et al. (2011). "Super-Alfvénic Propagation of Substorm Reconnection Signature and Poynting Flux". Physical Review Letters. 107 (6): 065001. arXiv:1104.0922. Bibcode:2011PhRvL.107f5001S. doi:10.1103/PhysRevLett.107.065001. PMID 21902330. S2CID 119204267.
  115. ^ Turner, A.J.; et al. (2011). "Nonaxisymmetric Anisotropy of Solar Wind Turbulence". Physical Review Letters. 107 (9): 095002. arXiv:1106.2023. Bibcode:2011PhRvL.107i5002T. doi:10.1103/PhysRevLett.107.095002. PMID 21929247. S2CID 736486.
  116. ^ Khotyaintsev, Y.; et al. (2011). "Plasma Jet Braking: Energy Dissipation and Nonadiabatic Electrons" (PDF). Physical Review Letters. 106 (16): 165001. Bibcode:2011PhRvL.106p5001K. doi:10.1103/PhysRevLett.106.165001. PMID 21599373.
  117. ^ Marklund, G.T.; et al. (2011). "Altitude distribution of the auroral acceleration potential determined from Cluster satellite data at different heights". Physical Review Letters. 106 (5): 055002. Bibcode:2011PhRvL.106e5002M. doi:10.1103/PhysRevLett.106.055002. PMID 21405403.
  118. ^ Echim, M.; et al. (2011). "Comparative investigation of the terrestrial and Venusian magnetopause: Kinetic modeling and experimental observations by Cluster and Venus Express". Planetary and Space Science. 59 (10): 1028–1038. Bibcode:2011P&SS...59.1028E. doi:10.1016/j.pss.2010.04.019.
  119. ^ Sahraoui, F.; et al. (2010). "Three dimensional anisotropic k spectra of turbulence at subproton scales in the solar wind". Physical Review Letters. 105 (13): 131101. Bibcode:2010PhRvL.105m1101S. doi:10.1103/PhysRevLett.105.131101. PMID 21230758.
  120. ^ Masson, A.; et al. (2011), "A decade revealing the Sun-Earth connection in three dimensions", Eos, Transactions American Geophysical Union, 92 (1): 4, Bibcode:2011EOSTr..92Q...4M, doi:10.1029/2011EO010007
  121. ^ Kistler, L.M.; et al. (2010). "Cusp as a source for oxygen in the plasma sheet during geomagnetic storms". Journal of Geophysical Research: Space Physics. 115 (A3): A03209. Bibcode:2010JGRA..115.3209K. doi:10.1029/2009JA014838.
  122. ^ Yuan, Z.; et al. (2010). "Link between EMIC waves in a plasmaspheric plume and a detached sub-auroral proton arc with observations of Cluster and IMAGE satellites" (PDF). Geophysical Research Letters. 37 (7): L07108. Bibcode:2010GeoRL..37.7108Y. doi:10.1029/2010GL042711. S2CID 129916422.
  123. ^ Laakso, Harri; Taylor, Matthew; Escoubet, C. Philippe (2010). Laakso, H.; et al. (eds.). The Cluster Active Archive – Studying the Earth's Space Plasma Environment. The Cluster Active Archive. Astrophysics and Space Science Proceedings. Vol. 11. Astrophys. & Space Sci. Proc. series, Springer. pp. 1–489. Bibcode:2010ASSP...11.....L. doi:10.1007/978-90-481-3499-1. ISBN 978-90-481-3498-4.
  124. ^ Hietala, H.; et al. (2009). "Supermagnetosonic jets behind a collisionless quasiparallel shock". Physical Review Letters. 103 (24): 245001. arXiv:0911.1687. Bibcode:2009PhRvL.103x5001H. doi:10.1103/PhysRevLett.103.245001. PMID 20366203. S2CID 12557772.
  125. ^ Zong, Q.-G.; et al. (2009). "Energetic electron response to ULF waves induced by interplanetary shocks in the outer radiation belt". Journal of Geophysical Research: Space Physics. 114 (A10): A10204. Bibcode:2009JGRA..11410204Z. doi:10.1029/2009JA014393.
  126. ^ Dunlop, M.; et al. (2009). "Reconnection at High Latitudes: Antiparallel Merging". Physical Review Letters. 102 (7): 075005. Bibcode:2009PhRvL.102g5005D. doi:10.1103/PhysRevLett.102.075005. PMID 19257682.
  127. ^ Sahraoui, F.; et al. (2009). "Evidence of a cascade and dissipation of solar-wind turbulence at the electron gyroscale". Physical Review Letters. 102 (23): 231102. Bibcode:2009PhRvL.102w1102S. doi:10.1103/PhysRevLett.102.231102. PMID 19658919.
  128. ^ Dandouras, I.; et al. (2009). "Magnetosphere response to the 2005 and 2006 extreme solar events as observed by the Cluster and Double Star spacecraft". Advances in Space Research. 43 (23): 618–623. Bibcode:2009AdSpR..43..618D. doi:10.1016/j.asr.2008.10.015.
  129. ^ Yordanova, E.; et al. (2008). "Magnetosheath plasma turbulence and its spatiotemporal evolution as observed by the Cluster spacecraft". Physical Review Letters. 100 (20): 205003. Bibcode:2008PhRvL.100t5003Y. doi:10.1103/PhysRevLett.100.205003. PMID 18518544.
  130. ^ Engwall, E.; et al. (2009). "Magnetosheath plasma turbulence and its spatiotemporal evolution as observed by the Cluster spacecraft". Nature Geoscience. 2 (1): 24–27. Bibcode:2009NatGe...2...24E. doi:10.1038/ngeo387.
  131. ^ Eastwood, J.; et al. (2008). "The science of space weather". Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences. 366 (1884): 4489–4500. Bibcode:2008RSPTA.366.4489E. doi:10.1098/rsta.2008.0161. PMID 18812302. S2CID 49410.
  132. ^ Kronberg, E.; et al. (2008). "Comparison of periodic substorms at Jupiter and Earth". Journal of Geophysical Research: Space Physics. 113: A04212. Bibcode:2008JGRA..11304212K. doi:10.1029/2007JA012880.
  133. ^ Nilsson, H.; et al. (2008). "An assessment of the role of the centrifugal acceleration mechanism in high altitude polar cap oxygen ion outflow". Annales Geophysicae. 26 (1): 145–157. Bibcode:2008AnGeo..26..145N. doi:10.5194/angeo-26-145-2008.
  134. ^ He, J.-S.; et al. (2008). "Electron trapping around a magnetic null" (PDF). Geophysical Research Letters. 35 (14): L14104. Bibcode:2008GeoRL..3514104H. doi:10.1029/2008GL034085.
  135. ^ He, J.-S.; et al. (2008). "A magnetic null geometry reconstructed from Cluster spacecraft observations". Journal of Geophysical Research: Space Physics. 113 (A5): A05205. Bibcode:2008JGRA..113.5205H. doi:10.1029/2007JA012609.
  136. ^ Mutel, R.L.; et al. (2008). "Cluster multispacecraft determination of AKR angular beaming". Geophysical Research Letters. 35 (7): L07104. arXiv:0803.0078. Bibcode:2008GeoRL..35.7104M. doi:10.1029/2008GL033377. S2CID 18143005.
  137. ^ Wei, X.H.; et al. (2007). "Cluster observations of waves in the whistler frequency range associated with magnetic reconnection in the Earth's magnetotail". Journal of Geophysical Research: Space Physics. 112 (A10): A10225. Bibcode:2007JGRA..11210225W. doi:10.1029/2006JA011771.
  138. ^ Trines, R.; et al. (2007). "Spontaneous Generation of Self-Organized Solitary Wave Structures at Earth's Magnetopause" (PDF). Physical Review Letters. 99 (20): 205006. Bibcode:2007PhRvL..99t5006T. doi:10.1103/PhysRevLett.99.205006. PMID 18233152.
  139. ^ Phan, T.; et al. (2007). "Evidence for an Elongated (>60 Ion Skin Depths) Electron Diffusion Region during Fast Magnetic Reconnection". Physical Review Letters. 99 (25): 255002. Bibcode:2007PhRvL..99y5002P. doi:10.1103/PhysRevLett.99.255002. PMID 18233527.
  140. ^ Grigorenko, E.E.; et al. (2007). "Spatial-Temporal characteristics of ion beamlets in the plasma sheet boundary layer of magnetotail". Journal of Geophysical Research: Space Physics. 112 (A5): A05218. Bibcode:2007JGRA..112.5218G. doi:10.1029/2006JA011986.
  141. ^ Lavraud, B.; et al. (2007). "Strong bulk plasma acceleration in Earth's magnetosheath: A magnetic slingshot effect?". Geophysical Research Letters. 34 (14): L14102. Bibcode:2007GeoRL..3414102L. doi:10.1029/2007GL030024. hdl:2027.42/94743. S2CID 40387871.
  142. ^ Rosenqvist, L.; et al. (2007). "An unusual giant spiral arc in the polar cap region during the northward phase of a Coronal Mass Ejection". Annales Geophysicae. 25 (2): 507–517. Bibcode:2007AnGeo..25..507R. doi:10.5194/angeo-25-507-2007.
  143. ^ Lui, A.T.Y.; et al. (2007). "Breakdown of the frozen-in condition in the Earth's magnetotail". Journal of Geophysical Research: Space Physics. 112 (A4): A04215. Bibcode:2007JGRA..112.4215L. doi:10.1029/2006JA012000.
  144. ^ Haaland, S.E.; et al. (2007). "High-latitude plasma convection from Cluster EDI measurements: method and IMF-dependence". Annales Geophysicae. 25 (1): 239–253. Bibcode:2007AnGeo..25..239H. doi:10.5194/angeo-25-239-2007.
  145. ^ Förster, M.; et al. (2007). "High-latitude plasma convection from Cluster EDI: variances and solar wind correlations". Annales Geophysicae. 25 (7): 1691–1707. Bibcode:2007AnGeo..25.1691F. doi:10.5194/angeo-25-1691-2007.
  146. ^ Sergeev, V.; Semenov, V.; Kubyshkina, M.; Ivanova, V.; Baumjohann, W.; Nakamura, R.; Penz, T.; Runov, A.; Zhang, T. L.; Glassmeier, K.-H.; Angelopoulos, V.; Frey, H.; Sauvaud, J.-A.; Daly, P.; Cao, J. B.; Singer, H.; Lucek, E. (2007). "Observation of repeated intense near-Earth reconnection on closed field lines with Cluster, Double Star, and other spacecraft". Geophysical Research Letters. 34 (2): L02103. Bibcode:2007GeoRL..34.2103S. doi:10.1029/2006GL028452.
  147. ^ Rae, J.; et al. (2005). "Evolution and characteristics of global Pc5 ULF waves during a high solar wind speed interval" (PDF). Journal of Geophysical Research. 110 (A12): A12211. Bibcode:2005JGRA..11012211R. doi:10.1029/2005JA011007.
  148. ^ Zong, Q.-G.; et al. (2007). "Ultralow frequency modulation of energetic particles in the dayside magnetosphere". Geophysical Research Letters. 34 (12): L12105. Bibcode:2007GeoRL..3412105Z. doi:10.1029/2007GL029915.
  149. ^ Xiao, C.J.; et al. (2007). "Satellite observations of separator-line geometry of three-dimensional magnetic reconnection". Nature Physics. 3 (9): 603–607. arXiv:0705.1021. Bibcode:2007NatPh...3..609X. doi:10.1038/nphys650. S2CID 119637705.
  150. ^ Lobzin, V.V.; et al. (2007). "Nonstationarity and reformation of high-Mach-number quasiperpendicular shocks: Cluster observations" (PDF). Geophysical Research Letters. 34 (5): L05107. Bibcode:2007GeoRL..3405107L. doi:10.1029/2006GL029095.
  151. ^ Lui, A.T.Y.; et al. (2006). "Cluster observation of plasma flow reversal in the magnetotail during a substorm". Annales Geophysicae. 24 (7): 2005–2013. Bibcode:2006AnGeo..24.2005L. doi:10.5194/angeo-24-2005-2006.
  152. ^ Retinò, A.; et al. (2007). "In situ evidence of magnetic reconnection in turbulent plasma". Nature Physics. 3 (4): 236–238. Bibcode:2007NatPh...3..236R. doi:10.1038/nphys574.
  153. ^ Henderson, P.; et al. (2006). "Cluster PEACE observations of electron pressure tensor divergence in the magnetotail" (PDF). Geophysical Research Letters. 33 (22): L22106. Bibcode:2006GeoRL..3322106H. doi:10.1029/2006GL027868.
  154. ^ Marklund, G.; et al. (2007). "Cluster observations of an auroral potential and associated field-aligned current reconfiguration during thinning of the plasma sheet boundary layer". Journal of Geophysical Research: Space Physics. 112 (A1): n/a. Bibcode:2007JGRA..112.1208M. doi:10.1029/2006JA011804.
  155. ^ Nykyri, K.; et al. (2006). "Cluster observations of reconnection due to the Kelvin-Helmholtz instability at the dawnside magnetospheric flank". Annales Geophysicae. 24 (10): 2619–2643. Bibcode:2006AnGeo..24.2619N. doi:10.5194/angeo-24-2619-2006.
