fbpx
Wikipedia

Climate change and invasive species

Climate change and invasive species refers to the process of the environmental destabilization caused by climate change. This environmental change facilitates the spread of invasive species — species that are not historically found in a certain region, and often bring about a negative impact to that region's native species. This complex relationship is notable because climate change and invasive species are also considered by the USDA to be two of the top four causes of global biodiversity loss.[2]

Buffelgrass (Cenchrus ciliaris) is an invasive species throughout the world that is pushing out native species.[1]

The interaction between climate change and invasive species is complex and not easy to assess. Climate change is likely to favour some invasive species and harm others,[3] but few authors have identified specific consequences of climate change for invasive species.[4] Consequences of climate change for invasive species are distinct from consequences for native species due to different characteristics (traits and qualities associated with invasions), management and abundance[4] and can be direct, through the species survival, or indirect, through other factors such as pest or prey species.[5]

Human-caused climate change and the rise in invasive species are directly linked to changing of ecosystems.[6][7] The destabilization of climate factors in these ecosystems can lead to the creation of a more hospitable habitat for invasive species, thus allowing them to spread beyond their original geographic boundaries.[8] Climate change broadens the invasion pathway that enables the spread of species. Not all invasive species benefit from climate change, but most observations show an acceleration of invasive populations. Examples of invasive species that have benefited from climate change include insects (such as the Western corn rootworm and other crop pests), pathogens (such as cinnamon fungus), freshwater and marine species (such as the brook trout), and plants (such as the umbrella tree).

Measurably warmer or colder conditions create opportunities for non-native terrestrial and marine organisms to migrate to new zones and compete with established native species in the same habitat. Given their remarkable adaptability, non-native plants may then invade and take over the ecosystem in which they were introduced.[9][10][11]

So far, there have been more observations of climate change having a positive or accelerating effect on biological invasions than a negative one. However, most literature focuses on temperature only and due to the complex nature of both climate change and invasive species, outcomes are difficult to predict.

There are many ways to manage the impact of invasive species. Prevention, early detection, climate forecasting and genetic control are some ways communities can mitigate the risks of invasive species and climate change. Although the accuracy of models that study the complex patterns of species populations are difficult to assess, many predict range shifts for species as climates change.

Definitions edit

Invasive species edit

According to the International Union for Conservation of Nature (2017), IUCN, invasive species are "animals, plants or other organisms that are introduced into places outside their natural range, negatively impacting native biodiversity, ecosystem services or human well-being."[12]

Climate change will also redefine which species are considered as invasive species.[13] Some taxa formerly considered as invasive may become less influential in an ecosystem changing with time, while other species formerly considered as non-invasive may become invasive. At the same time, a considerable amount of native species will undergo a range shift and migrate to new areas.[4]

Shifting ranges, and changing impacts of invasive species, make the definition of the term "invasive species" difficult – it has become an example of a shifting baseline. Considering the changing dynamics mentioned above, Hellmann et al. (2008),[4] concludes that invasive species should be defined as "those taxa that have been introduced recently" and exert a "substantial negative impact on native biota, economic values, or human health." Consequently, a native species gaining a larger range with a changing climate is not considered to be invasive, as long as it does not cause considerable damage.

The taxa that have been introduced by humans throughout history have changed from century to century and decade to decade, and so has the rate of introductions. Studies of global rates of first records of alien species (counted as the amount of first records of established alien species per time unit) show that during the period 1500–1800 the rates stayed at a low level, whereas the rates have been increasing constantly since the year 1800. 37% of all the first records of alien species[14] have been registered as recently as during the period 1970–2014.[15]

The invasion of alien species is one of the major drivers of biodiversity loss in general, and the second most common threat being related to complete species extinctions since the 16th century. Invasive alien species are also capable of reducing the resilience of natural habitats, and agricultural as well as urban areas, to climate change. Climate change, in turn, also reduces the resilience of habitats to species invasions.[12]

Biological invasions and climate change are both two of the key processes affecting global diversity. Yet, their effects are often looked at separately, as multiple drivers interact in complex and non-additive ways. Some consequences of climate change have been widely acknowledged to accelerate the expansion of alien species, however, among which increasing temperatures is one.[16]

Invasion pathway edit

The way in which biological invasions occur is stepwise, and referred to as the invasion pathway. It includes four major stages – the introduction/transport stage, the colonization/casual stage, the establishment stage/naturalization, and the landscape spread/invasion stage.[16][4] The concept of the invasion pathway describes the environmental filters a certain species need to overcome in each stage in order to become invasive. There is a number of mechanisms affecting the outcome of each step, of which climate change is one.[4]

For the initial transport stage, the filter is of a geographic character. For the second colonization stage, the filter is constituted by abiotic conditions – and for the third establishment stage, by biotic interactions. For the last landscape spread stage, certain factors of the landscape make up the filter the species need to pass through.[4]

Interactions edit

 
Tree species, Maesopsis eminii, invasive to Tanzania.

The interaction between climate change and invasive species is complex and not easy to assess. Climate change is likely to favour some invasive species and harm others,[3] but few authors have identified specific consequences of climate change for invasive species.[4]

As early as 1993, a climate/invasive species interaction was speculated for the alien tree species Maesopsis eminii that spread in the East Usambara mountain forests, Tanzania. Temperature changes, extremes of precipitation and decreased mist were cited as potential factors promoting its invasion.[5]

Consequences of climate change for invasive species are distinct from consequences for native species due to different characteristics (traits and qualities associated with invasions), management and abundance[4] and can be direct, through the species survival, or indirect, through other factors such as pest or prey species.[5]

So far, there have been more observations of climate change having a positive or accelerating effect on biological invasions than a negative one. However, most literature focuses on temperature only and due to the complex nature of both climate change and invasive species, outcomes are difficult to predict.

Favorable conditions for the introduction of invasive species edit

Effects on invasion pathway stages edit

Climate change will interact with many existing stressors that affect the distribution, spread, abundance and impact of invasive species. Hence, in relevant literature, the impacts of climate change on invasive species are often considered separately per stage of the invasion pathway: (1) introduction/transport, (2) colonization/casual stage, (3) establishment/naturalization, (4) spread/invasion stage.[4][16] According to those invasion stages there are 5 nonexclusive consequences of climate change for invasive species according to Hellmann:[4]

  1. Altered transport and introduction mechanisms
  2. Altered climatic constraints on invasive species
  3. Altered distribution of existing invasive species
  4. Altered impact of existing invasive species
  5. Altered effectiveness of management strategies

The first consequence of climate change, altered mechanisms for transport and introduction mechanisms, is given as invasions are often purposefully (e.g. biocontrol, sport fishing, agriculture) or accidentally introduced with the help of humans and climate change could alter the patterns of human transport. Changed recreational and commercial activities will change human transport and increase the propagule pressure of some non-native species from zero, e.g., connecting new regions or above a certain threshold that allows for establishment. Longer shipping seasons can increase the number of transports of non-native species and increase propagule pressure supporting potential invaders as the monkey goby. Additionally, introductions for recreation and conservation purposes could increase.[4]

Changing climatic conditions can reduce native species' ability to compete with non-native species and some currently unsuccessful, non-native species will be able to colonize new areas if conditions change towards their original range.[4] Multiple factors can increase the success of colonization, as described in more detail below in 2.2.

There is a wide range of climatic factors that affect the distribution of existing invasive species. Range limits due to cold or warm temperature constraints will change as a result of global warming, so that cold-temperature constrained species will be less restricted in their upper-elevation and higher-latitude range limits and warm-temperature constrained species will be less restricted in their lower-elevation and lower-latitude range limits. Changing precipitation patterns, the frequency of stream flow and changes in salinity can also affect hydrologic[17] constraints of invasive species. As many invasive species have been selected for traits that facilitate long-distance dispersal it is likely that shifts in suitable climatic zones favor invasive species.[4]

The impact on native species can be altered through population densities of invasive species. Competition interactions and abundance of native species or resources take part in the relative impact of invasive species.[4]

The effectiveness of different management strategies is dependent on climate. For instance, mechanical control of invasive species by cold, hard freezes or ice cover can become less effective with increasing temperatures. Changes in the fate and behaviour of pesticides and their effectiveness in controlling invasive species can also occur. Decoupling of the relationship between some biocontrol agents and their targets can support invasions. On the other hand, the effectiveness of other biocontrol agents could increase due to species range overlaps.[4]

Effects on climatic conditions edit

Another perspective to look at how climate change creates conditions that facilitate invasions is to consider the changes in the environment that have an impact on species survival. These changes in environmental conditions include temperature (terrestrial and marine), precipitation, chemistry (terrestrial and marine), ocean circulation and sea levels.[5]

Most of the available literature on climate-induced biological invasions deals with warming effects, so that there is much more information for temperature effects on invasions than there is for precipitation patterns, extreme events and other climatic conditions.[16]

Global warming can cause droughts in dryland, this later on can kill plants which require heavy water use from soil. It also can shift invasive species into this dryland that require water as well. Which in turn can further deplete water supply for plants of that region.[18] All of these influences can lead to physiological stress of organism, thus increasing invasion and further destroying the native ecosystem.[19]

Temperature edit

Several researchers found that climate change alters environmental conditions in a way that benefits species' distribution by enabling them to expand their ranges to areas where they were previously not able to survive or reproduce. Those range shifts are mainly attributed to an increased temperature caused by climate change.[16] Shifts of geographic distributions will also challenge the definition of invasive species as mentioned earlier.