  156. ^ Darrouzet, F.; et al. (2006). "Spatial gradients in the plasmasphere from Cluster". Geophysical Research Letters. 33 (8): L08105. Bibcode:2006GeoRL..33.8105D. doi:10.1029/2006GL025727.
  157. ^ Darrouzet, F.; et al. (2006). "Analysis of plasmaspheric plumes: CLUSTER and IMAGE observations". Annales Geophysicae. 24 (6): 1737–1758. Bibcode:2006AnGeo..24.1737D. doi:10.5194/angeo-24-1737-2006.
  158. ^ Marchaudon, A.; et al. (2005). "Simultaneous Double Star and Cluster FTEs observations on the dawnside flank of the magnetosphere". Annales Geophysicae. 23 (8): 2877–2887. Bibcode:2005AnGeo..23.2877M. doi:10.5194/angeo-23-2877-2005.
  159. ^ Cao, J.B.; et al. (2006). "Joint observations by Cluster satellites of bursty bulk flows in the magnetotail". Journal of Geophysical Research. 111 (A4): A04206. Bibcode:2006JGRA..111.4206C. doi:10.1029/2005JA011322.
  160. ^ Xiao, C.J.; et al. (2006). "In situ evidence for the structure of the magnetic null in a 3D reconnection event in the Earth's magnetotail". Nature Physics. 2 (7): 478–483. arXiv:physics/0606014. Bibcode:2006NatPh...2..478X. doi:10.1038/nphys342. S2CID 18921009.
  161. ^ Parks, G.; et al. (2006). "Larmor radius size density holes discovered in the solar wind upstream of Earth's bow shock". Physics of Plasmas. 13 (5): 050701. Bibcode:2006PhPl...13e0701P. doi:10.1063/1.2201056.
  162. ^ Mozer, F.; et al. (2005). "Spatial gradients in the plasmasphere from Cluster". Geophysical Research Letters. 32 (24): L24102. Bibcode:2005GeoRL..3224102M. doi:10.1029/2005GL024092.
  163. ^ Zhang, T.L..; et al. (2005). "Double Star/Cluster observation of neutral sheet oscillations on 5 August 2004". Annales Geophysicae. 23 (8): 2909–2914. Bibcode:2005AnGeo..23.2909Z. doi:10.5194/angeo-23-2909-2005.
  164. ^ Sahraoui, F.; et al. (2006). "Anisotropic turbulent spectra in the terrestrial magnetosheath: Cluster observations" (PDF). Physical Review Letters. 96 (7): 075002. Bibcode:2006PhRvL..96g5002S. doi:10.1103/PhysRevLett.96.075002. PMID 16606099.
  165. ^ Phan, T.; et al. (2006). "A magnetic reconnection X-line extending more than 390 Earth radii in the solar wind". Nature. 439 (7073): 175–178. Bibcode:2006Natur.439..175P. doi:10.1038/nature04393. PMID 16407946. S2CID 4381256.
  166. ^ Horne, R.B.; et al. (2005). "Wave acceleration of electrons in the Van Allen radiation belts". Nature. 437 (7056): 227–230. Bibcode:2005Natur.437..227H. doi:10.1038/nature03939. PMID 16148927. S2CID 1530882.
  167. ^ Sundkvist, D.; et al. (2005). "In situ multi-satellite detection of coherent vortices as a manifestation of Alfvénic turbulence". Nature. 436 (7052): 825–828. Bibcode:2005Natur.436..825S. doi:10.1038/nature03931. PMID 16094363. S2CID 4430255.
  168. ^ Vallat, C.; et al. (2005). "First current density measurements in the ring current region using simultaneous multi-spacecraft CLUSTER-FGM data". Annales Geophysicae. 23 (5): 1849–1865. Bibcode:2005AnGeo..23.1849V. doi:10.5194/angeo-23-1849-2005.
  169. ^ Øieroset, M.; et al. (2005). "Global cooling and densification of the plasma sheet during an extended period of purely northward IMF on October 22–24, 2003". Geophysical Research Letters. 32 (12): L12S07. Bibcode:2005GeoRL..3212S07O. doi:10.1029/2004GL021523.
  170. ^ Li, W.; et al. (2005). "Plasma sheet formation during long period of northward IMF". Geophysical Research Letters. 32 (12): L12S08. Bibcode:2005GeoRL..3212S08L. doi:10.1029/2004GL021524.
  171. ^ Louarn, P.; et al. (2004). "Cluster observations of complex 3D magnetic structures at the magnetopause". Geophysical Research Letters. 31 (19): L19805. Bibcode:2004GeoRL..3119805L. doi:10.1029/2004GL020625.
  172. ^ Nakamura, R.; et al. (2004). "Spatial scale of high-speed flows in the plasma sheet observed by Cluster". Geophysical Research Letters. 31 (9): L09804. Bibcode:2004GeoRL..31.9804N. doi:10.1029/2004GL019558.
  173. ^ Knetter, T.; et al. (2004). "Four-point discontinuity observations using Cluster magnetic field data: A statistical survey". Journal of Geophysical Research. 109 (A6): A06102. Bibcode:2004JGRA..109.6102K. doi:10.1029/2003JA010099.
  174. ^ Décréau, P.; et al. (2004). "Observation of continuum radiations from the Cluster fleet: first results from direction finding". Annales Geophysicae. 22 (7): 2607–2624. Bibcode:2004AnGeo..22.2607D. doi:10.5194/angeo-22-2607-2004.
  175. ^ Hasegawa, H.; et al. (2004). "Transport of solar wind into Earth's magnetosphere through rolled-up Kelvin–Helmholtz vortices". Nature. 430 (7001): 755–758. Bibcode:2004Natur.430..755H. doi:10.1038/nature02799. PMID 15306802. S2CID 4335442.
  176. ^ Sergeev, V.; et al. (2004). "Orientation and propagation of current sheet oscillations". Geophysical Research Letters. 31 (5): L05807. Bibcode:2004GeoRL..31.5807S. doi:10.1029/2003GL019346.
  177. ^ Zong, Q.-G.; et al. (2004). "Triple cusps observed by Cluster-Temporal or spatial effect?". Geophysical Research Letters. 31 (9): L09810. Bibcode:2004GeoRL..3109810Z. doi:10.1029/2003GL019128. S2CID 129833434.
  178. ^ Bale, S.; et al. (2003). "Density-Transition Scale at Quasiperpendicular Collisionless Shocks". Physical Review Letters. 91 (26): 265004. Bibcode:2003PhRvL..91z5004B. doi:10.1103/PhysRevLett.91.265004. PMID 14754061.
  179. ^ Frey, H.; et al. (2003). "Continuous magnetic reconnection at Earth's magnetopause". Nature. 426 (6966): 533–537. Bibcode:2003Natur.426..533F. doi:10.1038/nature02084. PMID 14654835. S2CID 4421604.
  180. ^ Runov, A.; et al. (2003). "Current sheet structure near magnetic X-line observed by Cluster". Geophysical Research Letters. 30 (10): 1579. Bibcode:2003GeoRL..30.1579R. doi:10.1029/2002GL016730.
  181. ^ Phan, T.; et al. (2003). "Simultaneous Cluster and IMAGE Observations of Cusp Reconnection and Auroral Spot for Northward IMF". Geophysical Research Letters. 30 (10): n/a. Bibcode:2003GeoRL..30.1509P. doi:10.1029/2003GL016885. S2CID 117920602.
  182. ^ Runov, A.; et al. (2003). "Cluster observation of a bifurcated current sheet". Geophysical Research Letters. 30 (2): 1036. Bibcode:2003GeoRL..30.1036R. doi:10.1029/2002GL016136. S2CID 121878799.
  183. ^ Dunlop, M.; et al. (2002). "Four-point Cluster application of magnetic field analysis tools: The Curlometer". Journal of Geophysical Research. 107 (A11): 1384. Bibcode:2002JGRA..107.1384D. doi:10.1029/2001JA005088.
  184. ^ Nakamura, R.; et al. (2002). "Fast flow during current sheet thinning" (PDF). Geophysical Research Letters. 29 (23): 2140. Bibcode:2002GeoRL..29.2140N. doi:10.1029/2002GL016200.
  185. ^ Baker, D.N.; et al. (2002). "A telescopic and microscopic view of a magnetospheric substorm on 31 March 2001". Geophysical Research Letters. 29 (18): 1862. Bibcode:2002GeoRL..29.1862B. doi:10.1029/2001GL014491.
  186. ^ Marklund, G.; et al. (2001). "Temporal evolution of the electric field accelerating electrons away from the auroral ionosphere". Nature. 414 (6865): 724–727. Bibcode:2001Natur.414..724M. doi:10.1038/414724a. PMID 11742392. S2CID 4418541.
  187. ^ Décréau, P.; et al. (2001). "Early results from the Whisper instrument on Cluster: an overview". Annales Geophysicae. 19 (10/12): 1241–1258. Bibcode:2001AnGeo..19.1241D. doi:10.5194/angeo-19-1241-2001.
  188. ^ Paschmann, G.; S.J. Schwartz; C.P. Escoubet; S. Haal, eds. (2005). Outer Magnetospheric Boundaries: Cluster Results. reprinted from Space Sci. Rev., 118, 1–4, Springer, Berlin. pp. 1–434. Bibcode:2005ombc.book.....P.

External links

  • ESA Cluster mission website
  • The Cluster Science Archive, the public data archive of the Cluster and the Double Star missions
  • More on spacecraft operations
  • ESA Cluster mission Twitter account
  • Imperial College London role in the Cluster mission
  • University College London's Mullard Space Science Laboratory's role in the Cluster mission 2016-03-07 at the Wayback Machine
  • Cluster: aurora explorer, an exhibit at the Royal Society Summer Exhibition 2011
  • The Cluster Active Archive (former public data archive, up to 2014)
  • Cluster mission article on eoPortal by ESA

cluster, spacecraft, this, article, external, links, follow, wikipedia, policies, guidelines, please, improve, this, article, removing, excessive, inappropriate, external, links, converting, useful, links, where, appropriate, into, footnote, references, januar. This article s use of external links may not follow Wikipedia s policies or guidelines Please improve this article by removing excessive or inappropriate external links and converting useful links where appropriate into footnote references January 2021 Learn how and when to remove this template message Cluster II 2 is a space mission of the European Space Agency with NASA participation to study the Earth s magnetosphere over the course of nearly two solar cycles The mission is composed of four identical spacecraft flying in a tetrahedral formation As a replacement for the original Cluster spacecraft which were lost in a launch failure in 1996 the four Cluster II spacecraft were successfully launched in pairs in July and August 2000 onboard two Soyuz Fregat rockets from Baikonur Kazakhstan In February 2011 Cluster II celebrated 10 years of successful scientific operations in space As of October 2020 update its mission has been extended until the end of 2022 3 China National Space Administration ESA Double Star mission operated alongside Cluster II from 2004 to 2007 Cluster IIArtist s impression of the Cluster constellation Mission typeMagnetospheric researchOperatorESA with NASA collaborationCOSPAR IDFM6 SALSA 2000 041AFM7 SAMBA 2000 041BFM5 RUMBA 2000 045AFM8 TANGO 2000 045BSATCAT no FM6 SALSA 26410FM7 SAMBA 26411FM5 RUMBA 26463FM8 TANGO 26464Websitehttp sci esa int clusterMission durationplanned 5 years elapsed 22 years 7 months and 21 daysSpacecraft propertiesManufacturerAirbus ex Dornier 1 Launch mass1 200 kg 2 600 lb 1 Dry mass550 kg 1 210 lb 1 Payload mass71 kg 157 lb 1 Dimensions2 9 m 1 3 m 9 5 ft 4 3 ft 1 Power224 watts 1 Start of missionLaunch dateFM6 16 July 2000 12 39 UTC 2000 07 16UTC12 39Z FM7 16 July 2000 12 39 UTC 2000 07 16UTC12 39Z FM5 09 August 2000 11 13 UTC 2000 08 09UTC11 13Z FM8 09 August 2000 11 13 UTC 2000 08 09UTC11 13Z RocketSoyuz U FregatLaunch siteBaikonur 31 6ContractorStarsemOrbital parametersReference systemGeocentricRegimeElliptical OrbitPerigee altitudeFM6 16 118 km 10 015 mi FM7 16 157 km 10 039 mi FM5 16 022 km 9 956 mi FM8 12 902 km 8 017 mi Apogee altitudeFM6 116 740 km 72 540 mi FM7 116 654 km 72 485 mi FM5 116 786 km 72 567 mi FM8 119 952 km 74 535 mi InclinationFM6 135 degreesFM7 135 degreesFM5 138 degreesFM8 134 degreesPeriodFM6 3259 minutesFM7 3257 minutesFM5 3257 minutesFM8 3258 minutesEpoch13 March 2014 11 15 07 UTCESA solar system insignia for Cluster II Horizon 2000 XMM NewtonINTEGRAL Contents 1 Mission overview 2 History 3 Scientific objectives 4 Instrumentation on each Cluster satellite 5 Double Star mission with China 6 Awards 7 Discoveries and mission milestones 7 1 2022 7 2 2021 7 3 2020 7 4 2019 7 5 2018 7 6 2017 7 7 2016 7 8 2015 7 9 2014 7 10 2013 7 11 2012 7 12 2011 7 13 2010 7 14 2009 7 15 2008 7 16 2007 7 17 2006 7 18 2005 7 19 2004 7 20 2001 2003 8 References 9 Selected publications 10 External linksMission overview EditThe four identical Cluster II satellites study the impact of the Sun s activity on the Earth s space environment by flying in formation around Earth For the first time in space history this mission is able to collect three dimensional information on how the solar wind interacts with the magnetosphere and affects near Earth space and its atmosphere including aurorae The spacecraft are cylindrical 2 9 x 1 3 m see online 3D model and are spinning at 15 rotations per minute After launch their solar cells provided 224 watts power for instruments and communications Solar array power has gradually declined as the mission progressed due to damage by energetic charged particles but this was planned for and the power level remains sufficient for science operations The four spacecraft maneuver into various tetrahedral formations to study the magnetospheric structure and boundaries The inter spacecraft distances can be altered and has varied from around 4 to 10 000 km The propellant for the