In aquatic ecosystems, cold temperatures and winter hypoxia are currently the limiting factors for the survival of invasive species and global warming will likely cause new species to become invasive.[20]

In each stage of the invasion pathway temperature has potential impacts on the success of an invasive species. They are described in the section about effects of invasion pathway stages. They include facilitating colonization and successful reproduction of invasive species that have not been successful in the respective area before,[16] changed competition interactions between native and invasive species, changed range limits regarding altitude and latitude and changed management effectiveness.[4] Global warming can also modify human activity, like transport, in a way that increases the chances of biological invasions.

Extreme weather events edit

Climate change can cause increases in extreme weather like cold winters or storms, which can become problematic for the current invasive species. The invasive species that are adapted to a warmer climate or a more stable climate can get a disadvantage when sudden seasonal changes like an especially cold winter. Unpredictable extreme weather can therefore act as a reset mechanism for invasive species, reducing the amount of invasive species in the affected area.[21] More extreme climatic events such as floods may also result in escapes of previously confined aquatic species and the removal of existing vegetation and creation of bare soil, which is then easier to colonize.[16]

Invasive species benefiting from climate change edit

One important aspect of the success of invasive species under climate change is their advantage over native species. Invasive species often carry a set of traits that make them successful invaders (e.g., ability to survive in adverse conditions, broad environmental tolerances, rapid growth rates and wide dispersal), as those traits are selected for in the invasion process. Those traits will often help them succeed in competition with native species under climate change. However, invasive species do not exclusively, nor do all invasive species carry these traits. Rather there are some species that will benefit from climate change and others will be more negatively affected by it. For example, despite an invasive species ability to reach these new environments, their presence could lead to disruptions in the food chain of that ecosystem potentially causing large scale death to others and themselves.[22] Invasive species are just more likely than native species to carry suitable traits that favour them in a changing environment as a result of selection processes along the invasion pathway.[4]

Some native species that are dependent on mutualistic relationships will see a reduction in their fitness and competitive ability as a result of climate change effects on the other species in the mutualistic relationship. As non-native species are depending more rarely on mutualistic relationships they will be less affected by this mechanism.[4]

Climate change also challenges the adaptability of native species through changes in the environmental conditions, making it difficult for native species to survive and easy for invasive species to take over empty niches. Changes in the environment can also compromise the native species' ability to compete with invaders, that are often generalists.[5] Invasive species do not require climate change to damage ecosystems; however, climate change might exacerbate the damage they do cause.[5]

Decoupling of ecosystems edit

Food webs and chains are two varying ways to examine energy transfer and predation through a community. While food webs tend to be more realistic and easy to identify in environments, food chains highlight the importance of energy transfer between trophic levels.[23] Air temperature greatly influences not only germination of vegetative species but also the foraging and reproductive habits of animal species. In either way of approaching relationships between populations, it is important to realize that species likely cannot and will not adjust to climate change in the same way or at the same rate. This phenomenon is known as 'decoupling' and has detrimental effects on the successful functioning of affected environments. In the Arctic, caribou calves are beginning to largely miss out on food as vegetation begins growing earlier in the season as a result of rising temperatures.[24]

Specific examples of decoupling within an environment include the time lag between air warming and soil warming and the relationship between temperature (as well as photoperiod) and heterotrophic organisms.[24] The former example results from the ability of soil to hold its temperature. Similar to how water has a higher specific heat than air, which results in ocean temperatures being warmest at the close of the summer season,[25] soil temperature lags behind that of air. This results in a decoupling of above and below ground subsystems.[24]

This affects invasion because it increases growth rates and distribution of invasive species. Invasive species typically have better tolerance to different environmental conditions increasing their survival rate when climate changes. This later translates to when species die because they can not live in that ecosystem any more. The new organisms that move in can take over that ecosystem.[26]

Other effects edit

The current climate in many areas will change drastically, this can both effect current native species and invasive species. Current invasive coldwater species that are adapted to the current climate may be unable to persist under new climate conditions. This shows that the interaction between climate change and invasive species does not need to be in favour for the invader.[20]

If a specific habitat changes drastically due to climate change, can the native species become an invader in its native habitat. Such changes in the habitat can inhibit the native species from completing its life cycle or forcing range shift. Another result from the changed habitat is local extinction of the native species when its unable to migrate.[5]

Migration edit

Higher temperatures also mean longer growing seasons for plants and animals, which allows them to shift they ranges toward Nord. Poleward migration also changes the migration patterns of many species. Longer growing seasons mean the time of arrival for species changes, which changes the amount of food supply available at the time of arrival altering the species reproductive success and survival. There is also secondary effects global warming has on species such as changes in habitat, food source, and predators of that ecosystem. Which later could lead to the local extinction of species or migration to a new area suitable for that species.[26]

Examples edit

Insect pests edit

 
Diabrotica virgifera, crop pest invasive to Europe.

Insect pests have always been viewed as a nuisance, most often for their damaging effects on agriculture, parasitism of livestock, and impacts on human health.[27] Influenced heavily by climate change and invasions, they have recently been looked at as a significant threat to both biodiversity and ecosystem functionality. Forestry industries are also at risk for being affected.[28] There are a plethora of factors that contribute to existing concerns regarding the spread of insect pests: all of which stem from increasing air temperatures. Phenological changes, overwintering, increase in atmospheric carbon dioxide concentration, migration, and increasing rates of population growth all impact pests' presence, spread, and impact both directly and indirectly.[29] Diabrotica virgifera virgifera, western corn rootworm, migrated from North America to Europe. In both continents, western corn rootworm has had significant impacts on corn production and therefore economic costs. Phenological changes and warming of air temperature have allowed this pests' upper boundary to expand further northward. In a similar sense of decoupling, the upper and lower limits of a species' spread is not always paired neatly with one another. Mahalanobis distance and multidimensional envelope analysis performed by Pedro Aragon and Jorge M. Lobo predict that even as the pests' range expands northward, currently invaded European communities will remain within the pests' favored range.[30]

In general, it is expected that global distribution of crop pests will increase as an effect of climate change. This is expected for all kinds of crops creating a threat for both agriculture and other commercial use of crops.[31]

When the climate gets warmer is the crop pest predicted to spread towards the poles in latitude and in altitude. Dry or cold areas with a current mean temperature around 7.5 °C (45.5 °F) and a current precipitation below 1100 mm/year could potentially be more affected than other areas. The present climate in these areas are often unfavourable for the crop pest that currently lives there, therefore will an increase in the temperature bring advantages to the pests. With increased temperatures will the life-cycle for the crop pests be faster and with winters above freezing temperatures will new crop pests species be able to inhabit these areas.[32] Precipitation has a lesser effect on crop pests than temperatures but it can still impact the crop pests. Drought and dry plants make host plants more attractive for insects and therefore increase the crop pests during droughts.[33] For example, the confused flour beetle is predicted to increase in the South American austral region with an increased temperature. A higher temperature decreased the mortality and development time for the confused flour beetle. The confused flour beetle population is expected to increase the most in higher latitudes [34]

Areas with a warmer climate or lower altitudes are predicted to experience and decrease in crop pests. The largest decline in crop pests is expected to occur in areas with a mean temperature of 27 °C (81 °F) or a precipitation above 1100 mm/year. Despite the decline in crop pests it is unlikely that climate change will result in the complete removal of the existing crop pest species in the area.[31] With a higher amount of precipitation can flush away eggs and larvae that is a potential crop pest [33]

Pathogen impacts edit

 
Trees impacted by cinnamon fungus.

While still limited in research scope, it is known that climate change and invasive species impact the presence of pathogens[19] and there is evidence that global warming will increase the abundance of plant pathogens specifically. While certain weather changes will affect species differently, increased air moisture plays a significant role in the rapid outbreaks of pathogens. In the little amount of research that has been completed regarding the incidence of plant pathogens in response to climate change, the majority of the completed work focuses on above-ground pathogens. This does not mean that soil-borne pathogens are exempt from experiencing the effects of climate change. Phytophthora cinnamomi, a pathogen that causes oak tree decline, is a soil-borne pathogen that increased in activity in response to climate change.[24][35]

Freshwater and marine environments edit

Barriers between marine ecosystems are typically physiological in nature as opposed to geographic (e.g., mountain ranges). These physiological barriers may be seen as changes in pH, water temperature, water turbidity, or more. Climate change and global warming have begun to affect these barriers – the most significant of which being water temperature. The warming of sea water has allowed crabs to invade Antarctica, and other durophagous predators are not far behind. As these invaders move in, species endemic to the benthic zone will have to adjust and begin to compete for resources, destroying the existing ecosystem.[36]

Freshwater systems are significantly affected by climate change. Extinction rates within freshwater bodies of water tend to be equitable or even higher than some terrestrial organisms. While species may experience range-shifts in response to physiologic changes, outcomes are species-specific and not reliable in all organisms. As water temperatures increase, it is organisms that inhibit warmer waters that are positively affected, while cold-water organisms are negatively affected.[37] Warmer temperature also leads to the melting of arctic ice, which increases the sea level. Because of the rise in sea water, most photosynthesizing species are not able to get the right amount of light to sustain living.[26]

Compared to terrestrial environments, freshwater ecosystems have very few geographical and allosteric barriers between different areas. The increased temperature and shorter duration of cold temperature will increase the probability of invasive species in the ecosystem, because the winter hypoxia that prevents the species' survival will be eliminated.[20] This is the case with the brook trout that is an invasive species in lakes and streams in Canada.