transfer to the operational orbit and the maneuvers to vary inter spacecraft separation distances made up approximately half of the spacecraft s launch weight The highly elliptical orbits of the spacecraft initially reached a perigee of around 4 RE Earth radii where 1 RE 6371 km and an apogee of 19 6 RE Each orbit took approximately 57 hours to complete The orbit has evolved over time the line of apsides has rotated southwards so that the distance at which the orbit crossed the magnetotail current sheet progressively reduced and a wide range of dayside magnetopause crossing latitudes were sampled Gravitational effects impose a long term cycle of change in the perigee and apogee distance which saw the perigees reduce to a few 100 km in 2011 before beginning to rise again The orbit plane has rotated away from 90 degrees inclination Orbit modifications by ESOC have altered the orbital period to 54 hours All these changes have allowed Cluster to visit a much wider set of important magnetospheric regions than was possible for the initial 2 year mission improving the scientific breadth of the mission The European Space Operations Centre ESOC acquires telemetry and distributes to the online data centers the science data from the spacecraft The Joint Science Operations Centre JSOC at Rutherford Appleton Laboratory in the UK coordinates scientific planning and in collaboration with the instrument teams provides merged instrument commanding requests to ESOC The Cluster Science Archive is the ESA long term archive of the Cluster and Double Star science missions Since 1 November 2014 it is the sole public access point to the Cluster mission scientific data and supporting datasets The Double Star data are publicly available via this archive The Cluster Science Archive is located alongside all the other ESA science archives at the European Space Astronomy Center located near Madrid Spain From February 2006 to October 2014 the Cluster data could be accessed via the Cluster Active Archive History EditThe Cluster mission was proposed to ESA in 1982 and approved in 1986 along with the Solar and Heliospheric Observatory SOHO and together these two missions constituted the Solar Terrestrial Physics cornerstone of ESA s Horizon 2000 missions programme Though the original Cluster spacecraft were completed in 1995 the explosion of the Ariane 5 rocket carrying the satellites in 1996 delayed the mission by four years while new instruments and spacecraft were built On July 16 2000 a Soyuz Fregat rocket from the Baikonur Cosmodrome launched two of the replacement Cluster II spacecraft Salsa and Samba into a parking orbit from where they maneuvered under their own power into a 19 000 by 119 000 kilometer orbit with a period of 57 hours Three weeks later on August 9 2000 another Soyuz Fregat rocket lifted the remaining two spacecraft Rumba and Tango into similar orbits Spacecraft 1 Rumba is also known as the Phoenix spacecraft since it is largely built from spare parts left over after the failure of the original mission After commissioning of the payload the first scientific measurements were made on February 1 2001 The European Space Agency ran a competition to name the satellites across all of the ESA member states 4 Ray Cotton from the United Kingdom won the competition with the names Rumba Tango Salsa and Samba 5 Ray s town of residence Bristol was awarded with scale models of the satellites in recognition of the winning entry 6 7 as well as the city s connection with the satellites However after many years of being stored away they were finally given a home at the Rutherford Appleton Laboratory Originally planned to last until the end of 2003 the mission has been extended several times The first extension took the mission from 2004 until 2005 and the second from 2005 to June 2009 The mission has now been extended until the end of 2020 8 Scientific objectives EditPrevious single and two spacecraft missions were not capable of providing the data required to accurately study the boundaries of the magnetosphere Because the plasma comprising the magnetosphere cannot be viewed using remote sensing techniques satellites must be used to measure it in situ Four spacecraft allow scientists make the 3D time resolved measurements needed to create a realistic picture of the complex plasma interactions occurring between regions of the magnetosphere and between the magnetosphere and the solar wind Each satellite carries a scientific payload of 11 instruments designed to study the small scale plasma structures in space and time in the key plasma regions solar wind bow shock magnetopause polar cusps magnetotail plasmapause boundary layer and over the polar caps and the auroral zones The bow shock is the region in space between the Earth and the sun where the solar wind decelerates from super to sub sonic before being deflected around the Earth In traversing this region the spacecraft make measurements which help characterize processes occurring at the bow shock such as the origin of hot flow anomalies and the transmission of electromagnetic waves through the bow shock and the magnetosheath from the solar wind Behind the bow shock is the thin plasma layer separating the Earth and solar wind magnetic fields known as the magnetopause This boundary moves continuously due to the constant variation in solar wind pressure Since the plasma and magnetic pressures within the solar wind and the magnetosphere respectively should be in equilibrium the magnetosphere should be an impenetrable boundary However plasma has been observed crossing the magnetopause into the magnetosphere from the solar wind Cluster s four point measurements make it possible to track the motion of the magnetopause as well as elucidate the mechanism for plasma penetration from the solar wind In two regions one in the northern hemisphere and the other in the south the magnetic field of the Earth is perpendicular rather than tangential to the magnetopause These polar cusps allow solar wind particles consisting of ions and electrons to flow into the magnetosphere Cluster records the particle distributions which allow the turbulent regions at the exterior cusps to be characterized The regions of the Earth s magnetic field that are stretched by the solar wind away from the Sun are known collectively as the magnetotail Two lobes that reach past the Moon in length form the outer magnetotail while the central plasma sheet forms the inner magnetotail which is highly active Cluster monitors particles from the ionosphere and the solar wind as they pass through the magnetotail lobes In the central plasma sheet Cluster determines the origins of ion beams and disruptions to the magnetic field aligned currents caused by substorms The precipitation of charged particles in the atmosphere creates a ring of light emission around the magnetic pole known as the auroral zone Cluster measures the time variations of transient particle flows and electric and magnetic fields in the region Instrumentation on each Cluster satellite EditNumber Acronym Instrument Measurement Purpose1 ASPOC Active Spacecraft Potential Control experiment Regulation of spacecraft s electrostatic potential Enables the measure by PEACE of cold electrons a few eV temperature otherwise hidden by spacecraft photoelectrons2 CIS Cluster Ion Spectroscopy experiment Ion times of flight TOFs and energies from 0 to 40 keV Composition and 3D distribution of ions in plasma3 DWP Digital Wave Processing instrument Coordinates the operations of the EFW STAFF WBD and WHISPER instruments At the lowest level DWP provides electrical signals to synchronise instrument sampling At the highest level DWP enables more complex operational modes by means of macros 4 EDI Electron Drift Instrument Electric field E magnitude and direction E vector gradients in local magnetic field B5 EFW Electric Field and Wave experiment Electric field E magnitude and direction E vector spacecraft potential electron density and temperature6 FGM Fluxgate Magnetometer Magnetic field B magnitude and direction B vector and event trigger to all instruments except ASPOC7 PEACE Plasma Electron and Current Experiment Electron energies from 0 0007 to 30 keV 3D distribution of electrons in plasma8 RAPID Research with Adaptive Particle Imaging Detectors Electron energies from 39 to 406 keV ion energies from 20 to 450 keV 3D distributions of high energy electrons and ions in plasma9 STAFF Spatio Temporal Analysis of Field Fluctuation experiment Magnetic field B magnitude and direction of EM fluctuations cross correlation of E and B Properties of small scale current structures source of plasma waves and turbulence10 WBD Wide Band Data receiver High time resolution measurements of both electric and magnetic fields in selected frequency bands from 25 Hz to 577 kHz It provides a unique new capability to perform Very long baseline interferometry VLBI measurements Properties of natural plasma waves e g auroral kilometric radiation in the Earth magnetosphere and its vicinity including source location and size and propagation 11 WHISPER Waves of High Frequency and Sounder for Probing of Density by Relaxation Electric field E spectrograms of terrestrial plasma waves and radio emissions in the 2 80 kHz range triggering of plasma resonances by an active sounder Source location of waves by triangulation electron density within the range 0 2 80 cm 3Double Star mission with China EditIn 2003 and 2004 the China National Space Administration launched the Double Star satellites TC 1 and TC 2 that worked together with Cluster to make coordinated measurements mostly within the magnetosphere TC 1 stopped operating on 14 October 2007 The last data from TC 2 was received in 2008 TC 2 made a contribution to magnetar science 9 10 as well as to magnetospheric physics The TC 1 examined density holes near the Earth s bow shock that can play a role in bow shock formation 11 12 and looked at neutral sheet oscillations 13 Awards EditCluster team awards 2019 Royal Astronomical Society Group Achievement Award 2015 ESA 15th anniversary award 2013 ESA team award 2010 International Academy of Astronautics Laurels for team achievements for Cluster and Double Star teams 2005 ESA Cluster 5th anniversary award 2004 NASA group achievement award 2000 Popular science best of what s new award 2000 ESA Cluster launch awardIndividual awards 2023 Hermann Opgenoorth Univ of Umea Sweden former Cluster Ground Based Working Group lead was awarded the 2023 EGU Julius Bartels Medal 2020 Daniel Graham Swedish Institute of Space Physics Uppsala Sweden was awarded the COSPAR Zeldovich medal 2019 Margaret Kivelson UCLA USA Cluster FGM CoI received RAS gold medal 2018 Hermann Opgenoorth Univ of Umea Sweden former Cluster Ground Based Working Group lead was awarded the 2018 Baron Marcel Nicolet Space Weather and Space Climate medal Archived 2018 11 26 at the Wayback Machine 2016 Stephen Fuselier SWRI USA Cluster CIS CoI received EGU Hannes Alfven Meda 2016 Mike Hapgood Cluster mission scientific operations expert was awarded the Baron Marcel Nicolet Medal for Space Weather and Space Climate 2014 Rumi Nakamura IWF Austria Cluster CIS EDI FGM CoI received EGU Julius Bartels Medal 2013 Mike Hapgood RAL UK Cluster JSOC project scientist received RAS service award 2013 Goran Marklund EFW Co I received the EGU Hannes Alfven Medal 2013 2013 Steve Milan Cluster Ground based representative of the Cluster mission received UK Royal Astronomical Society RAS Chapman medal 2012 Andrew Fazakerley Cluster and Double Star PI PEACE received the Royal Astronomical Society Chapman Medal 2012 Zuyin Pu Pekin U China RAPID CIS FGM CoI received AGU International Award 2012 Jolene Pickett Iowa U USA a Cluster WBD PI received the State of Iowa Board of Regents Staff Excellence 2012 Jonathan Eastwood Imperial College UK FGM Co I received COSPAR Yakov B Zeldovich medal 2008 Andre Balogh Imperial College UK Cluster FGM PI received RAS Chapman medal 2006 Steve Schwartz QMW UK Cluster UK data system scientist and PEACE co I received RAS Chapman medalDiscoveries and mission milestones Edit2022 Edit October 14 New insights on the formation of transpolar auroral arc 14 September 20 A highway for atmospheric ion escape from Earth during the impact of an interplanetary coronal mass ejection 15 August 03 Joint Cluster ground based studies in the first 20 years of the Cluster mission 16 July 18 In situ observation of a magnetopause indentation that is correspondent to throat aurora and is caused by magnetopause reconnection 17 June 16 Kelvin Helmholtz vortices as an interplay of Magnetosphere Ionosphere coupling 18 June 02 ESA highlight Magnetic vortices explain mysterious auroral beads 19 May 16 The influence of localized dynamics on dusk dawn convection in the Earth s magnetotail 20 April 1 Dawn dusk ion flow asymmetry in the plasma sheet 21 February 1 South Pole Station ground based and Cluster satellite measurements of leaked and escaping Auroral Kilometric Radiation 22 January 1 Massive multi mission statistical study and analytical modeling of the Earth s magnetopause 23 2021 Edit December 15 ESA highlight Swarm and Cluster get to the bottom of geomagnetic storms 24 November 7 Unique MMS and Cluster observations about magnetic reconnection extent at the magnetopause 25 November 2 Spatial distribution of energetic protons in the magnetosphere based on 17 years of data 26 October 11 Unique MMS and Cluster observation of disturbances in the near Earth magnetotail before a magnetic substorm 27 September 7 AGU EOS spotlight Understanding Aurora Formation with ESA s Cluster Mission 28 May 2 Cluster and MMS uncover anisotropic spatial correlation functions at kinetic range in the magnetosheath turbulence 29 April 9 The Solar cycle Variations of the Anisotropy of Taylor Scale and Correlation Scale in the Solar Wind Turbulence 30 February 18 Heavy Metal and Rock in Space Cluster RAPID Observations of Fe and Si 31 2020 Edit December 1 Cluster Helios and Ulysses reveal characteristics of solar wind supra thermal halo electrons 32 November 1 Cluster Swam and CHAMP join forces to explain hemispheric asymmetries in the Earth magnetotail 33 October 21 Space plasma regimes classified with Cluster data 34 October 1 Effects of Solar Activity on Taylor Scale and Correlation Scale in Solar Wind Magnetic Fluctuations 35 September 1 Van Allen Probes and Cluster join forces to study Outer Radiation Belt Electrons 36 August 9 Cluster s 20 years of studying Earth s magnetosphere celebrating 20 years after the launch of the second pair of Cluster spacecraft July 31 ESA science highlight Auroral substorms triggered by short circuiting of plasma flows 37 July 16 BBC skyatnight podcast with Dr Mike Hapgood on 20 years of ESA s Cluster mission celebrating 20 years after the launch of the first pair of Cluster satellites April 20 What drives some of the largest and most dynamic auroral forms 38 March 19 ESA science highlight Iron is everywhere in Earth s vicinity suggest two decades of Cluster data 39 February 27 What makes Kelvin Helmholtz vortices grow at the Earth s magnetopause 40 2019 Edit December 23 Magnetized dust clouds penetrate the terrestrial bow shock 41 November 18 ESA science highlight Earth s magnetic song recorded for the first time during a solar storm 42 October 10 What is the source of the energetic oxygen ions found in the high altitude cusp region 43 August 27 ESA science highlight Cluster and XMM pave the way for SMILE 44 August 20 Asymmetric transport of the Earth s polar outflows by the interplanetary magnetic field 45 August 5 Energetic electron acceleration found by Cluster in unconfined reconnection jets for the first time 46 May 1 Kelvin Helmholtz waves magnetic curvature and vorticity Four spacecraft Cluster observations 47 March 4 ESA science highlight Cluster helps solve mysteries of geomagnetic storms 48 February 27 ESA science highlight Cluster reveals inner workings of Earth s cosmic particle accelerator 49 February 13 Statistical survey of the terrestrial bow shock observed by the Cluster spacecraft 50 January 14 Super efficient electron acceleration by an isolated magnetic reconnection 51 2018 Edit November 28 Complete picture of the O circulation and escape in the outer magnetosphere and its dependence on geomagnetic activity 52 November 8 ESA science highlight Windy with a chance of magnetic storms space weather science with Cluster September 30 O escape during the extreme space weather event of 4 10 September 2017 53 August 8 Statistical survey of day side magnetospheric current flow using Cluster observations bow shock 54 June 20 Detection of magnetic nulls around reconnection fronts open access 55 May 21 Tailward propagation of magnetic energy density variations with respect to substorm onset times open access 56 April 24 Kelvin Helmholtz Instability lessons learned and ways forward 57 March 29 Three dimensional density and compressible magnetic structure in solar wind turbulence 58 February 8 ESA spotlight on Understanding Earth what the Cluster mission has taught us so far January 29 ESA research highlight Cluster measures turbulence in Earth s magnetic environment 59 January 22 Science nugget of the 2013 2014 Cluster Inner Magnetosphere campaign 60 2017 Edit December 11 2017 Empirical modeling of the quiet and storm time geosynchronous magnetic field 61 December 6 2017 Direct measurement of anisotropic and asymmetric wave vector spectrum in ion scale solar wind turbulence 62 October 30 2017 Coherent structures at ion scales in the fast solar wind Cluster observations 63 September 18 2017 An intense magnetic substorm scrutinized by a fleet of satellites including Cluster and MMS open access 64 August 28 2017 Relationship between electron field aligned anisotropy and dawn dusk magnetic field nine years of Cluster observations in the Earth magnetotail 65 August 1 2017 Collisionless shock velocity estimation at Venus and Earth open access 66 June 16 2017 Cover of GRL Global ULF waves generated by a hot flow anomaly 67 April 10 2017 ESA research highlight O marks the spot for magnetic reconnection 68 April 7 2017 EOS research spotlight Explaining unexpected twists in the Sun s Magnetic Field 69 March 23 2017 Occurrence frequency and location of magnetic islands at the dayside magnetopause 70 February 18 2017 Magnetic reconnection and their associated auroral enhancements open access 71 2016 Edit October 3 2016 What happens to the Earth s magnetosphere when its bow shock disappears 72 September 6 2016 Embry Riddle University FL USA science highlight Space plasma hurricanes could lead to new sources of energy 73 July 20 2016 Cluster and MMS join forces to understand the origin of northern lights 74 July 8 Transport of solar wind H and He ions across Earth s bow shock 75 July 7 ESA science highlight the curious case of Earth s leaking atmosphere 76 77 June 11 Substructures within a dipolarization front revealed by high temporal resolution Cluster observations 78 May 11 Cone angle control of the interaction of magnetic clouds with the Earth s bow shock 79 March 21 The particle carriers of field aligned currents in the Earth s magnetotail during a substorm 80 February 29 The role of ionospheric O outflow in the generation of earthward propagating plasmoids 77 January 11 A statistical study of plasmaspheric plumes and ionospheric outflows observed at the dayside magnetopause 76 2015 Edit December 7 Coalescence of magnetic flux ropes in the ion diffusion region of magnetic reconnection 81 October 22 Wide banded Non Thermal Continuum NTC radiation local to remote observations by the four Cluster satellites 82 September 3 Statistics and accuracy of magnetic null identification in multispacecraft data open access 83 August 22 Cusp dynamics under northward IMF using three dimensional global particle in cell simulations open access 84 July 14 Cluster solves the mystery of equatorial noise 85 July 1 Seven ESA satellites team up to explore the Earth s magnetic field 86 April 9 Heart of the black auroras revealed by Cluster 87 March 25 Cluster satellite catches up February 19 Magnetospheric signatures of ionospheric density cavities observed by Cluster open access 88 February 16 Solar illumination control of ionospheric outflow above polar cap arcs open access 89 January 16 Rejigging the Cluster quartet at the bow shock and in the solar wind2014 Edit December 18 Origin of high latitude auroras revealed 90 November 20 The Cluster mission is extended by ESA up to 2018 September 4 Full particle electromagnetic simulations of entropy generation across a collisionless shock 91 August 28 A mixed up magnetic storm 92 July 1 Dawn dusk asymmetries in the coupled solar wind magnetosphere ionosphere system a review 93 June 15 Solar wind breaks through the Earth s magnetic field 94 May 28 Evidence of strong energetic ion acceleration in the near Earth magnetotail free access 95 May 7 Cluster helps to model Earth s mysterious magnetosphere 96 March 15 Direct calculation of the ring current distribution and magnetic structure seen by Cluster during geomagnetic storms open access 97 January 13 Low altitude electron acceleration due to multiple flow bursts in the magnetotail open access 98 2013 Edit November 26 Cluster takes a tilt at radio wave sources 99 November 15 On the relation between asymmetries in the ring current and magnetopause current free access 100 September 20 ESA s Cluster satellites in closest ever dance in space September 10 Cluster shows plasmasphere interacting with Van Allen belts 101 July 18 Wobbly magnetic reconnection speeds up electrons 102 July 2 Cluster discovers steady leak in the Earth s plasmasphere 103 May 2 Cluster hears the heartbeat of magnetic reconnection 104 April 15 From solar activity to stunning aurora ESA Space Science s image of the week April 10 Cluster finds source of aurora energy boost 105 2012 Edit December 18 The solar wind is swirly 106 October 24 Cluster observes a porous magnetopause 107 August 1 Cluster looks into waves in the magnetosphere s thin boundaries 108 July 2 Hidden Portals in Earth s Magnetic Field NASA science cast video June 6 Origin of particle acceleration in cusps of Earth s magnetosphere uncovered 109 March 7 Earth s magnetic field provides vital protection 110 February 27 Northern lights mystery may be solved Space com 111 February 23 Surprise Ions Science News for kids Archived 2012 07 10 at the Wayback Machine January 26 Giant veil of cold plasma discovered high above Earth National Geographic January 24 Elusive matter found to be abundant far above Earth AGU press release Archived 2012 10 24 at the Wayback Machine 112 2011 Edit November 16 Cluster reveals Earth s bow shock is remarkably thin 113 September 6 Ultra fast substorm auroras explained 114 August 31 40 year old Mariner 5 solar wind problem finds answer 115 July 5 10 Aurora explorer the Cluster mission exhibit at the Royal Society summer science exhibition 2011 July 4 Cluster observes jet braking and plasma heating 116 June 30 Dirty hack restores Cluster mission from near loss March 21 How vital is a planet s magnetic field New debate rises February 5 Cluster encounters a natural particle accelerator 117 January 7 ESA spacecraft model magnetic boundaries 118 2010 Edit November 22 ESA extends the Cluster mission until December 2014 October 4 Cluster helps disentangle turbulence in the solar wind 119 September 1 10 years of success for Cluster quartet 120 July 26 Cluster makes crucial step in understanding space weather 121 122 July 16 Cluster s decade of discovery July 8 Announcement of opportunity for Cluster guest investigators June 3 The Cluster archive more than 1000 users 123 April 24 High speed plasma jets origin uncovered 124 March 11 Shocking recipe for killer electrons 125 January 20 Multiple rifts in Earth s magnetic shield 126 2009 Edit October 7 ESA extends the Cluster mission until December 2012 July 16 Cluster shows how solar wind is heated at electron scales 127 June 18 Cluster and Double Star 1000 publications April 29 Monitoring the impact of extreme solar events 128 March 25 Cluster s insight into space turbulence 129 February 9 ESA extends the Cluster mission until the end of 2009 January 14 Cluster detects invisible escaping ions 130 2008 Edit December 15 The science of space weather 131 December 5 Looking at Jupiter to understand