The invasive brook trout has the capacity to eliminate the native bull trout and other native species in Canadian streams. The temperature of the water plays a big part in the brook trout's capacity to inhabit a stream, but other factors like the stream flow and geology are also important factors in how well established the brook trout is.[38] The bull trout has a positive population growth or holds a competitive advantage only in streams that do not exceed 4–7 °C (39–45 °F) in the warmest months. The brook trout has a competitive and a physiological advantage over bull trout in warmer water, e.g., 15–16 °C (59–61 °F). The winter period is also an important factor for the brook trout's capacity to inhabit a stream. Brook trout may have a reduced survival rate if it is exposed to especially long and harsh winter periods.[39] Due to the observations that the range of brook trout is dependent on the temperature, there is an increasing concern that the brook trout will eliminate the bull trout even further in colder water due to increasing temperature because of climate change.[40] Climate change influences not only the temperature in lakes but also stream flows and therefore other factors in streams.[41] This unknown factor makes it hard to predict how the brook trout and bull trout will react to climate change.

Management and prevention edit

 
Mechanical/manual control of invasive species

Management strategies generally have a different approach regarding invasive species compared to most native species. In terms of climate change and native species, the most fundamental strategy is conservation. The strategy for invasive species is, however, majorly about control management.[4] There are several different types of management and prevention strategies, such as following.

Approaches edit

  1. Prevention: This is generally the more environmentally desirable approach, but is difficult to practice due to the issues with separating invasive from non-invasive species.[42] Border control and quarantine measures are normally the first prevention mechanisms.[42] Preventative measures include exchanging ballast water in the middle of the ocean, which is the main tool accessible for ships to limit the introduction of invasive species.[43] Another method of prevention is public education to increase the understanding of individual actions on furthering the spread of invasive species and promote awareness about strategies to reduce the introduction and spread of invasive species.[43] Invasion risk assessment can also aid in preventative management since it allows for early identification.[44] Invasion risk is done by the identification of a potentially invasive species through comparison of common traits.[44]
  2. Monitoring and early detection: Samples can be taken in specific areas to see if any new species are present. These samples are then run through a database in order to see if the species are invasive. This can be done using genetic tools such as environmental DNA (eDNA). These eDNA-samples, taken in ecosystems, are then run through a database that contains bioinformatics of species DNA. When the database matches a sequence from the sample's DNA, information about species that are or have been present in the studied area can be obtained.[45] If the species are confirmed to be invasive, the managers can then take precautions in the form of a rapid response eradication method.[46] The eDNA method is majorly used in marine environments, but there are ongoing studies about how to use it in terrestrial environments as well.[47][48]
  3. Rapid response: Several methods of eradication are used to prevent distribution and irreversible introduction of invasive species into new areas and habitats. There are several types of rapid response:
    • Mechanical/manual control: This is often done through human labor, such as hand pulling, mowing, cutting, mulching, flooding, digging and burning of invasive species. Burning often takes place mid-spring, to prevent further damage to the area's ecosystem and harm to the managers who administer the fires. Manual control methods can kill or reduce the populations of non-native species.[46] Mechanical controls are sometimes effective and generally do not engender public criticism. Instead, they can often bring awareness and public interest and support for controlling invasive species.[49]
    • Chemical control: Chemicals such as pesticides (e.g. DDT) and herbicides can be used to eradicate invasive species. Though it might be effective to eliminate target species, it often creates health hazards for both non-target species and humans. It is therefore generally a problematic method when, for example, rare species are present in the area.[46][49]
    • Biological control: This is a method where organisms are used to control invasive species. One common strategy is to introduce natural enemy species of invasive species in an area, with the aim to establish the enemy which will drive the invasive species' population to a contracted range. One major complication with the biological method is that introduction of enemy species, which itself in a sense is an invasion as well, sometimes can affect non-target species negatively as well. There has been criticism regarding this method, for example when species in conservation areas have been affected or even driven to extinction by biocontrol species.[49]
  4. Restoration of ecosystems: Restoration of ecosystems after eradication of invasive species can build resilience against future introductions.[45] To some degree, ecological niche models predict contraction of some species' ranges. If the models are somewhat accurate, this creates opportunities for managers to alter the composition of native species to build resilience against future invasions.[50]
  5. Forecasting: Climate models can somewhat be used to project future range shifts of invasive species. Since the future climate itself cannot be determined, though, these models are often very limited. However, the models can still be used as indicators of general range shifts by managers to plan management strategies.[citation needed]
  6. Genetic control: New technology has presented a potential solution for invasive species management: genetic control. A form of genetic pest management has been developed that targets the mating behavior of pests to introduce harm-reducing genetically engineered DNA into wild populations.[51] Though not widely implemented yet for invasive species specifically, there is an expanding interest in using genetic pest management for invasive species control. Triploidy also exists to manage invasive species through the production of sterile males to biologically control insect pests.[52] Similar to triploidy, another form of genetic control is Trojan Y which serves as a sex-marker identification and aims to bias the sex ratio of populations, typically fish, towards males in order to drive the population to extinction.[53] Trojan Y specifically uses sex-reversed females containing two Y chromosomes, known as Trojan Y, to reduce the success of breeding in the population.[53] A counterpart to the Trojan Y technique, the Trojan Female technique aims to release "Trojan females" carrying mitochondrial DNA mutations that lead to a reduction in female, rather than male, fertility.[54] Gene drive is also another technique to suppress pest populations.

Predictions edit

The geographical range of invasive alien species threaten to alter due to climate change, such as the brook trout (Salvelinus fontinalis). To forecast future impact of climate change on distribution of invasive species, there is ongoing research in modelling. These bioclimatic models, also known as ecological niche models or climate envelope models,[55] are developed with the aim to predict changes in species ranges and are an essential tool for the development of effective management strategies and actions (e.g. eradication of invasive species and prevention of introduction[56]) to reduce the future impact of invasive species on ecosystems and biodiversity.[24] The models generally simulate current distributions of species together with predicted changes in climate to forecast future range shifts.[55]

Many species ranges are predicted to expand. Yet, studies also predict contractions of many species future range, especially regarding vertebrates and plants at a large spatial scale.[57] One reason for range contractions could possibly be that species ranges due to climate change generally move poleward and that they therefore at some point will reach the sea which acts as a barrier for further spread. This is, however, the case when some phases of the invasion pathway, e.g. transport and introduction, are not considered in the models. Studies majorly investigate predicted range shifts in terms of the actual spread and establishment phases of the invasive pathway, excluding the phases of transportation and introduction.[57][58] Models have also investigated the impact of invasive species on local climate change--for example, accelerating the increase of wetlands as a result of the loss of forest canopy.[59]

These models are useful for making predictions but are yet very limited. Range shifts of invasive species are very complex and difficult to make predictions about, due to the multiple variables affecting the invasion pathway. This causes complications with simulating future predictions. Climate change, which is the most fundamental parameter in these models, cannot be determined since the future level of the greenhouse emissions are uncertain. Additionally, climate variables that are directly linked to greenhouse emissions, such as alterations in temperature and precipitations, are likewise difficult to predict with certainty. How species range shifts will react to changes in climate, e.g. temperature and precipitation, is therefore largely unknown and very complex to understand and predict. Other factors that can limit range shifts, but models often do not consider, are for example presence of the right habitat for the invader species and if there are resources available.[57]

The level of accuracy is thus unknown for these models, but they can to some extent be used as indicators that highlight and identify future hotspots for invasions at a larger scale. These hotspots could for example be summarized into risk maps that highlight areas with high suitability for invaders. This would be a beneficial tool for management development and help to construct prevention strategies and to control spreading.[56]