Earth 132 October 17 Highlights from Cluster THEMIS workshop August 27 Cluster examines Earth escaping ions 133 August 11 Electron trapping within reconnection 134 135 June 27 Beamed radio emission from Earth 136 June 9 Reconnection Triggered by Whistlers 137 March 7 Solitons found in the magnetopause 138 January 23 Cluster result impacts future space missions 139 2007 Edit December 6 Cluster explains nightside ion beams 140 November 21 Cluster captures the impact of a Coronal Mass Ejection 141 142 November 9 Cluster probes generalized Ohm s law in space 143 October 22 Cluster monitors convection cells over the polar caps 144 145 September 11 Cluster and Double Star pinpoint the source of bright aurorae 146 July 26 Cluster helps reveal how the Sun shakes the Earth s magnetic field 147 148 June 29 Cluster unveils a new 3D vision of magnetic reconnection 149 June 21 Formation flying at closest ever separation May 11 Cluster reveals the reformation of the Earth s bow shock 150 April 12 Cluster finds new clues on what triggers space tsunamis 151 March 26 First direct evidence in space of magnetic reconnection in turbulent plasma 152 March 12 A leap forward in probing magnetic reconnection in space 153 February 9 New insights in the auroral electrical circuit revealed by Cluster 154 2006 Edit December 29 1000th Orbit for the Cluster Mission December 6 Cluster finds magnetic reconnection within giant swirls of plasma 155 November 13 Cluster takes a new look at the plasmasphere 156 157 October 5 Double Star and Cluster witness pulsated reconnection for several hours 158 August 24 Cluster links magnetic substorms and Earthward directed high speed flows 159 July 18 Magnetic heart of a 3D reconnection event revealed by Cluster 160 June 20 Space is fizzy 161 May 19 New Microscopic Properties of Magnetic Reconnection Derived by Cluster 162 March 30 Cluster and Double Star reveal the extent of neutral sheet oscillations 163 February 24 Cluster reveals fundamental 3 D properties of magnetic turbulence 164 February 1 The Cluster Active Archive goes live January 11 Cover of Nature Magazine Feel the Force 165 2005 Edit December 22 Cluster helps to protect astronauts and satellites against killer electrons 166 September 21 Double Star and Cluster observe first evidence of crustal cracking August 10 From macro to micro turbulence seen by Cluster 167 July 28 First direct measurements of the ring current 168 July 14 Five years of formation flying with Cluster April 28 Calming effect of a solar storm 169 170 February 18 Cluster will become the first multi scale mission February 4 Direct observation of 3D magnetic reconnection 171 2004 Edit December 12 Cluster determines the spatial scale of high speed flows in the magnetotail 172 November 24 Four point observations of solar wind discontinuities 173 September 17 Cluster locates the source of non thermal terrestrial continuum radiation by triangulation 174 August 12 Cluster finds giant gas vortices at the edge of Earth s magnetic bubble 175 June 23 Cluster discovers internal origin of the plasma sheet oscillations 176 May 13 Cluster captures a triple cusp 177 April 5 First attempt to estimate Earth s bow shock thickness 178 2001 2003 Edit 3 December 2003 Cracks in Earth s magnetic shield NASA website 179 29 June 2003 Multi point observations of magnetic reconnection 180 20 May 2003 ESA s Cluster solves auroral puzzle 181 29 January 2003 Bifurcation of the tail current 182 28 January 2003 Electric current measured in space for the first time 183 29 December 2002 Thickness of the tail current sheet estimated in space for the first time 184 1 October 2002 Telescopic Microscopic view of a substorm 185 11 December 2001 Cluster quartet probes the secrets of the black aurora 186 31 October 2001 First measurements of density gradients in space 187 9 October 2001 Double cusp observed by Cluster 188 1 February 2001 Official start of scientific operationsReferences EditEscoubet C P A Masson H Laakso M L Goldstein 2021 Cluster after 20 years of operations Science highlights and technical challenges Journal of Geophysical Research Space Physics 126 8 Bibcode 2021JGRA 12629474E doi 10 1029 2021JA029474 Escoubet C P A Masson H Laakso M L Goldstein 2015 Recent highlights from Cluster the first 3 D magnetospheric mission Annales Geophysicae 33 10 1221 1235 Bibcode 2015AnGeo 33 1221E doi 10 5194 angeo 33 1221 2015 Escoubet C P M Taylor A Masson H Laakso J Volpp M Hapgood M L Goldstein 2013 Dynamical processes in space Cluster results Annales Geophysicae 31 6 1045 1059 Bibcode 2013AnGeo 31 1045E doi 10 5194 angeo 31 1045 2013 Taylor M C P Escoubet H Laakso A Masson M Goldstein 2010 The Cluster Mission Space Plasma in Three Dimensions In H Laakso et al eds The Cluster Active Archive Astrophysics and Space Science Proceedings Astrophys amp Space Sci Proc Springer pp 309 330 doi 10 1007 978 90 481 3499 1 21 ISBN 978 90 481 3498 4 Escoubet C P M Fehringer M Goldstein 2001 The Cluster mission Annales Geophysicae 19 10 12 1197 1200 Bibcode 2001AnGeo 19 1197E doi 10 5194 angeo 19 1197 2001 Escoubet C P R Schmidt M L Goldstein 1997 Cluster Science and Mission Overview Space Science Reviews 79 11 32 Bibcode 1997SSRv 79 11E doi 10 1023 A 1004923124586 S2CID 116954846 Selected publications EditAll 3618 publications related to the Cluster and the Double Star missions count as of 31 December 2022 can be found on the publication section of the ESA Cluster mission website Among these publications 3125 are refereed publications 342 proceedings 121 PhDs and 30 other types of theses a b c d e f Cluster Four Spacecraft Constellation in Concert with SOHO ESA Retrieved 2014 03 13 Cluster II operations European Space Agency Retrieved 29 November 2011 Extended Operations Confirmed for Science Missions ESA Retrieved 6 July 2021 European Space Agency Announces Contest to Name the Cluster Quartet PDF XMM Newton Press Release European Space Agency 4 2000 Bibcode 2000xmm pres 4 Bristol and Cluster the link European Space Agency Retrieved 2 September 2013 Cluster II Scientific Update and Presentation of Model to the City of Bristol Spaceref SpaceRef Interactive Inc 9 July 2001 Cluster Presentation of model to the city of Bristol and science results overview European Space Agency Extended life for ESA s science missions ESA Retrieved 14 November 2018 Schwartz S et al 2005 A g ray giant flare from SGR1806 20 evidence for crustal cracking via initial timescales The Astrophysical Journal 627 2 L129 L132 arXiv astro ph 0504056 Bibcode 2005ApJ 627L 129S doi 10 1086 432374 S2CID 119371524 ESA Science amp Technology Double Star and Cluster observe first evidence of crustal cracking sci esa int September 21 2005 Archived from the original on 2020 02 01 Retrieved 2021 07 14 ESA Science amp Technology Cluster and Double Star discover density holes in the solar wind sci esa int June 20 2006 Archived from the original on 2021 08 29 Retrieved 2021 07 14 Britt Robert Roy June 20 2006 CNN com Earth surrounded by giant fizzy bubbles Jun 20 2006 www cnn com Archived from the original on 2006 06 22 Retrieved 2021 07 14 ESA Science amp Technology Cluster and Double Star reveal the extent of neutral sheet oscillations sci esa int March 30 2006 Archived from the original on 2021 04 18 Retrieved 2021 07 14 Li W 2022 The Dawn Dusk Tail Lobe Magnetotail Configuration and the Formation of Aurora Transpolar Arc Journal of Geophysical Research Space Physics 127 10 Bibcode 2022JGRA 12730676L doi 10 1029 2022JA030676 S2CID 252929937 Zhang H 2022 A highway for atmospheric ion escape from Earth during the impact of an interplanetary coronal mass ejection Astrophysical Journal 937 4 4 Bibcode 2022ApJ 937 4Z doi 10 3847 1538 4357 ac8a93 S2CID 252306675 Fear R C 2022 Joint Cluster ground based studies in the first 20 years of the Cluster mission PDF Journal of Geophysical Research Space Physics 127 8 Bibcode 2022JGRA 12729928F doi 10 1029 2021JA029928 S2CID 251333661 Qiu H Han D S et al 2022 In situ observation of a magnetopause indentation that is correspondent to throat aurora and is caused by magnetopause reconnection Geophys Res Lett 49 15 Bibcode 2022GeoRL 4999408Q doi 10 1029 2022GL099408 S2CID 250718001 Hwang K J Weygand J M Sibeck D G et al 2022 Kelvin Helmholtz vortices as an interplay of Magnetosphere Ionosphere coupling Frontiers in Astronomy and Space Sciences 9 895514 Bibcode 2022FrASS 9 5514H doi 10 3389 fspas 2022 895514 Petrinec S M Wing S Johnson R Zhang Y et al 2022 Multi Spacecraft Observations of Fluctuations Occurring Along the Dusk Flank Magnetopause and Testing the Connection to an Observed Ionospheric Bead Frontiers in Astronomy and Space Sciences 9 827612 Bibcode 2022FrASS 927612P doi 10 3389 fspas 2022 827612 Lane J H Grocott A Case N A 2022 The influence of localized dynamics on dusk dawn convection in the Earth s magnetotail Journal of Geophysical Research Space Physics 127 5 Bibcode 2022JGRA 12730057L doi 10 1029 2021JA030057 S2CID 248850580 Chong G S Pitkanen T Hamrin M Kullen A 2022 Dawn dusk ion flow asymmetry in the plasma sheet Journal of Geophysical Research Space Physics 127 4 doi 10 1029 2021JA030208 S2CID 247652250 LaBelle J Yearby K Pickett J S 2022 South Pole Station ground based and Cluster satellite measurements of leaked and escaping Auroral Kilometric Radiation PDF Journal of Geophysical Research Space Physics 127 2 Bibcode 2022JGRA 12729399L doi 10 1029 2021JA029399 S2CID 246333134 Nguyen G Aunai N Michotte de Welle B Jeandet A Lavraud B Fontaine D 2022 Massive multi mission statistical study and analytical modeling of the Earth s magnetopause PDF Journal of Geophysical Research Space Physics 127 1 doi 10 1029 2021JA029773 S2CID 245248549 Wei D Dunlop M et al 2021 Intense dB dt variations driven by near Earth bursty bulk flows BBFs A case study Geophysical Research Letters 48 4 Bibcode 2021GeoRL 4891781W doi 10 1029 2020GL091781 S2CID 234111026 Toledo Rodeondo S et al 2021 Solar Wind Magnetosphere Coupling During Radial Interplanetary Magnetic Field Conditions Simultaneous Multi Point Observations Journal of Geophysical Research Space Physics 126 11 Bibcode 2021JGRA 12629506T doi 10 1029 2021JA029506 hdl 10481 72025 S2CID 243961209 Kronberg E et al 2021 Prediction of Soft Proton Intensities in the Near Earth Space Using Machine Learning Astrophysical Journal 921 1 76 arXiv 2105 15108 Bibcode 2021ApJ 921 76K doi 10 3847 1538 4357 ac1b30 S2CID 235254767 Nakamura R et al 2021 Thin Current Sheet Behind the Dipolarization Front Journal of Geophysical Research Space Physics 126 10 arXiv 2208 12671 Bibcode 2021JGRA 12629518N doi 10 1029 2021JA029518 S2CID 241861877 Marklund G Lindqvist P A 2021 Cluster Multi Probing of the Aurora During Two Decades Journal of Geophysical Research Space Physics 126 6 Bibcode 2021JGRA 12629497M doi 10 1029 2021JA029497 S2CID 236271440 Huang S Y et al 2021 Multi spacecraft measurement of anisotropic spatial correlation functions at kinetic range in the magnetosheath turbulence Journal of Geophysical Research Space Physics 126 5 Bibcode 2021JGRA 12628780H doi 10 1029 2020JA028780 S2CID 235556211 Zhou H He H Q 2021 The Solar cycle Variations of the Anisotropy of Taylor Scale and Correlation Scale in the Solar Wind Turbulence Astrophysical Journal Letters 911 1 L2 arXiv 2104 04920 Bibcode 2021ApJ 911L 2Z doi 10 3847 2041 8213 abef00 S2CID 233210154 Haaland S et al 2021 Heavy Metal and Rock in Space Cluster RAPID Observations of Fe and Si Journal of Geophysical Research Space Physics 126 3 Bibcode 2021JGRA 12628852H doi 10 1029 2020JA028852 S2CID 233922057 Lazar M Pierrard S 2020 Characteristics of solar wind suprathermal halo electrons Astronomy and Astrophysics 642 A130 A130 Bibcode 2020A amp A 642A 130L doi 10 1051 0004 6361 202038830 S2CID 229028809 Hatch S M Haaland S 2020 Seasonal and hemispheric asymmetries of F region polar cap plasma density Swarm and CHAMP observations Journal of Geophysical Research Space Physics 125 11 e2020JA028084 Bibcode 2020JGRA 12528084H doi 10 1029 2020JA028084 Bakrania M R Rae I J Walsh A P 2020 Using Dimensionality Reduction and Clustering Techniques to Classify Space Plasma Regimes Front Astron Space Sci 7 80 80 arXiv 2009 10466 Bibcode 2020FrASS 7 80B doi 10 3389 fspas 2020 593516 Zhou G He H Q Wan W 2020 Effects of Solar Activity on Taylor Scale and Correlation Scale in Solar Wind Magnetic Fluctuations The Astrophysical Journal Letters 899 L32 L32 arXiv 2008 08542 Bibcode 2020ApJ 899L 32Z doi 10 3847 2041 8213 abaaa9 Aryan H Agapitov O V 2020 Outer Radiation Belt Electron Lifetime Model Based on Combined Van Allen Probes and Cluster VLF Measurements Journal of Geophysical Research Space Physics 125 8 e2020JA028018 Bibcode 2020JGRA 12528018A doi 10 1029 2020JA028018 Mishin E Streltsov A 2020 Prebreakup Arc Intensification due to Short Circuiting of Mesoscale Plasma Flows Over the Plasmapause Journal of Geophysical Research Space Physics 125 5 e2019JA027666 Bibcode 2020JGRA 12527666M doi 10 1029 2019JA027666 Forsyth C Sergeev V A Henderson M G Nishimura Y Gallardo Lacourt B 2020 Physical Processes of Meso Scale Dynamic Auroral Forms Space Sci Rev 216 3 46 Bibcode 2020SSRv 216 46F doi 10 1007 s11214 020 00665 y Haaland S Daly P W Vilenius E Dandouras I 2020 Suprathermal Fe in the Earth s plasma environment Cluster RAPID observations Journal of Geophysical Research Space Physics 125 2 e2019JA027596 Bibcode 2020JGRA 12527596H doi 10 1029 2019JA027596 Nakamura T K M Stawarz J E Hasegawa H Narita Y Franci L Narita Y Nakamura R Nystrom W D 2020 Effects of Fluctuating Magnetic Field on the Growth of the Kelvin Helmholtz Instability at the Earth s Magnetopause Journal of Geophysical Research Space Physics 125 3 e2019JA027515 Bibcode 2020JGRA 12527515N doi 10 1029 2019JA027515 S2CID 212953719 Lai H R Russell C T Jia Y D Connors M 2019 First observations of the disruption of the Earth s foreshock wave field during magnetic clouds Geophysical Research Letters 46 24 14282 14289 doi 10 1029 2019GL085818 S2CID 213497617 Turc L Roberts O W Archer M O Palmroth M Battarbee M Brito T Ganse U Grandin M Pfau Kempf Y Escoubet C P Dandouras I 2019 First observations of the disruption of the Earth s foreshock wave field during magnetic clouds PDF Geophysical Research Letters 46 22 1612 1624 Bibcode 2019GeoRL 4612644T doi 10 1029 2019GL084437 hdl 10138 315030 S2CID 212882584 Duan S Dai L Wang C Cai C He Z Zhang Y Reme H Dandouras I 2019 Conjunction Observations of Energetic Oxygen Ions O Accumulated in the Sequential Flux Ropes in the High Altitude Cusp PDF Journal of Geophysical Research Space Physics 124 10 7912 7922 Bibcode 2019JGRA 124 7912D doi 10 1029 2019JA026989 S2CID 210305167 Connor H K Carter J A 2019 Exospheric neutral hydrogen density at the nominal 10 RE subsolar point deduced from XMM Newton X ray observations Journal of Geophysical Research Space Physics 124 3 1612 1624 Bibcode 2019JGRA 124 1612C doi 10 1029 2018JA026187 Wang J et al 2019 Asymmetric transport of the Earth s polar outflows by the interplanetary magnetic field Astrophysical Journal Letters 881 2 L34 Bibcode 2019ApJ 881L 34W doi 10 3847 2041 8213 ab385d S2CID 202135965 Chen G Fu H S Zhang Y Li X Ge Y S Du A M Liu C M Xu Y 2019 Energetic electron acceleration in unconfined reconnection jets The Astrophysical Journal 881 1 L8 Bibcode 2019ApJ 881L 8C doi 10 3847 2041 8213 ab3041 Kieokaew R Foullon C 2019 Kelvin Helmholtz waves magnetic curvature and vorticity Four spacecraft Cluster observations Journal of Geophysical Research Space Physics 124 5 3347 3359 Bibcode 2019JGRA 124 3347K doi 10 1029 2019JA026484 Damiano P A Chaston C C Hull A J Johnson J R 2018 Electron distributions in kinetic scale field line resonances A comparison of simulations and observations Geophysical Research Letters 45 12 5826 5835 Bibcode 2018GeoRL 45 5826D doi 10 1029 2018GL077748 OSTI 1468802 Dimmock A P et al 2019 Direct evidence of nonstationary collisionless shocks in space plasmas Science Advances 5 2 eaau9926 Bibcode 2019SciA 5 9926D doi 10 1126 sciadv aau9926 PMC 6392793 PMID 30820454 Kruparova O et al 2019 Statistical survey of the terrestrial bow shock observed by the Cluster spacecraft PDF J Geophysical Res 124 3 1539 1547 Bibcode 2019JGRA 124 1539K doi 10 1029 2018JA026272 hdl 11603 12953 S2CID 134189855 Fu H S Xu Y Vaivads A Khotyaintsev Y V 2019 Super efficient electron acceleration by an isolated magnetic reconnection Astrophysical Journal Letters 870 L22 L22 Bibcode 2019ApJ 870L 22F doi 10 3847 2041 8213 aafa75 Slapak R Nilsson H 2018 The Oxygen Ion Circulation in The Outer Terrestrial Magnetosphere and Its Dependence on Geomagnetic Activity Geophys Res Lett 45 23 12 669 12 676 Bibcode 2018GeoRL 4512669S doi 10 1029 2018GL079816 Schillings A Nilsson H Slapak R Wintoft P Yamauchi M Wik M Dandouras I Carr C M 2018 O escape during the extreme space weather event of 4 10 September 2017 Space Weather 16 4 1363 1376 Bibcode 2018SpWea 16 1363S doi 10 1029 2018sw001881 Liebert E Nabert C Glassmeier K H 2018 Statistical survey of day side magnetospheric current flow using Cluster observations bow shock Annales Geophysicae 36 4 1073 1080 Bibcode 2018AnGeo 36 1073L doi 10 5194 angeo 36 1073 2018 Liu C M H S Fu D Cao Y Xu A Divin 2018 Detection of magnetic nulls around reconnection fronts The Astrophysical Journal 860 2 128 Bibcode 2018ApJ 860 128L doi 10 3847 1538 4357 aac496 S2CID 125461272 Coxon J C Freeman M P Jackman C M Forsyth C Rae I J Fear R C 2018 Tailward propagation of magnetic energy density variations with respect to substorm onset times Journal of Geophysical Research Space Physics 123 6 4741 4754 Bibcode 2018JGRA 123 4741C doi 10 1029 2017JA025147 Masson A Nykyri K 2018 Kelvin Helmholtz Instability lessons learned and ways forward PDF Space Science Reviews 214 4 71 Bibcode 2018SSRv 214 71M doi 10 1007 s11214 018 0505 6 S2CID 125646793 Roberts O W Narita Y Escoubet C P 2018 Three dimensional density and compressible magnetic structure in solar wind turbulence Annales Geophysicae 36 2 527 539 Bibcode 2018AnGeo 36 527R doi 10 5194 angeo 36 527 2018 Hadid L Z Sahraoui F Galtier S Huang S Y January 2018 Compressible Magnetohydrodynamic Turbulence in the Earth s Magnetosheath Estimation of the Energy Cascade Rate Using in situ Spacecraft Data Physical Review Letters 120 5 055102 arXiv 1710 04691 Bibcode 2018PhRvL 120e5102H doi 10 1103 PhysRevLett 120 055102 PMID 29481187 S2CID 3676068 Grigorenko E E Dubyagin S Malykhin A Khotyaintsev Y V Kronberg E A Lavraud B Ganushkina N Yu 2018 Intense current structures observed at electron kinetic Scales in the near Earth magnetotail during dipolarization and substorm current wedge formation Geophysical Research Letters 45 2 602 611 Bibcode 2018GeoRL 45 602G doi 10 1002 2017GL076303 hdl 2027 42 142547 S2CID 133980983 Archived from the original on 2019 10 31 Retrieved 2019 10 31 Andreeva V A Tsyganenko N A 2017 Empirical Modeling of the Quiet and Storm Time Geosynchronous Magnetic Field Space Weather 16 1 16 36 Bibcode 2018SpWea 16 16A doi 10 1002 2017SW001684 Roberts O W Y Narita C P Escoubet 2017 Direct measurement of anisotropic and asymmetric wave vector Spectrum in ion scale solar wind turbulence The Astrophysical Journal 851 1 L11 Bibcode 2017ApJ 851L 11R doi 10 3847 2041 8213 aa9bf3 Perrone D O Alexandrova O W Roberts S Lion C Lacombe A Walsh M Maksimovic I Zouganelis 2017 Coherent structures at ion scales in the fast solar wind Cluster observations The Astrophysical Journal 849 1 49 arXiv 1709 09644 Bibcode 2017ApJ 849 49P doi 10 3847 1538 4357 aa9022 S2CID 119050245 Perrone D O Alexandrova O W Roberts S Lion C Lacombe A Walsh M Maksimovic I Zouganelis 2017 Near Earth plasma sheet boundary dynamics during substorm dipolarization Earth Planets and Space 69 1 129 Bibcode 2017EP amp S 69 129N doi 10 1186 s40623 017 0707 2 PMC 6961498 PMID 32009832 Yushkov E A Petrukovich A Artemyev R Nakamura 2017 Relationship between electron field aligned anisotropy and dawn dusk magnetic field nine years of Cluster observations in the Earth magnetotail Journal of Geophysical Research Space Physics 122 9 9294 9305 Bibcode 2017JGRA 122 9294Y doi 10 1002 2016JA023739 S2CID 134267682 Giagkiozis S S N Walker S A Pope G Collinson 2017 Validation of single spacecraft methods for collisionless shock velocity estimation Journal of Geophysical Research Space Physics 122 8 8632 8641 Bibcode 2017JGRA 122 8632G doi 10 1002 2017JA024502 Zhao L L Zhang H Zong Q G 2017 Global ULF waves generated by a hot flow anomaly Geophysical Research Letters 44 11 5283 5291 Bibcode 2017GeoRL 44 5283Z doi 10 1002 2017GL073249 Fu H S A Vaivads Y V Khotyaintsev M Andre J B Cao V Olshevsky J P Eastwood A Retino 2017 Intermittent energy dissipation by turbulent reconnection Geophysical Research Letters 44 1 37 43 Bibcode 2017GeoRL 44 37F doi 10 1002 2016GL071787 hdl 10044 1 44378 S2CID 125215749 Turc L D Fontaine C P Escoubet E K J Kilpua A P Dimmock 2017 Statistical study of the alteration of the magnetic structure of magnetic clouds in the Earth s magnetosheath Journal of Geophysical Research Space Physics 122 3 2956 2972 Bibcode 2017JGRA 122 2956T doi 10 1002 2016JA023654 hdl 10138 224163 S2CID 125621578 Vines S K S A Fuselier S M Petrinec K J Trattner R C Allen 2017 Occurrence frequency and location of magnetic islands at the dayside magnetopause Journal of Geophysical Research Space Physics 122 4 4138 4155 Bibcode 2017JGRA 122 4138V doi 10 1002 2016JA023524 Case N A A Grocott S E Milan T Nagai J P Reistad 2017 An analysis of magnetic reconnection events and their associated auroral enhancements Journal of Geophysical Research Space Physics 122 2 2922 2935 Bibcode 2017JGRA 122 2922C doi 10 1002 2016JA023586 Lugaz N C J Farrugia C L Huang R M Winslow H E Spence N A Schwadron 2016 Earth s magnetosphere and outer radiation belt under sub Alfvenic solar wind Nature Communications 7 13001 Bibcode 2016NatCo 713001L doi 10 1038 ncomms13001 PMC 5063966 PMID 27694887 Moore T W Nykyri K Dimmock A P 2016 Cross scale energy transport in space plasmas Nature Physics 12 12 1164 1169 Bibcode 2016NatPh 12 1164M doi 10 1038 nphys3869 S2CID 125684283 Schmid D R Nakamura M Volwerk F Plaschke Y Narita W Baumjohann et al 2016 A comparative study of dipolarization fronts at MMS and Cluster Geophysical Research Letters 43 12 6012 6019 Bibcode 2016GeoRL 43 6012S doi 10 1002 2016GL069520 PMC 4949994 PMID 27478286 Parks G K E Lee S Y Fu H E Kim Y Q Ma Z W Yang Y Liu N Lin J Hong P Canu 2016 Transport of solar wind H and He ions across Earth s bow shock The Astrophysical Journal 825 2 L27 Bibcode 2016ApJ 825L 27P doi 10 3847 2041 8205 825 2 L27 a b Lee S H H Zhang Q G Zong A Otto H Reme E Liebert 2016 A statistical study of plasmaspheric plumes and ionospheric outflows observed at the dayside magnetopause Journal of Geophysical Research Space Physics 121 1 492 506 Bibcode 2016JGRA 121 492L doi 10 1002 2015JA021540 a b Zhang B O J Brambles W Lotko J E Ouellette J G Lyon 2016 The role of ionospheric O outflow in the generation of earthward propagating plasmoids Journal of Geophysical Research Space Physics 121 2 1425 1435 Bibcode 2016JGRA 121 1425Z doi 10 1002 2015JA021667 Yao Z A N Fazakerley A Varsani I J Rae C J Owen et al 2016 Substructures within a dipolarization front revealed by high temporal resolution Cluster observations Journal of Geophysical Research Space Physics 121 6 5185 5202 Bibcode 2016JGRA 121 5185Y doi 10 1002 2015JA022238 L Turc C P Escoubet D Fontaine E K J Kilpua S Enestam 2016 Cone angle control of the interaction of magnetic clouds with the Earth s bow shock Geophysical Research Letters 43 10 4781 4789 Bibcode 2016GeoRL 43 4781T doi 10 1002 2016GL068818 S2CID 131474026 Cheng Z W J C Zhang J K Shi L M Kistler M Dunlop I Dandouras A Fazakerley 2016 The particle carriers of field aligned currents in the Earth s magnetotail during a substorm Journal of Geophysical Research Space Physics 121 4 3058 3068 Bibcode 2016JGRA 121 3058C doi 10 1002 2015JA022071 Wang R Q Lu R Nakamura C Huang A Du F Guo W Teh M Wu S Lu S Wang 2015 Coalescence of magnetic flux ropes in the ion diffusion region of magnetic reconnection Nature Physics 12 3 263 267 Bibcode 2016NatPh 12 263W doi 10 1038 nphys3578 Decreau P M E Aoutou S Denazelle A Galkina I Rauch J L Vallieres X Canu P Rochel Grimald S El Lemdani Mazouz F Darrouzet F 2015 Wide banded NTC radiation local to remote observations by the four Cluster satellites Annales