References edit

  1. ^ Marshall NA, Friedel M, van Klinken RD, Grice AC (2011-05-01). "Considering the social dimension of invasive species: the case of buffel grass". Environmental Science & Policy. 14 (3): 327–338. doi:10.1016/j.envsci.2010.10.005. ISSN 1462-9011.
  2. ^ "Climate Change". U.S. Department of Agriculture, National Invasive Species Information Center. Retrieved February 23, 2020.
  3. ^ a b Dukes JS, Mooney HA (April 1999). "Does global change increase the success of biological invaders?". Trends in Ecology & Evolution. 14 (4): 135–139. doi:10.1016/s0169-5347(98)01554-7. PMID 10322518.
  4. ^ a b c d e f g h i j k l m n o p q r s t Hellmann JJ, Byers JE, Bierwagen BG, Dukes JS (June 2008). "Five potential consequences of climate change for invasive species". Conservation Biology. 22 (3): 534–543. Bibcode:2008ConBi..22..534H. doi:10.1111/j.1523-1739.2008.00951.x. PMID 18577082. S2CID 16026020.
  5. ^ a b c d e f g Mainka SA, Howard GW (June 2010). "Climate change and invasive species: double jeopardy". Integrative Zoology. 5 (2): 102–111. doi:10.1111/j.1749-4877.2010.00193.x. PMID 21392328.
  6. ^ Conley J (February 22, 2020). "JP Morgan Economists Warn of 'Catastrophic Outcomes' of Human-Caused Climate Crisis". Eco Watch. Retrieved February 25, 2020.
  7. ^ Earth Science Communications Team. "Climate change causes: A blanket around the Earth". NASA's Jet Propulsion Laboratory, California Institute of Technology. Retrieved 2019-02-18.
  8. ^ Hobbs RJ (2000). Invasive Species in a Changing World. Island Press. ISBN 978-1-59726-337-5.
  9. ^ Alpert P, Bone E, Holzapfel C (January 2000). "Invasiveness, invasibility and the role of environmental stress in the spread of non-native plants". Perspectives in Plant Ecology, Evolution and Systematics. 3 (1): 52–66. doi:10.1078/1433-8319-00004. S2CID 16851493.
  10. ^ Ullah H, Nagelkerken I, Goldenberg SU, Fordham DA (January 2018). "Climate change could drive marine food web collapse through altered trophic flows and cyanobacterial proliferation". PLOS Biology. 16 (1): e2003446. doi:10.1371/journal.pbio.2003446. PMC 5760012. PMID 29315309.
  11. ^ Nijhuis M (December 2013). "How Climate Change is Helping Invasive Species Take Over,Longer seasons and warmer weather have combined to be a game-changer in the plant wars". Smithsonian Magazine. Retrieved February 23, 2020.
  12. ^ a b "Invasive Alien Species and Climate Change" (PDF). International Union for Conservation of Nature. 2017.[permanent dead link]
  13. ^ Tricarico E (April 2016). "Do alien invasive species and climate change foster conservation behaviour?: Invasive species, climate change and conservation behaviour". Aquatic Conservation: Marine and Freshwater Ecosystems. 26 (2): 228–232. doi:10.1002/aqc.2637.
  14. ^ Oduor, George I. (1999), "Biological Pest Control for Alien Invasive Species", Invasive Species and Biodiversity Management, Dordrecht: Springer Netherlands, pp. 305–321, doi:10.1007/978-94-011-4523-7_21, ISBN 978-0-7923-6876-2, retrieved 2022-11-22
  15. ^ Seebens H, Blackburn TM, Dyer EE, Genovesi P, Hulme PE, Jeschke JM, et al. (February 2017). "No saturation in the accumulation of alien species worldwide". Nature Communications. 8: 14435. Bibcode:2017NatCo...814435S. doi:10.1038/ncomms14435. PMC 5316856. PMID 28198420.
  16. ^ a b c d e f g Walther GR, Roques A, Hulme PE, Sykes MT, Pysek P, Kühn I, et al. (December 2009). "Alien species in a warmer world: risks and opportunities" (PDF). Trends in Ecology & Evolution. 24 (12): 686–693. doi:10.1016/j.tree.2009.06.008. PMID 19712994.
  17. ^ Ashraf, Arshad (2013-02-27), "Changing Hydrology of the Himalayan Watershed", Current Perspectives in Contaminant Hydrology and Water Resources Sustainability, InTech, doi:10.5772/54492, ISBN 978-953-51-1046-0
  18. ^ Tietjen B, Schlaepfer DR, Bradford JB, Lauenroth WK, Hall SA, Duniway MC, et al. (July 2017). "Climate change-induced vegetation shifts lead to more ecological droughts despite projected rainfall increases in many global temperate drylands". Global Change Biology. 23 (7): 2743–2754. Bibcode:2017GCBio..23.2743T. doi:10.1111/gcb.13598. PMID 27976449.
  19. ^ a b Occhipinti-Ambrogi A (2007). "Global change and marine communities: alien species and climate change". Marine Pollution Bulletin. 55 (7–9): 342–352. Bibcode:2007MarPB..55..342O. doi:10.1016/j.marpolbul.2006.11.014. PMID 17239404.
  20. ^ a b c Rahel FJ, Olden JD (June 2008). "Assessing the effects of climate change on aquatic invasive species". Conservation Biology. 22 (3): 521–533. Bibcode:2008ConBi..22..521R. doi:10.1111/j.1523-1739.2008.00950.x. PMID 18577081. S2CID 313824.
  21. ^ Canning-Clode J, Fowler AE, Byers JE, Carlton JT, Ruiz GM (2011). Peck M (ed.). "'Caribbean Creep' chills out: climate change and marine invasive species". PLOS ONE. 6 (12): e29657. Bibcode:2011PLoSO...629657C. doi:10.1371/journal.pone.0029657. PMC 3247285. PMID 22216340.
  22. ^ Bryers, J.E (2008). "Five Potential Consequences of Climate Change for Invasive Species". Society for Conservation Biology. 22 (3): 534–543. Bibcode:2008ConBi..22..534H. doi:10.1111/j.1523-1739.2008.00951.x. PMID 18577082. S2CID 16026020. Retrieved 1 May 2023.
  23. ^ "Food chains & food webs". Khan Academy.
  24. ^ a b c d e Van der Putten WH, Macel M, Visser ME (July 2010). "Predicting species distribution and abundance responses to climate change: why it is essential to include biotic interactions across trophic levels". Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences. 365 (1549): 2025–2034. doi:10.1098/rstb.2010.0037. PMC 2880132. PMID 20513711.
  25. ^ . Discovery of Estuarine Environments. University of Rhode Island, Office of Marine Programs. Archived from the original on 2018-08-01. Retrieved 2019-02-11.
  26. ^ a b c Backlund P, Janetos A, Schimel DS, et al. (Climate Change Science Program (U.S.); National Science and Technology Council (U.S.). Subcommittee on Global Change Research.) (2009). The effects of climate change on agriculture, land resources, water resources, and biodiversity in the United States. New York: Nova Science. ISBN 9781613240755. OCLC 704277122.
  27. ^ "Pest insects". www.agric.wa.gov.au. Government of Western Australia.
  28. ^ Aragón P, Lobo JM (February 2012). "Predicted effect of climate change on the invasibility and distribution of the Western corn root‐worm". Agricultural and Forest Entomology. 14 (1): 13–8. doi:10.1111/j.1461-9563.2011.00532.x. S2CID 83952766.
  29. ^ Cannon RJ (October 1998). "The implications of predicted climate change for insect pests in the UK, with emphasis on non‐indigenous species". Global Change Biology. 4 (7): 785–96. Bibcode:1998GCBio...4..785C. doi:10.1046/j.1365-2486.1998.00190.x.
  30. ^ Aragón P, Lobo JM (February 2012). "Predicted effect of climate change on the invasibility and distribution of the Western corn root‐worm". Agricultural and Forest Entomology. 14 (1): 13–8. doi:10.1111/j.1461-9563.2011.00532.x. S2CID 83952766.
  31. ^ a b Yan Y, Wang YC, Feng CC, Wan PH, Chang KT (2017). "Potential distributional changes of invasive crop pest species associated with global climate change". Applied Geography. 82: 83–92. doi:10.1016/j.apgeog.2017.03.011.
  32. ^ Wolfe DW, Ziska L, Petzoldt C, Seaman A, Chase L, Hayhoe K (2008-06-01). "Projected change in climate thresholds in the Northeastern U.S.: implications for crops, pests, livestock, and farmers". Mitigation and Adaptation Strategies for Global Change. 13 (5): 555–575. Bibcode:2008MASGC..13..555W. doi:10.1007/s11027-007-9125-2. hdl:2346/92624.
  33. ^ a b Ziska LH, Blumenthal DM, Runion GB, Hunt ER, Diaz-Soltero H (2011). "Invasive species and climate change: an agronomic perspective". Climatic Change. 105 (1–2): 13–42. Bibcode:2011ClCh..105...13Z. doi:10.1007/s10584-010-9879-5. S2CID 52886411.
  34. ^ Estay SA, Lima M, Labra FA (2009). "Predicting insect pest status under climate change scenarios: combining experimental data and population dynamics modelling". Journal of Applied Entomology. 133 (7): 491–499. doi:10.1111/j.1439-0418.2008.01380.x. S2CID 85079403.
  35. ^ Bergot, Magali; Cloppet, Emmanuel; Pérarnaud, Victorine; Déqué, Michel; Marçais, Benoît; Desprez-Loustau, Marie-Laure (September 2004). "Simulation of potential range expansion of oak disease caused by Phytophthora cinnamomi under climate change" (PDF). Global Change Biology. 10 (9): 1539–1552. Bibcode:2004GCBio..10.1539B. doi:10.1111/j.1365-2486.2004.00824.x. S2CID 85844009.
  36. ^ Aronson RB, Thatje S, Clarke A, Peck LS, Blake DB, Wilga CD, Seibel BA (December 2007). "Climate change and invasibility of the Antarctic benthos" (PDF). Annual Review of Ecology, Evolution, and Systematics. 3: 129–54. doi:10.1146/annurev.ecolsys.38.091206.095525.
  37. ^ Heino J, Virkkala R, Toivonen H (February 2009). "Climate change and freshwater biodiversity: detected patterns, future trends and adaptations in northern regions". Biological Reviews of the Cambridge Philosophical Society. 84 (1): 39–54. doi:10.1111/j.1469-185X.2008.00060.x. PMID 19032595. S2CID 22783943.
  38. ^ Rieman BE, Peterson JT, Myers DL (2006). "Have brook trout (Salvelinus fontinalis) displaced bull trout (Salvelinus confluentus) along longitudinal gradients in central Idaho streams?". Canadian Journal of Fisheries and Aquatic Sciences. 63: 63–78. doi:10.1139/f05-206.
  39. ^ Warnock WG, Rasmussen JB, Magnan P (2013). "Abiotic and biotic factors associated with brook trout invasiveness into bull trout streams of the Canadian Rockies". Canadian Journal of Fisheries and Aquatic Sciences. 70 (6): 905–914. doi:10.1139/cjfas-2012-0387.
  40. ^ Rieman BE, Isaak D, Adams S, Horan D, Nagel D, Luce C, Myers D (2007). "Anticipated Climate Warming Effects on Bull Trout Habitats and Populations Across the Interior Columbia River Basin". Transactions of the American Fisheries Society. 136 (6): 1552–1565. Bibcode:2007TrAFS.136.1552R. doi:10.1577/T07-028.1. S2CID 12867486.
  41. ^ Arismendi I, Johnson SL, Dunham JB, Haggerty R, Hockman-Wert D (2012). "The paradox of cooling streams in a warming world: Regional climate trends do not parallel variable local trends in stream temperature in the Pacific continental United States". Geophysical Research Letters. 39 (10): n/a. Bibcode:2012GeoRL..3910401A. doi:10.1029/2012GL051448.
  42. ^ a b Hulme PE (October 2006). "Beyond control: wider implications for the management of biological invasions: Wider implications for managing invasions". Journal of Applied Ecology. 43 (5): 835–847. doi:10.1111/j.1365-2664.2006.01227.x.
  43. ^ a b Preliminary Report (PDF). U.S. Commission on Ocean Policy.
  44. ^ a b Lennox R, Choi K, Harrison PM, Paterson JE, Peat TB, Ward TD, Cooke SJ (2015-08-01). "Improving science-based invasive species management with physiological knowledge, concepts, and tools". Biological Invasions. 17 (8): 2213–2227. Bibcode:2015BiInv..17.2213L. doi:10.1007/s10530-015-0884-5. ISSN 1573-1464. S2CID 13983660.
  45. ^ a b Management Plan: 2016–2018 (PDF). National Invasive Species Council (Report). 2016.
  46. ^ a b c Stingelin JK (March 2010). "Early detection of invasive species; surveillance, monitoring, and rapid response: Eastern Rivers and Mountains Network summary report 2008–2009". NPS/ERMN/NRDS—2010/038. Fort Collins, Colorado: U.S. Department of the Interior, National Park Service, Natural Resource Program Center.
  47. ^ Sales NG, McKenzie MB, Drake J, Harper LR, Browett SS, Coscia I, et al. (2020). Mosher B (ed.). "Fishing for mammals: Landscape‐level monitoring of terrestrial and semi‐aquatic communities using eDNA from riverine systems" (PDF). Journal of Applied Ecology. 57 (4): 707–716. doi:10.1111/1365-2664.13592. S2CID 216384292.
  48. ^ Deiner K, Bik HM, Mächler E, Seymour M, Lacoursière-Roussel A, Altermatt F, et al. (November 2017). "Environmental DNA metabarcoding: Transforming how we survey animal and plant communities". Molecular Ecology. 26 (21): 5872–5895. Bibcode:2017MolEc..26.5872D. doi:10.1111/mec.14350. hdl:20.500.11850/455284. PMID 28921802.
  49. ^ a b c Mack RN, Simberloff D, Mark Lonsdale W, Evans H, Clout M, Bazzaz FA (2000). "Biotic invasions: causes, epidemiology, global consequences, and contro". Ecological Applications. 10 (3): 689–710. doi:10.1890/1051-0761(2000)010[0689:bicegc]2.0.co;2. S2CID 711038.
  50. ^ Ikeda, Dana H.; Max, Tamara L.; Allan, Gerard J.; Lau, Matthew K.; Shuster, Stephen M.; Whitham, Thomas G. (January 2017). "Genetically informed ecological niche models improve climate change predictions". Global Change Biology. 23 (1): 164–176. Bibcode:2017GCBio..23..164I. doi:10.1111/gcb.13470. PMID 27543682. S2CID 205143996.
  51. ^ Harvey-Samuel T, Ant T, Alphey L (2017-06-01). "Towards the genetic control of invasive species". Biological Invasions. 19 (6): 1683–1703. Bibcode:2017BiInv..19.1683H. doi:10.1007/s10530-017-1384-6. PMC 5446844. PMID 28620268.
  52. ^ Thresher RE, Hayes K, Bax NJ, Teem J, Benfey TJ, Gould F (2014-06-01). "Genetic control of invasive fish: technological options and its role in integrated pest management". Biological Invasions. 16 (6): 1201–1216. Bibcode:2014BiInv..16.1201T. doi:10.1007/s10530-013-0477-0. ISSN 1573-1464. S2CID 15272109.
  53. ^ a b "Trojan Y Invasive Species Control - Sex Marker Identification | U.S. Geological Survey". www.usgs.gov. Retrieved 2022-05-28.
  54. ^ Teem JL, Alphey L, Descamps S, Edgington MP, Edwards O, Gemmell N, et al. (2020). "Genetic Biocontrol for Invasive Species". Frontiers in Bioengineering and Biotechnology. 8: 452. doi:10.3389/fbioe.2020.00452. PMC 7261935. PMID 32523938.
  55. ^ a b Jeschke JM, Strayer DL (2008). "Usefulness of bioclimatic models for studying climate change and invasive species". Annals of the New York Academy of Sciences. 1134 (1): 1–24. Bibcode:2008NYASA1134....1J. doi:10.1196/annals.1439.002. PMID 18566088. S2CID 13837954.
  56. ^ a b Bellard C, Thuiller W, Leroy B, Genovesi P, Bakkenes M, Courchamp F (December 2013). "Will climate change promote future invasions?". Global Change Biology. 19 (12): 3740–3748. Bibcode:2013GCBio..19.3740B. doi:10.1111/gcb.12344. PMC 3880863. PMID 23913552.
  57. ^ a b c Bellard C, Jeschke JM, Leroy B, Mace GM (June 2018). "Insights from modeling studies on how climate change affects invasive alien species geography". Ecology and Evolution. 8 (11): 5688–5700. Bibcode:2018EcoEv...8.5688B. doi:10.1002/ece3.4098. PMC 6010883. PMID 29938085.
  58. ^ Blackburn TM, Pyšek P, Bacher S, Carlton JT, Duncan RP, Jarošík V, et al. (July 2011). "A proposed unified framework for biological invasions". Trends in Ecology & Evolution. 26 (7): 333–339. doi:10.1016/j.tree.2011.03.023. hdl:10019.1/112277. PMID 21601306.
  59. ^ Shannon, Joseph; Kolka, Randall; Van Grinsven, Matthew; Liu, Fengjing (2022). "Joint impacts of future climate conditions and invasive species on black ash forested wetlands". Frontiers in Forests and Global Change. 5. Bibcode:2022FrFGC...5.7526S. doi:10.3389/ffgc.2022.957526. ISSN 2624-893X.
  • Ritchie, Hannah (18 September 2020). "Sector by sector: where do global greenhouse gas emissions come from?". Our World in Data. Retrieved 28 October 2020.
  • Allen, M. R.; Dube, O. P.; Solecki, W.; Aragón-Durand, F.; et al. (2018). "Chapter 1: Framing and Context" (PDF). Global Warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty. pp. 49–91.