Geophysicae 33 10 1285 1300 Bibcode 2015AnGeo 33 1285D doi 10 5194 angeo 33 1285 2015 Eriksson E A Vaivads Y V Khotyaintsev V M Khotyayintsev M Andre 2015 Statistics and accuracy of magnetic null identification in multispacecraft data Geophysical Research Letters 42 17 6883 6889 Bibcode 2015GeoRL 42 6883E doi 10 1002 2015GL064959 Cai D A Esmaeili B Lembege K I Nishikawa 2015 Cusp dynamics under northward IMF using three dimensional global particle in cell simulations PDF Journal of Geophysical Research Space Physics 120 10 8368 8386 Bibcode 2015JGRA 120 8368C doi 10 1002 2015JA021230 Balikhin M A Y Y Shprits S N Walker L Chen N Cornilleau Wehrlin I Dandouras O Santolik C Carr K H Yearby B Weiss 2015 Observations of Discrete Harmonics Emerging From Equatorial Noise Nature Communications 6 7703 Bibcode 2015NatCo 6 7703B doi 10 1038 ncomms8703 PMC 4510698 PMID 26169360 Dunlop M W J Y Yang Y Y Yang C Xiong H Luhr Y V Bogdanova C Shen N Olsen Q H Zhang J B Cao H S Fu W L Liu C M Carr P Ritter A Masson R Haagmans 2015 Simultaneous field aligned currents at Swarm and Cluster satellites Geophysical Research Letters 42 10 3683 3691 Bibcode 2015GeoRL 42 3683D doi 10 1002 2015GL063738 Russell A J B Karlsson T Wright A N 2015 Magnetospheric signatures of ionospheric density cavities observed by Cluster PDF Journal of Geophysical Research Space Physics 120 3 1876 1887 Bibcode 2015JGRA 120 1876R doi 10 1002 2014JA020937 Russell A J B T Karlsson A N Wright 2015 Magnetospheric signatures of ionospheric density cavities observed by Cluster PDF Journal of Geophysical Research Space Physics 120 3 1876 1887 Bibcode 2015JGRA 120 1876R doi 10 1002 2014JA020937 Maes L Maggiolo R De Keyser J Dandouras I Fear R C Fontaine D Haaland S 2015 Solar illumination control of ionospheric outflow above polar cap arcs Geophysical Research Letters 42 5 1304 1311 Bibcode 2015GeoRL 42 1304M doi 10 1002 2014GL062972 Fear R C S E Milan R Maggiolo A N Fazakerley I Dandouras S B Mende 2014 Direct observation of closed magnetic flux trapped in the high latitude magnetosphere PDF Science 346 6216 1506 1510 Bibcode 2014Sci 346 1506F doi 10 1126 science 1257377 PMID 25525244 S2CID 21017912 Zhongwei Y Y D Liu G K Parks P Wu C Huang R Shi R Wang H Hu 2014 Full particle electromagnetic simulations of entropy generation across a collisionless shock The Astrophysical Journal 793 1 L11 Bibcode 2014ApJ 793L 11Y doi 10 1088 2041 8205 793 1 L11 Kozyra et al 2014 Solar filament impact on 21 January 2005 Geospace consequences Journal of Geophysical Research Space Physics 119 7 2169 9402 Bibcode 2014JGRA 119 5401K doi 10 1002 2013JA019748 hdl 2027 42 108315 S2CID 52001277 Walsh A P Haaland S Forsyth C Keesee A M Kissinger J Li K Runov A Soucek J Walsh B M Wing S Taylor M G G T 2014 Dawn dusk asymmetries in the coupled solar wind magnetosphere ionosphere system a review Annales Geophysicae 32 7 705 737 arXiv 1701 04701 Bibcode 2014AnGeo 32 705W doi 10 5194 angeo 32 705 2014 S2CID 55038191 Graham D B Yu V Khotyaintsev A Vaivads M Andre A N Fazakerley 2014 Electron Dynamics in the Diffusion Region of Asymmetric Magnetic Reconnection Physical Review Letters 112 21 215004 Bibcode 2014PhRvL 112u5004G doi 10 1103 PhysRevLett 112 215004 Luo H E A Kronberg E E Grigorenko M Franz P W Daly G X Chen A M Du L M Kistler Y Wei 2014 Evidence of strong energetic ion acceleration in the near Earth magnetotail Geophysical Research Letters 41 11 3724 3730 Bibcode 2014GeoRL 41 3724L doi 10 1002 2014GL060252 Tsyganenko N 2014 Data based modeling of the geomagnetosphere with an IMF dependent magnetopause Journal of Geophysical Research Space Physics 119 1 335 354 Bibcode 2014JGRA 119 335T doi 10 1002 2013JA019346 S2CID 119786539 Shen C Y Y Yang Z J Rong X Li M Dunlop C M Carr Z X Liu D N Baker Z Q Chen Y Ji G Zeng 2014 Direct calculation of the ring current distribution and magnetic structure seen by Cluster during geomagnetic storms Journal of Geophysical Research Space Physics 119 4 2458 2465 Bibcode 2014JGRA 119 2458S doi 10 1002 2013JA019460 Nakamura R T Karlsson M Hamrin H Nilsson O Marghitu O Amm C Bunescu V Constantinescu H U Frey A Keiling J Semeter E Sorbalo J Vogt C Forsyth M V Kubyshkina 2014 Low altitude electron acceleration due to multiple flow bursts in the magnetotail Geophysical Research Letters 41 3 777 784 Bibcode 2014GeoRL 41 777N doi 10 1002 2013GL058982 Decreau P M E et al 2013 Remote sensing of a NTC radio source from a Cluster tilted spacecraft pair Annales Geophysicae 31 11 2097 2121 Bibcode 2013AnGeo 31 2097D doi 10 5194 angeo 31 2097 2013 Haaland S J Gjerloev 2013 On the relation between asymmetries in the ring current and magnetopause current Journal of Geophysical Research Space Physics 118 7 7593 7604 Bibcode 2013JGRA 118 7593H doi 10 1002 jgra 50239 hdl 2027 42 99669 S2CID 55200569 Darrouzet F et al 2013 Links between the plasmapause and the radiation belt boundaries as observed by the instruments CIS RAPID and WHISPER onboard Cluster Journal of Geophysical Research Space Physics 118 7 4176 4188 Bibcode 2013JGRA 118 4176D doi 10 1002 jgra 50239 hdl 2027 42 99669 S2CID 55200569 Fu H S et al 2013 Energetic electron acceleration by unsteady magnetic reconnection Nature Physics 9 7 426 430 Bibcode 2013NatPh 9 426F doi 10 1038 nphys2664 Dandouras I 2013 Detection of a plasmaspheric wind in the Earth s magnetosphere by the Cluster spacecraft Annales Geophysicae 31 7 1143 1153 Bibcode 2013AnGeo 31 1143D doi 10 5194 angeo 31 1143 2013 Viberg H et al 2013 Mapping High Frequency Waves in the Reconnection Diffusion Region Geophysical Research Letters 40 6 1032 1037 Bibcode 2013GeoRL 40 1032V doi 10 1002 grl 50227 Cao J et al 2013 Kinetic analysis of the energy transport of bursty bulk flows in the plasma sheet Journal of Geophysical Research Space Physics 118 1 313 320 Bibcode 2013JGRA 118 313C doi 10 1029 2012JA018351 Perri S et al 2012 Detection of small scale structures in the dissipation regime of solar wind turbulence Physical Review Letters 109 19 191101 Bibcode 2012PhRvL 109s1101P doi 10 1103 PhysRevLett 109 191101 PMID 23215371 Hwang K J et al 2012 The first in situ observation of Kelvin Helmholtz waves at high latitude magnetopause during strongly dawnward interplanetary magnetic field conditions Journal of Geophysical Research Space Physics 117 A8 A08233 Bibcode 2012JGRA 117 8233H doi 10 1029 2011JA017256 hdl 2060 20140009615 Norgren C et al 2012 Lower hybrid drift waves space observations Physical Review Letters 109 5 55001 Bibcode 2012PhRvL 109e5001N doi 10 1103 PhysRevLett 109 055001 PMID 23006181 Nykyri K et al 2012 On the origin of high energy particles in the cusp diamagnetic cavity Journal of Atmospheric and Solar Terrestrial Physics 87 88 Special Issue on Physical Process in the Cusp Plasma Transport and Energization 70 81 Bibcode 2012JASTP 87 70N doi 10 1016 j jastp 2011 08 012 Wei Y et al 2012 Enhanced atmospheric oxygen outflow on Earth and Mars driven by a corotating interaction region Journal of Geophysical Research Space Physics 117 A16 3208 Bibcode 2012JGRA 117 3208W doi 10 1029 2011JA017340 Egedal J et al 2012 Large scale electron acceleration by parallel electric fields during magnetic reconnection Nature Physics 8 4 321 324 Bibcode 2012NatPh 8 321E doi 10 1038 nphys2249 Andre M C M Cully February 2012 Low energy ions A previously hidden solar system particle population in press Geophysical Research Letters 39 3 n a Bibcode 2012GeoRL 39 3101A doi 10 1029 2011GL050242 Schwartz S J et al 2011 Electron temperature gradient scale at collisionless shocks PDF Physical Review Letters 107 21 215002 Bibcode 2011PhRvL 107u5002S doi 10 1103 PhysRevLett 107 215002 hdl 10044 1 18881 PMID 22181889 Shay M A et al 2011 Super Alfvenic Propagation of Substorm Reconnection Signature and Poynting Flux Physical Review Letters 107 6 065001 arXiv 1104 0922 Bibcode 2011PhRvL 107f5001S doi 10 1103 PhysRevLett 107 065001 PMID 21902330 S2CID 119204267 Turner A J et al 2011 Nonaxisymmetric Anisotropy of Solar Wind Turbulence Physical Review Letters 107 9 095002 arXiv 1106 2023 Bibcode 2011PhRvL 107i5002T doi 10 1103 PhysRevLett 107 095002 PMID 21929247 S2CID 736486 Khotyaintsev Y et al 2011 Plasma Jet Braking Energy Dissipation and Nonadiabatic Electrons PDF Physical Review Letters 106 16 165001 Bibcode 2011PhRvL 106p5001K doi 10 1103 PhysRevLett 106 165001 PMID 21599373 Marklund G T et al 2011 Altitude distribution of the auroral acceleration potential determined from Cluster satellite data at different heights Physical Review Letters 106 5 055002 Bibcode 2011PhRvL 106e5002M doi 10 1103 PhysRevLett 106 055002 PMID 21405403 Echim M et al 2011 Comparative investigation of the terrestrial and Venusian magnetopause Kinetic modeling and experimental observations by Cluster and Venus Express Planetary and Space Science 59 10 1028 1038 Bibcode 2011P amp SS 59 1028E doi 10 1016 j pss 2010 04 019 Sahraoui F et al 2010 Three dimensional anisotropic k spectra of turbulence at subproton scales in the solar wind Physical Review Letters 105 13 131101 Bibcode 2010PhRvL 105m1101S doi 10 1103 PhysRevLett 105 131101 PMID 21230758 Masson A et al 2011 A decade revealing the Sun Earth connection in three dimensions Eos Transactions American Geophysical Union 92 1 4 Bibcode 2011EOSTr 92Q 4M doi 10 1029 2011EO010007 Kistler L M et al 2010 Cusp as a source for oxygen in the plasma sheet during geomagnetic storms Journal of Geophysical Research Space Physics 115 A3 A03209 Bibcode 2010JGRA 115 3209K doi 10 1029 2009JA014838 Yuan Z et al 2010 Link between EMIC waves in a plasmaspheric plume and a detached sub auroral proton arc with observations of Cluster and IMAGE satellites PDF Geophysical Research Letters 37 7 L07108 Bibcode 2010GeoRL 37 7108Y doi 10 1029 2010GL042711 S2CID 129916422 Laakso Harri Taylor Matthew Escoubet C Philippe 2010 Laakso H et al eds The Cluster Active Archive Studying the Earth s Space Plasma Environment The Cluster Active Archive Astrophysics and Space Science Proceedings Vol 11 Astrophys amp Space Sci Proc series Springer pp 1 489 Bibcode 2010ASSP 11 L doi 10 1007 978 90 481 3499 1 ISBN 978 90 481 3498 4 Hietala H et al 2009 Supermagnetosonic jets behind a collisionless quasiparallel shock Physical Review Letters 103 24 245001 arXiv 0911 1687 Bibcode 2009PhRvL 103x5001H doi 10 1103 PhysRevLett 103 245001 PMID 20366203 S2CID 12557772 Zong Q G et al 2009 Energetic electron response to ULF waves induced by interplanetary shocks in the outer radiation belt Journal of Geophysical Research Space Physics 114 A10 A10204 Bibcode 2009JGRA 11410204Z doi 10 1029 2009JA014393 Dunlop M et al 2009 Reconnection at High Latitudes Antiparallel Merging Physical Review Letters 102 7 075005 Bibcode 2009PhRvL 102g5005D doi 10 1103 PhysRevLett 102 075005 PMID 19257682 Sahraoui F et al 2009 Evidence of a cascade and dissipation of solar wind turbulence at the electron gyroscale Physical Review Letters 102 23 231102 Bibcode 2009PhRvL 102w1102S doi 10 1103 PhysRevLett 102 231102 PMID 19658919 Dandouras I et al 2009 Magnetosphere response to the 2005 and 2006 extreme solar events as observed by the Cluster and Double Star spacecraft Advances in Space Research 43 23 618 623 Bibcode 2009AdSpR 43 618D doi 10 1016 j asr 2008 10 015 Yordanova E et al 2008 Magnetosheath plasma turbulence and its spatiotemporal evolution as observed by the Cluster spacecraft Physical Review Letters 100 20 205003 Bibcode 2008PhRvL 100t5003Y doi 10 1103 PhysRevLett 100 205003 PMID 18518544 Engwall E et al 2009 Magnetosheath plasma turbulence and its spatiotemporal evolution as observed by the Cluster spacecraft Nature Geoscience 2 1 24 27 Bibcode 2009NatGe 2 24E doi 10 1038 ngeo387 Eastwood J et al 2008 The science of space weather Philosophical Transactions of the Royal Society A Mathematical Physical and Engineering Sciences 366 1884 4489 4500 Bibcode 2008RSPTA 366 4489E doi 10 1098 rsta 2008 0161 PMID 18812302 S2CID 49410 Kronberg E et al 2008 Comparison of periodic substorms at Jupiter and Earth Journal of Geophysical Research Space Physics 113 A04212 Bibcode 2008JGRA 11304212K doi 10 1029 2007JA012880 Nilsson H et al 2008 An assessment of the role of the centrifugal acceleration mechanism in high altitude