climate, change, invasive, species, refers, process, environmental, destabilization, caused, climate, change, this, environmental, change, facilitates, spread, invasive, species, species, that, historically, found, certain, region, often, bring, about, negativ. Climate change and invasive species refers to the process of the environmental destabilization caused by climate change This environmental change facilitates the spread of invasive species species that are not historically found in a certain region and often bring about a negative impact to that region s native species This complex relationship is notable because climate change and invasive species are also considered by the USDA to be two of the top four causes of global biodiversity loss 2 Buffelgrass Cenchrus ciliaris is an invasive species throughout the world that is pushing out native species 1 The interaction between climate change and invasive species is complex and not easy to assess Climate change is likely to favour some invasive species and harm others 3 but few authors have identified specific consequences of climate change for invasive species 4 Consequences of climate change for invasive species are distinct from consequences for native species due to different characteristics traits and qualities associated with invasions management and abundance 4 and can be direct through the species survival or indirect through other factors such as pest or prey species 5 Human caused climate change and the rise in invasive species are directly linked to changing of ecosystems 6 7 The destabilization of climate factors in these ecosystems can lead to the creation of a more hospitable habitat for invasive species thus allowing them to spread beyond their original geographic boundaries 8 Climate change broadens the invasion pathway that enables the spread of species Not all invasive species benefit from climate change but most observations show an acceleration of invasive populations Examples of invasive species that have benefited from climate change include insects such as the Western corn rootworm and other crop pests pathogens such as cinnamon fungus freshwater and marine species such as the brook trout and plants such as the umbrella tree Measurably warmer or colder conditions create opportunities for non native terrestrial and marine organisms to migrate to new zones and compete with established native species in the same habitat Given their remarkable adaptability non native plants may then invade and take over the ecosystem in which they were introduced 9 10 11 So far there have been more observations of climate change having a positive or accelerating effect on biological invasions than a negative one However most literature focuses on temperature only and due to the complex nature of both climate change and invasive species outcomes are difficult to predict There are many ways to manage the impact of invasive species Prevention early detection climate forecasting and genetic control are some ways communities can mitigate the risks of invasive species and climate change Although the accuracy of models that study the complex patterns of species populations are difficult to assess many predict range shifts for species as climates change Contents 1 Definitions 1 1 Invasive species 1 2 Invasion pathway 2 Interactions 2 1 Favorable conditions for the introduction of invasive species 2 1 1 Effects on invasion pathway stages 2 1 2 Effects on climatic conditions 2 1 2 1 Temperature 2 1 2 2 Extreme weather events 2 2 Invasive species benefiting from climate change 2 2 1 Decoupling of ecosystems 2 3 Other effects 2 3 1 Migration 3 Examples 3 1 Insect pests 3 2 Pathogen impacts 3 3 Freshwater and marine environments 4 Management and prevention 4 1 Approaches 5 Predictions 6 ReferencesDefinitions editInvasive species edit According to the International Union for Conservation of Nature 2017 IUCN invasive species are animals plants or other organisms that are introduced into places outside their natural range negatively impacting native biodiversity ecosystem services or human well being 12 Climate change will also redefine which species are considered as invasive species 13 Some taxa formerly considered as invasive may become less influential in an ecosystem changing with time while other species formerly considered as non invasive may become invasive At the same time a considerable amount of native species will undergo a range shift and migrate to new areas 4 Shifting ranges and changing impacts of invasive species make the definition of the term invasive species difficult it has become an example of a shifting baseline Considering the changing dynamics mentioned above Hellmann et al 2008 4 concludes that invasive species should be defined as those taxa that have been introduced recently and exert a substantial negative impact on native biota economic values or human health Consequently a native species gaining a larger range with a changing climate is not considered to be invasive as long as it does not cause considerable damage The taxa that have been introduced by humans throughout history have changed from century to century and decade to decade and so has the rate of introductions Studies of global rates of first records of alien species counted as the amount of first records of established alien species per time unit show that during the period 1500 1800 the rates stayed at a low level whereas the rates have been increasing constantly since the year 1800 37 of all the first records of alien species 14 have been registered as recently as during the period 1970 2014 15 The invasion of alien species is one of the major drivers of biodiversity loss in general and the second most common threat being related to complete species extinctions since the 16th century Invasive alien species are also capable of reducing the resilience of natural habitats and agricultural as well as urban areas to climate change Climate change in turn also reduces the resilience of habitats to species invasions 12 Biological invasions and climate change are both two of the key processes affecting global diversity Yet their effects are often looked at separately as multiple drivers interact in complex and non additive ways Some consequences of climate change have been widely acknowledged to accelerate the expansion of alien species however among which increasing temperatures is one 16 Invasion pathway edit The way in which biological invasions occur is stepwise and referred to as the invasion pathway It includes four major stages the introduction transport stage the colonization casual stage the establishment stage naturalization and the landscape spread invasion stage 16 4 The concept of the invasion pathway describes the environmental filters a certain species need to overcome in each stage in order to become invasive There is a number of mechanisms affecting the outcome of each step of which climate change is one 4 For the initial transport stage the filter is of a geographic character For the second colonization stage the filter is constituted by abiotic conditions and for the third establishment stage by biotic interactions For the last landscape spread stage certain factors of the landscape make up the filter the species need to pass through 4 Interactions edit nbsp Tree species Maesopsis eminii invasive to Tanzania The interaction between climate change and invasive species is complex and not easy to assess Climate change is likely to favour some invasive species and harm others 3 but few authors have identified specific consequences of climate change for invasive species 4 As early as 1993 a climate invasive species interaction was speculated for the alien tree species Maesopsis eminii that spread in the East Usambara mountain forests Tanzania Temperature changes extremes of precipitation and decreased mist were cited as potential factors promoting its invasion 5 Consequences of climate change for invasive species are distinct from consequences for native species due to different characteristics traits and qualities associated with invasions management and abundance 4 and can be direct through the species survival or indirect through other factors such as pest or prey species 5 So far there have been more observations of climate change having a positive or accelerating effect on biological invasions than a negative one However most literature focuses on temperature only and due to the complex nature of both climate change and invasive species outcomes are difficult to predict Favorable conditions for the introduction of invasive species edit Effects on invasion pathway stages edit Climate change will interact with many existing stressors that affect the distribution spread abundance and impact of invasive species Hence in relevant literature the impacts of climate change on invasive species are often considered separately per stage of the invasion pathway 1 introduction transport 2 colonization casual stage 3 establishment naturalization 4 spread invasion stage 4 16 According to those invasion stages there are 5 nonexclusive consequences of climate change for invasive species according to Hellmann 4 Altered transport and introduction mechanisms Altered climatic constraints on invasive species Altered distribution of existing invasive species Altered impact of existing invasive species Altered effectiveness of management strategiesThe first consequence of climate change altered mechanisms for transport and introduction mechanisms is given as invasions are often purposefully e g biocontrol sport fishing agriculture or accidentally introduced with the help of humans and climate change could alter the patterns of human transport Changed recreational and commercial activities will change human transport and increase the propagule pressure of some non native species from zero e g connecting new regions or above a certain threshold that allows for establishment Longer shipping seasons can increase the number of transports of non native species and increase propagule pressure supporting potential invaders as the monkey goby Additionally introductions for recreation and conservation purposes could increase 4 Changing climatic conditions can reduce native species ability to compete with non native species and some currently unsuccessful non native species will be able to colonize new areas if conditions change towards their original range 4 Multiple factors can increase the success of colonization as described in more detail below in 2 2 There is a wide range of climatic factors that affect the distribution of existing invasive species Range limits due to cold or warm temperature constraints will change as a result of global warming so that cold temperature constrained species will be less restricted in their upper elevation and higher latitude range limits and warm temperature constrained species will be less restricted in their lower elevation and lower latitude range limits Changing precipitation patterns the frequency of stream flow and changes in salinity can also affect hydrologic 17 constraints of invasive species As many invasive species have been selected for traits that facilitate long distance dispersal it is likely that shifts in suitable climatic zones favor invasive species 4 The impact on native species can be altered through population densities of invasive species Competition interactions and abundance of native species or resources take part in the relative impact of invasive species 4 The effectiveness of different management strategies is dependent on climate For instance mechanical control of invasive species by cold hard freezes or ice cover can become less effective with increasing temperatures Changes in the fate and behaviour of pesticides and their effectiveness in controlling invasive species can also occur Decoupling of the relationship between some biocontrol agents and their targets can support invasions On the other hand the effectiveness of other biocontrol agents could increase due to species range overlaps 4 Effects on climatic conditions edit Another perspective to look at how climate change creates conditions that facilitate invasions is to consider the changes in the environment that have an impact on species survival These changes in environmental conditions include temperature terrestrial and marine precipitation chemistry terrestrial and marine ocean circulation and sea levels 5 Most of the available literature on climate induced biological invasions deals with warming effects so that there is much more information for temperature effects on invasions than there is for precipitation patterns extreme events and other climatic conditions 16 Global warming can cause droughts in dryland this later on can kill plants which require heavy water use from soil It also can shift invasive species into this dryland that require water as well Which in turn can further deplete water supply for plants of that region 18 All of these influences can lead to physiological stress of organism thus increasing invasion and further destroying the native ecosystem 19 Temperature edit Several researchers found that climate change alters environmental conditions in a way that benefits species distribution by enabling them to expand their ranges to areas where they were previously not able to survive or reproduce Those range shifts are mainly attributed to an increased temperature caused by climate change 16 Shifts of geographic distributions will also challenge the definition of invasive species as mentioned earlier In aquatic ecosystems cold temperatures and winter hypoxia are currently the limiting factors for the survival of invasive species and global warming will likely cause new species to become invasive 20 In each stage of the invasion pathway temperature has potential impacts on the success of an invasive species They are described in the section about effects of invasion pathway stages They include facilitating colonization and successful reproduction of invasive species that have not been successful in the respective area before 16 changed competition interactions between native and invasive species changed range limits regarding altitude and latitude and changed management effectiveness 4 Global warming can also modify human activity like transport in a way that increases the chances of biological invasions Extreme weather events edit Climate change can cause increases in extreme weather like cold winters or storms which can become problematic for the current invasive species The invasive species that are adapted to a warmer climate or a more stable climate can get a disadvantage when sudden seasonal changes like an especially cold winter Unpredictable extreme weather can therefore act as a reset mechanism for invasive species reducing the amount of invasive species in the affected area 21 More extreme climatic events such as floods may also result in escapes of previously confined aquatic species and the removal of existing vegetation and creation of bare soil which is then easier to colonize 16 Invasive species benefiting from climate change edit One important aspect of the success of invasive species under climate change is their advantage over native species Invasive species often carry a set of traits that make them successful invaders e g ability to survive in adverse conditions broad environmental tolerances rapid growth rates and wide dispersal as those traits are selected for in the invasion process Those traits will often help them succeed in competition with native species under climate change However invasive species do not exclusively nor do all invasive species carry these traits Rather there are some species that will benefit from climate change and others will be more negatively affected by it For example despite an invasive species ability to reach these new environments their presence could lead to disruptions in the food chain of that ecosystem potentially causing large scale death to others and themselves 22 Invasive species are just more likely than native species to carry suitable traits that favour them in a changing environment as a result of selection processes along the invasion pathway 4 Some native species that are dependent on mutualistic relationships will see a reduction in their fitness and competitive ability as a result of climate change effects on the other species in the mutualistic relationship As non native species are depending more rarely on mutualistic relationships they will be less affected by this mechanism 4 Climate change also challenges the adaptability of native species through changes in the environmental conditions making it difficult for native species to survive and easy for invasive species to take over empty niches Changes in the environment can also compromise the native species ability to compete with invaders that are often generalists 5 Invasive species do not require climate change to damage ecosystems however climate change might exacerbate the damage they do cause 5 Decoupling of ecosystems edit Food webs and chains are two varying ways to examine energy transfer and predation through a community While food webs tend to be more realistic and easy to identify in environments food chains highlight the importance of energy transfer between trophic levels 23 Air temperature greatly influences not only germination of vegetative species but also the foraging and reproductive habits of animal species In either way of approaching relationships between populations it is important to realize that species likely cannot and will not adjust to climate change in the same way or at the same rate This phenomenon is known as decoupling and has detrimental effects on the successful functioning of affected environments In the Arctic caribou calves are beginning to largely miss out on food as vegetation begins growing earlier in the season as a result of rising temperatures 24 Specific examples of decoupling within an environment include the time lag between air warming and soil warming and the relationship between temperature as well as photoperiod and heterotrophic organisms 24 The former example results from the ability of soil to hold its temperature Similar to how water has a higher specific heat than air which results in ocean temperatures being warmest at the close of the summer season 25 soil temperature lags behind that of air This results in a decoupling of above and below ground subsystems 24 This affects invasion because it increases growth rates and distribution of invasive species Invasive species typically have better tolerance to different environmental conditions increasing their survival rate when climate changes This later translates to when species die because they can not live in that ecosystem any more The new organisms that move in can take over that ecosystem 26 Other effects edit The current climate in many areas will change drastically this can both effect current native species and invasive species Current invasive coldwater species that are adapted to the current climate may be unable to persist under new climate conditions This shows that the interaction between climate change and invasive species does not need to be in favour for the invader 20 If a specific habitat changes drastically due to climate change can the native species become an invader in its native habitat Such changes in the habitat can inhibit the native species from completing its life cycle or forcing range shift Another result from the changed habitat is local extinction of the native species when its unable to migrate 5 Migration edit Higher temperatures also mean longer growing seasons for plants and animals which allows them to shift they ranges toward Nord Poleward migration also changes the migration patterns of many species Longer growing seasons mean the time of arrival for species changes which changes the amount of food supply available at the time of arrival altering the species reproductive success and survival There is also secondary effects global warming has on species such as changes in habitat food source and predators of that ecosystem Which later could lead to the local extinction of species or migration to a new area suitable for that species 26 Examples editInsect pests edit nbsp Diabrotica virgifera crop pest invasive to Europe Insect pests have always been viewed as a nuisance most often for their damaging effects on agriculture parasitism of livestock and impacts on human health 27 Influenced heavily by climate change and invasions they have recently been looked at as a significant threat to both biodiversity and ecosystem functionality Forestry industries are also at risk for being affected 28 There are a plethora of factors that contribute to existing concerns regarding the spread of insect pests all of which stem from increasing air temperatures Phenological changes overwintering increase in atmospheric carbon dioxide concentration migration and increasing rates of population growth all impact pests presence spread and impact both directly and indirectly 29 Diabrotica virgifera virgifera western corn rootworm migrated from North America to Europe In both continents western corn rootworm has had significant impacts on corn production and therefore economic costs Phenological changes and warming of air temperature have allowed this pests upper boundary to expand further northward In a similar sense of decoupling the upper and lower limits of a species spread is not always paired neatly with one another Mahalanobis distance and multidimensional envelope analysis performed by Pedro Aragon and Jorge M Lobo predict that even as the pests range expands northward currently invaded European communities will remain within the pests favored range 30 In general it is expected that global distribution of crop pests will increase as an effect of climate change This is expected for all kinds of crops creating a threat for both agriculture and other commercial use of crops 31 When the climate gets warmer is the crop pest predicted to spread towards the poles in latitude and in altitude Dry or cold areas with a current mean temperature around 7 5 C 45 5 F and a current precipitation below 1100 mm year could potentially be more affected than other areas The present climate in these areas are often unfavourable for the crop pest that currently lives there therefore will an increase in the temperature bring advantages to the pests With increased temperatures will the life cycle for the crop pests be faster and with winters above freezing temperatures will new crop pests species be able to inhabit these areas 32 Precipitation has a lesser effect on crop pests than temperatures but it can still impact the crop pests Drought and dry plants make host plants more attractive for insects and therefore increase the crop pests during droughts 33 For example the confused flour beetle is predicted to increase in the South American austral region with an increased temperature A higher temperature decreased the mortality and development time for the confused flour beetle The confused flour beetle population is expected to increase the most in higher latitudes 34 Areas with a warmer climate or lower altitudes are predicted to experience and decrease in crop pests The largest decline in crop pests is expected to occur in areas with a mean temperature of 27 C 81 F or a precipitation above 1100 mm year Despite the decline in crop pests it is unlikely that climate change will result in the complete removal of the existing crop pest species in the area 31 With a higher amount of precipitation can flush away eggs and larvae that is a potential crop pest 33 Pathogen impacts edit nbsp Trees impacted by cinnamon fungus While still limited in research scope it is known that climate change and invasive species impact the presence of pathogens 19 and there is evidence that global warming will increase the abundance of plant pathogens specifically While certain weather changes will affect species differently increased air moisture plays a significant role in the rapid outbreaks of pathogens In the little amount of research that has been completed regarding the incidence of plant pathogens in response to climate change the majority of the completed work focuses on above ground pathogens This does not mean that soil borne pathogens are exempt from experiencing the effects of climate change Phytophthora cinnamomi a pathogen that causes oak tree decline is a soil borne pathogen that increased in activity in response to climate change 24 35 Freshwater and marine environments edit Barriers between marine ecosystems are typically physiological in nature as opposed to geographic e g mountain ranges These physiological barriers may be seen as changes in pH water temperature water turbidity or more Climate change and global warming have begun to affect these barriers the most significant of which being water temperature The warming of sea water has allowed crabs to invade Antarctica and other durophagous predators are not far behind As these invaders move in species endemic to the benthic zone will have to adjust and begin to compete for resources destroying the existing ecosystem 36 Freshwater systems are significantly affected by climate change Extinction rates within freshwater bodies of water tend to be equitable or even higher than some terrestrial organisms While species may experience range shifts in response to physiologic changes outcomes are species specific and not reliable in all organisms As water temperatures increase it is organisms that inhibit warmer waters that are positively affected while cold water organisms are negatively affected 37 Warmer temperature also leads to the melting of arctic ice which increases the sea level Because of the rise in sea water most photosynthesizing species are not able to get the right amount of light to sustain living 26 Compared to terrestrial environments freshwater ecosystems have very few geographical and allosteric barriers between different areas The increased temperature and shorter duration of cold temperature will increase the probability of invasive species in the ecosystem because the winter hypoxia that prevents the species survival will be eliminated 20 This is the case with the brook trout that is an invasive species in lakes and streams in Canada The invasive brook trout has the capacity to eliminate the native bull trout and other native species in Canadian streams The temperature of the water plays a big part in the brook trout s capacity to inhabit a stream but other factors like the stream flow and geology are also important factors in how well established the brook trout is 38 The bull trout has a positive population growth or holds a competitive advantage only in streams that do not exceed 4 7 C 39 45 F in the warmest months The brook trout has a competitive and a physiological advantage over bull trout in warmer water e g 15 16 C 59 61 F The winter period is also an important factor for the brook trout s capacity to inhabit a stream Brook trout may have a reduced survival rate if it is exposed to especially long and harsh winter periods 39 Due to the observations that the range of brook trout is dependent on the temperature there is an increasing concern that the brook trout will eliminate the bull trout even further in colder water due to increasing temperature because of climate change 40 Climate change influences not only the temperature in lakes but also stream flows and therefore other factors in streams 41 This unknown factor makes it hard to predict how the brook trout and bull trout will react to climate change Management and prevention edit nbsp Mechanical manual control of invasive speciesManagement strategies generally have a different approach regarding invasive species compared to most native species In terms of climate change and native species the most fundamental strategy is conservation The strategy for invasive species is however majorly about control management 4 There are several different types of management and prevention strategies such as following Approaches edit