polar cap oxygen ion outflow Annales Geophysicae 26 1 145 157 Bibcode 2008AnGeo 26 145N doi 10 5194 angeo 26 145 2008 He J S et al 2008 Electron trapping around a magnetic null PDF Geophysical Research Letters 35 14 L14104 Bibcode 2008GeoRL 3514104H doi 10 1029 2008GL034085 He J S et al 2008 A magnetic null geometry reconstructed from Cluster spacecraft observations Journal of Geophysical Research Space Physics 113 A5 A05205 Bibcode 2008JGRA 113 5205H doi 10 1029 2007JA012609 Mutel R L et al 2008 Cluster multispacecraft determination of AKR angular beaming Geophysical Research Letters 35 7 L07104 arXiv 0803 0078 Bibcode 2008GeoRL 35 7104M doi 10 1029 2008GL033377 S2CID 18143005 Wei X H et al 2007 Cluster observations of waves in the whistler frequency range associated with magnetic reconnection in the Earth s magnetotail Journal of Geophysical Research Space Physics 112 A10 A10225 Bibcode 2007JGRA 11210225W doi 10 1029 2006JA011771 Trines R et al 2007 Spontaneous Generation of Self Organized Solitary Wave Structures at Earth s Magnetopause PDF Physical Review Letters 99 20 205006 Bibcode 2007PhRvL 99t5006T doi 10 1103 PhysRevLett 99 205006 PMID 18233152 Phan T et al 2007 Evidence for an Elongated gt 60 Ion Skin Depths Electron Diffusion Region during Fast Magnetic Reconnection Physical Review Letters 99 25 255002 Bibcode 2007PhRvL 99y5002P doi 10 1103 PhysRevLett 99 255002 PMID 18233527 Grigorenko E E et al 2007 Spatial Temporal characteristics of ion beamlets in the plasma sheet boundary layer of magnetotail Journal of Geophysical Research Space Physics 112 A5 A05218 Bibcode 2007JGRA 112 5218G doi 10 1029 2006JA011986 Lavraud B et al 2007 Strong bulk plasma acceleration in Earth s magnetosheath A magnetic slingshot effect Geophysical Research Letters 34 14 L14102 Bibcode 2007GeoRL 3414102L doi 10 1029 2007GL030024 hdl 2027 42 94743 S2CID 40387871 Rosenqvist L et al 2007 An unusual giant spiral arc in the polar cap region during the northward phase of a Coronal Mass Ejection Annales Geophysicae 25 2 507 517 Bibcode 2007AnGeo 25 507R doi 10 5194 angeo 25 507 2007 Lui A T Y et al 2007 Breakdown of the frozen in condition in the Earth s magnetotail Journal of Geophysical Research Space Physics 112 A4 A04215 Bibcode 2007JGRA 112 4215L doi 10 1029 2006JA012000 Haaland S E et al 2007 High latitude plasma convection from Cluster EDI measurements method and IMF dependence Annales Geophysicae 25 1 239 253 Bibcode 2007AnGeo 25 239H doi 10 5194 angeo 25 239 2007 Forster M et al 2007 High latitude plasma convection from Cluster EDI variances and solar wind correlations Annales Geophysicae 25 7 1691 1707 Bibcode 2007AnGeo 25 1691F doi 10 5194 angeo 25 1691 2007 Sergeev V Semenov V Kubyshkina M Ivanova V Baumjohann W Nakamura R Penz T Runov A Zhang T L Glassmeier K H Angelopoulos V Frey H Sauvaud J A Daly P Cao J B Singer H Lucek E 2007 Observation of repeated intense near Earth reconnection on closed field lines with Cluster Double Star and other spacecraft Geophysical Research Letters 34 2 L02103 Bibcode 2007GeoRL 34 2103S doi 10 1029 2006GL028452 Rae J et al 2005 Evolution and characteristics of global Pc5 ULF waves during a high solar wind speed interval PDF Journal of Geophysical Research 110 A12 A12211 Bibcode 2005JGRA 11012211R doi 10 1029 2005JA011007 Zong Q G et al 2007 Ultralow frequency modulation of energetic particles in the dayside magnetosphere Geophysical Research Letters 34 12 L12105 Bibcode 2007GeoRL 3412105Z doi 10 1029 2007GL029915 Xiao C J et al 2007 Satellite observations of separator line geometry of three dimensional magnetic reconnection Nature Physics 3 9 603 607 arXiv 0705 1021 Bibcode 2007NatPh 3 609X doi 10 1038 nphys650 S2CID 119637705 Lobzin V V et al 2007 Nonstationarity and reformation of high Mach number quasiperpendicular shocks Cluster observations PDF Geophysical Research Letters 34 5 L05107 Bibcode 2007GeoRL 3405107L doi 10 1029 2006GL029095 Lui A T Y et al 2006 Cluster observation of plasma flow reversal in the magnetotail during a substorm Annales Geophysicae 24 7 2005 2013 Bibcode 2006AnGeo 24 2005L doi 10 5194 angeo 24 2005 2006 Retino A et al 2007 In situ evidence of magnetic reconnection in turbulent plasma Nature Physics 3 4 236 238 Bibcode 2007NatPh 3 236R doi 10 1038 nphys574 Henderson P et al 2006 Cluster PEACE observations of electron pressure tensor divergence in the magnetotail PDF Geophysical Research Letters 33 22 L22106 Bibcode 2006GeoRL 3322106H doi 10 1029 2006GL027868 Marklund G et al 2007 Cluster observations of an auroral potential and associated field aligned current reconfiguration during thinning of the plasma sheet boundary layer Journal of Geophysical Research Space Physics 112 A1 n a Bibcode 2007JGRA 112 1208M doi 10 1029 2006JA011804 Nykyri K et al 2006 Cluster observations of reconnection due to the Kelvin Helmholtz instability at the dawnside magnetospheric flank Annales Geophysicae 24 10 2619 2643 Bibcode 2006AnGeo 24 2619N doi 10 5194 angeo 24 2619 2006 Darrouzet F et al 2006 Spatial gradients in the plasmasphere from Cluster Geophysical Research Letters 33 8 L08105 Bibcode 2006GeoRL 33 8105D doi 10 1029 2006GL025727 Darrouzet F et al 2006 Analysis of plasmaspheric plumes CLUSTER and IMAGE observations Annales Geophysicae 24 6 1737 1758 Bibcode 2006AnGeo 24 1737D doi 10 5194 angeo 24 1737 2006 Marchaudon A et al 2005 Simultaneous Double Star and Cluster FTEs observations on the dawnside flank of the magnetosphere Annales Geophysicae 23 8 2877 2887 Bibcode 2005AnGeo 23 2877M doi 10 5194 angeo 23 2877 2005 Cao J B et al 2006 Joint observations by Cluster satellites of bursty bulk flows in the magnetotail Journal of Geophysical Research 111 A4 A04206 Bibcode 2006JGRA 111 4206C doi 10 1029 2005JA011322 Xiao C J et al 2006 In situ evidence for the structure of the magnetic null in a 3D reconnection event in the Earth s magnetotail Nature Physics 2 7 478 483 arXiv physics 0606014 Bibcode 2006NatPh 2 478X doi 10 1038 nphys342 S2CID 18921009 Parks G et al 2006 Larmor radius size density holes discovered in the solar wind upstream of Earth s bow shock Physics of Plasmas 13 5 050701 Bibcode 2006PhPl 13e0701P doi 10 1063 1 2201056 Mozer F et al 2005 Spatial gradients in the plasmasphere from Cluster Geophysical Research Letters 32 24 L24102 Bibcode 2005GeoRL 3224102M doi 10 1029 2005GL024092 Zhang T L et al 2005 Double Star Cluster observation of neutral sheet oscillations on 5 August 2004 Annales Geophysicae 23 8 2909 2914 Bibcode 2005AnGeo 23 2909Z doi 10 5194 angeo 23 2909 2005 Sahraoui F et al 2006 Anisotropic turbulent spectra in the terrestrial magnetosheath Cluster observations PDF Physical Review Letters 96 7 075002 Bibcode 2006PhRvL 96g5002S doi 10 1103 PhysRevLett 96 075002 PMID 16606099 Phan T et al 2006 A magnetic reconnection X line extending more than 390 Earth radii in the solar wind Nature 439 7073 175 178 Bibcode 2006Natur 439 175P doi 10 1038 nature04393 PMID 16407946 S2CID 4381256 Horne R B et al 2005 Wave acceleration of electrons in the Van Allen radiation belts Nature 437 7056 227 230 Bibcode 2005Natur 437 227H doi 10 1038 nature03939 PMID 16148927 S2CID 1530882 Sundkvist D et al 2005 In situ multi satellite detection of coherent vortices as a manifestation of Alfvenic turbulence Nature 436 7052 825 828 Bibcode 2005Natur 436 825S doi 10 1038 nature03931 PMID 16094363 S2CID 4430255 Vallat C et al 2005 First current density measurements in the ring current region using simultaneous multi spacecraft CLUSTER FGM data Annales Geophysicae 23 5 1849 1865 Bibcode 2005AnGeo 23 1849V doi 10 5194 angeo 23 1849 2005 Oieroset M et al 2005 Global cooling and densification of the plasma sheet during an extended period of purely northward IMF on October 22 24 2003 Geophysical Research Letters 32 12 L12S07 Bibcode 2005GeoRL 3212S07O doi 10 1029 2004GL021523 Li W et al 2005 Plasma sheet formation during long period of northward IMF Geophysical Research Letters 32 12 L12S08 Bibcode 2005GeoRL 3212S08L doi 10 1029 2004GL021524 Louarn P et al 2004 Cluster observations of complex 3D magnetic structures at the magnetopause Geophysical Research Letters 31 19 L19805 Bibcode 2004GeoRL 3119805L doi 10 1029 2004GL020625 Nakamura R et al 2004 Spatial scale of high speed flows in the plasma sheet observed by Cluster Geophysical Research Letters 31 9 L09804 Bibcode 2004GeoRL 31 9804N doi 10 1029 2004GL019558 Knetter T et al 2004 Four point discontinuity observations using Cluster magnetic field data A statistical survey Journal of Geophysical Research 109 A6 A06102 Bibcode 2004JGRA 109 6102K doi 10 1029 2003JA010099 Decreau P et al 2004 Observation of continuum radiations from the Cluster fleet first results from direction finding Annales Geophysicae 22 7 2607 2624 Bibcode 2004AnGeo 22 2607D doi 10 5194 angeo 22 2607 2004 Hasegawa H et al 2004 Transport of solar wind into Earth s magnetosphere through rolled up Kelvin Helmholtz vortices Nature 430 7001 755 758 Bibcode 2004Natur 430 755H doi 10 1038 nature02799 PMID 15306802 S2CID 4335442 Sergeev V et al 2004 Orientation and propagation of current sheet oscillations Geophysical Research Letters 31 5 L05807 Bibcode 2004GeoRL 31 5807S doi 10 1029 2003GL019346 Zong Q G et al 2004 Triple cusps observed by Cluster Temporal or spatial effect Geophysical Research Letters 31 9 L09810 Bibcode 2004GeoRL 3109810Z doi 10 1029 2003GL019128 S2CID 129833434 Bale S et al 2003 Density Transition Scale at Quasiperpendicular Collisionless Shocks Physical Review Letters 91 26 265004 Bibcode 2003PhRvL 91z5004B doi 10 1103 PhysRevLett 91 265004 PMID 14754061 Frey H et al 2003 Continuous magnetic reconnection at Earth s magnetopause Nature 426 6966 533 537 Bibcode 2003Natur 426 533F doi 10 1038 nature02084 PMID 14654835 S2CID 4421604 Runov A et al 2003 Current sheet structure near magnetic X line observed by Cluster Geophysical Research Letters 30 10 1579 Bibcode 2003GeoRL 30 1579R doi 10 1029 2002GL016730 Phan T et al 2003 Simultaneous Cluster and IMAGE Observations of Cusp Reconnection and Auroral Spot for Northward IMF Geophysical Research Letters 30 10 n a Bibcode 2003GeoRL 30 1509P doi 10 1029 2003GL016885 S2CID 117920602 Runov A et al 2003 Cluster observation of a bifurcated current sheet Geophysical Research Letters 30 2 1036 Bibcode 2003GeoRL 30 1036R doi 10 1029 2002GL016136 S2CID 121878799 Dunlop M et al 2002 Four point Cluster application of magnetic field analysis tools The Curlometer Journal of Geophysical Research 107 A11 1384 Bibcode 2002JGRA 107 1384D doi 10 1029 2001JA005088 Nakamura R et al 2002 Fast flow during current sheet thinning PDF Geophysical Research Letters 29 23 2140 Bibcode 2002GeoRL 29 2140N doi 10 1029 2002GL016200 Baker D N et al 2002 A telescopic and microscopic view of a magnetospheric substorm on 31 March 2001 Geophysical Research Letters 29 18 1862 Bibcode 2002GeoRL 29 1862B doi 10 1029 2001GL014491 Marklund G et al 2001 Temporal evolution of the electric field accelerating electrons away from the auroral ionosphere Nature 414 6865 724 727 Bibcode 2001Natur 414 724M doi 10 1038 414724a PMID 11742392 S2CID 4418541 Decreau P et al 2001 Early results from the Whisper instrument on Cluster an overview Annales Geophysicae 19 10 12 1241 1258 Bibcode 2001AnGeo 19 1241D doi 10 5194 angeo 19 1241 2001 Paschmann G S J Schwartz C P Escoubet S Haal eds 2005 Outer Magnetospheric Boundaries Cluster Results reprinted from Space Sci Rev 118 1 4 Springer Berlin pp 1 434 Bibcode 2005ombc book P External links EditESA Cluster mission website The Cluster Science Archive the public data archive of the Cluster and the Double Star missions More on spacecraft operations ESA Cluster mission Twitter account Imperial College London role in the Cluster mission University College London s Mullard Space Science Laboratory s role in the Cluster mission Archived 2016 03 07 at the Wayback Machine Cluster aurora explorer an exhibit at the Royal Society Summer Exhibition 2011 The Cluster Active Archive former public data archive up to 2014 Cluster mission article on eoPortal by ESA Retrieved from https en wikipedia org w index php title Cluster II spacecraft amp oldid 1143683516, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.