Prevention This is generally the more environmentally desirable approach but is difficult to practice due to the issues with separating invasive from non invasive species 42 Border control and quarantine measures are normally the first prevention mechanisms 42 Preventative measures include exchanging ballast water in the middle of the ocean which is the main tool accessible for ships to limit the introduction of invasive species 43 Another method of prevention is public education to increase the understanding of individual actions on furthering the spread of invasive species and promote awareness about strategies to reduce the introduction and spread of invasive species 43 Invasion risk assessment can also aid in preventative management since it allows for early identification 44 Invasion risk is done by the identification of a potentially invasive species through comparison of common traits 44 Monitoring and early detection Samples can be taken in specific areas to see if any new species are present These samples are then run through a database in order to see if the species are invasive This can be done using genetic tools such as environmental DNA eDNA These eDNA samples taken in ecosystems are then run through a database that contains bioinformatics of species DNA When the database matches a sequence from the sample s DNA information about species that are or have been present in the studied area can be obtained 45 If the species are confirmed to be invasive the managers can then take precautions in the form of a rapid response eradication method 46 The eDNA method is majorly used in marine environments but there are ongoing studies about how to use it in terrestrial environments as well 47 48 Rapid response Several methods of eradication are used to prevent distribution and irreversible introduction of invasive species into new areas and habitats There are several types of rapid response Mechanical manual control This is often done through human labor such as hand pulling mowing cutting mulching flooding digging and burning of invasive species Burning often takes place mid spring to prevent further damage to the area s ecosystem and harm to the managers who administer the fires Manual control methods can kill or reduce the populations of non native species 46 Mechanical controls are sometimes effective and generally do not engender public criticism Instead they can often bring awareness and public interest and support for controlling invasive species 49 Chemical control Chemicals such as pesticides e g DDT and herbicides can be used to eradicate invasive species Though it might be effective to eliminate target species it often creates health hazards for both non target species and humans It is therefore generally a problematic method when for example rare species are present in the area 46 49 Biological control This is a method where organisms are used to control invasive species One common strategy is to introduce natural enemy species of invasive species in an area with the aim to establish the enemy which will drive the invasive species population to a contracted range One major complication with the biological method is that introduction of enemy species which itself in a sense is an invasion as well sometimes can affect non target species negatively as well There has been criticism regarding this method for example when species in conservation areas have been affected or even driven to extinction by biocontrol species 49 Restoration of ecosystems Restoration of ecosystems after eradication of invasive species can build resilience against future introductions 45 To some degree ecological niche models predict contraction of some species ranges If the models are somewhat accurate this creates opportunities for managers to alter the composition of native species to build resilience against future invasions 50 Forecasting Climate models can somewhat be used to project future range shifts of invasive species Since the future climate itself cannot be determined though these models are often very limited However the models can still be used as indicators of general range shifts by managers to plan management strategies citation needed Genetic control New technology has presented a potential solution for invasive species management genetic control A form of genetic pest management has been developed that targets the mating behavior of pests to introduce harm reducing genetically engineered DNA into wild populations 51 Though not widely implemented yet for invasive species specifically there is an expanding interest in using genetic pest management for invasive species control Triploidy also exists to manage invasive species through the production of sterile males to biologically control insect pests 52 Similar to triploidy another form of genetic control is Trojan Y which serves as a sex marker identification and aims to bias the sex ratio of populations typically fish towards males in order to drive the population to extinction 53 Trojan Y specifically uses sex reversed females containing two Y chromosomes known as Trojan Y to reduce the success of breeding in the population 53 A counterpart to the Trojan Y technique the Trojan Female technique aims to release Trojan females carrying mitochondrial DNA mutations that lead to a reduction in female rather than male fertility 54 Gene drive is also another technique to suppress pest populations Predictions editThe geographical range of invasive alien species threaten to alter due to climate change such as the brook trout Salvelinus fontinalis To forecast future impact of climate change on distribution of invasive species there is ongoing research in modelling These bioclimatic models also known as ecological niche models or climate envelope models 55 are developed with the aim to predict changes in species ranges and are an essential tool for the development of effective management strategies and actions e g eradication of invasive species and prevention of introduction 56 to reduce the future impact of invasive species on ecosystems and biodiversity 24 The models generally simulate current distributions of species together with predicted changes in climate to forecast future range shifts 55 Many species ranges are predicted to expand Yet studies also predict contractions of many species future range especially regarding vertebrates and plants at a large spatial scale 57 One reason for range contractions could possibly be that species ranges due to climate change generally move poleward and that they therefore at some point will reach the sea which acts as a barrier for further spread This is however the case when some phases of the invasion pathway e g transport and introduction are not considered in the models Studies majorly investigate predicted range shifts in terms of the actual spread and establishment phases of the invasive pathway excluding the phases of transportation and introduction 57 58 Models have also investigated the impact of invasive species on local climate change for example accelerating the increase of wetlands as a result of the loss of forest canopy 59 These models are useful for making predictions but are yet very limited Range shifts of invasive species are very complex and difficult to make predictions about due to the multiple variables affecting the invasion pathway This causes complications with simulating future predictions Climate change which is the most fundamental parameter in these models cannot be determined since the future level of the greenhouse emissions are uncertain Additionally climate variables that are directly linked to greenhouse emissions such as alterations in temperature and precipitations are likewise difficult to predict with certainty How species range shifts will react to changes in climate e g temperature and precipitation is therefore largely unknown and very complex to understand and predict Other factors that can limit range shifts but models often do not consider are for example presence of the right habitat for the invader species and if there are resources available 57 The level of accuracy is thus unknown for these models but they can to some extent be used as indicators that highlight and identify future hotspots for invasions at a larger scale These hotspots could for example be summarized into risk maps that highlight areas with high suitability for invaders This would be a beneficial tool for management development and help to construct prevention strategies and to control spreading 56 References edit Marshall NA Friedel M van Klinken RD Grice AC 2011 05 01 Considering the social dimension of invasive species the case of buffel grass Environmental Science amp Policy 14 3 327 338 doi 10 1016 j envsci 2010 10 005 ISSN 1462 9011 Climate Change U S Department of Agriculture National Invasive Species Information Center Retrieved February 23 2020 a b Dukes JS Mooney HA April 1999 Does global change increase the success of biological invaders Trends in Ecology amp Evolution 14 4 135 139 doi 10 1016 s0169 5347 98 01554 7 PMID 10322518 a b c d e f g h i j k l m n o p q r s t Hellmann JJ Byers JE Bierwagen BG Dukes JS June 2008 Five potential consequences of climate change for invasive species Conservation Biology 22 3 534 543 Bibcode 2008ConBi 22 534H doi 10 1111 j 1523 1739 2008 00951 x PMID 18577082 S2CID 16026020 a b c d e f g Mainka SA Howard GW June 2010 Climate change and invasive species double jeopardy Integrative Zoology 5 2 102 111 doi 10 1111 j 1749 4877 2010 00193 x PMID 21392328 Conley J February 22 2020 JP Morgan Economists Warn of Catastrophic Outcomes of Human Caused Climate Crisis Eco Watch Retrieved February 25 2020 Earth Science Communications Team Climate change causes A blanket around the Earth NASA s Jet Propulsion Laboratory California Institute of Technology Retrieved 2019 02 18 Hobbs RJ 2000 Invasive Species in a Changing World Island Press ISBN 978 1 59726 337 5 Alpert P Bone E Holzapfel C January 2000 Invasiveness invasibility and the role of environmental stress in the spread of non native plants Perspectives in Plant Ecology Evolution and Systematics 3 1 52 66 doi 10 1078 1433 8319 00004 S2CID 16851493 Ullah H Nagelkerken I Goldenberg SU Fordham DA January 2018 Climate change could drive marine food web collapse through altered trophic flows and cyanobacterial proliferation PLOS Biology 16 1 e2003446 doi 10 1371 journal pbio 2003446 PMC 5760012 PMID 29315309 Nijhuis M December 2013 How Climate Change is Helping Invasive Species Take Over Longer seasons and warmer weather have combined to be a game changer in the plant wars Smithsonian Magazine Retrieved February 23 2020 a b Invasive Alien Species and Climate Change PDF International Union for Conservation of Nature 2017 permanent dead link Tricarico E April 2016 Do alien invasive species and climate change foster conservation behaviour Invasive species climate change and conservation behaviour Aquatic Conservation Marine and Freshwater Ecosystems 26 2 228 232 doi 10 1002 aqc 2637 Oduor George I 1999 Biological Pest Control for Alien Invasive Species Invasive Species and Biodiversity Management Dordrecht Springer Netherlands pp 305 321 doi 10 1007 978 94 011 4523 7 21 ISBN 978 0 7923 6876 2 retrieved 2022 11 22 Seebens H Blackburn TM Dyer EE Genovesi P Hulme PE Jeschke JM et al February 2017 No saturation in the accumulation of alien species worldwide Nature Communications 8 14435 Bibcode 2017NatCo 814435S doi 10 1038 ncomms14435 PMC 5316856 PMID 28198420 a b c d e f g Walther GR Roques A Hulme PE Sykes MT Pysek P Kuhn I et al December 2009 Alien species in a warmer world risks and opportunities PDF Trends in Ecology amp Evolution 24 12 686 693 doi 10 1016 j tree 2009 06 008 PMID 19712994 Ashraf Arshad 2013 02 27 Changing Hydrology of the Himalayan Watershed Current Perspectives in Contaminant Hydrology and Water Resources Sustainability InTech doi 10 5772 54492 ISBN 978 953 51 1046 0 Tietjen B Schlaepfer DR Bradford JB Lauenroth WK Hall SA Duniway MC et al July 2017 Climate change induced vegetation shifts lead to more ecological droughts despite projected rainfall increases in many global temperate drylands Global Change Biology 23 7 2743 2754 Bibcode 2017GCBio 23 2743T doi 10 1111 gcb 13598 PMID 27976449 a b Occhipinti Ambrogi A 2007 Global change and marine communities alien species and climate change Marine Pollution Bulletin 55 7 9 342 352 Bibcode 2007MarPB 55 342O doi 10 1016 j marpolbul 2006 11 014 PMID 17239404 a b c Rahel FJ Olden JD June 2008 Assessing the effects of climate change on aquatic invasive species Conservation Biology 22 3 521 533 Bibcode 2008ConBi 22 521R doi 10 1111 j 1523 1739 2008 00950 x PMID 18577081 S2CID 313824 Canning Clode J Fowler AE Byers JE Carlton JT Ruiz GM 2011 Peck M ed Caribbean Creep chills out climate change and marine invasive species PLOS ONE 6 12 e29657 Bibcode 2011PLoSO 629657C doi 10 1371 journal pone 0029657 PMC 3247285 PMID 22216340 Bryers J E 2008 Five Potential Consequences of Climate Change for Invasive Species Society for Conservation Biology 22 3 534 543 Bibcode 2008ConBi 22 534H doi 10 1111 j 1523 1739 2008 00951 x PMID 18577082 S2CID 16026020 Retrieved 1 May 2023 Food chains amp food webs Khan Academy a b c d e Van der Putten WH Macel M Visser ME July 2010 Predicting species distribution and abundance responses to climate change why it is essential to include biotic interactions across trophic levels Philosophical Transactions of the Royal Society of London Series B Biological Sciences 365 1549 2025 2034 doi 10 1098 rstb 2010 0037 PMC 2880132 PMID 20513711 Estuarine Science Discovery of Estuarine Environments University of Rhode Island Office of Marine Programs Archived from the original on 2018 08 01 Retrieved 2019 02 11 a b c Backlund P Janetos A Schimel DS et al Climate Change Science Program U S National Science and Technology Council U S Subcommittee on Global Change Research 2009 The effects of climate change on agriculture land resources water resources and biodiversity in the United States New York Nova Science ISBN 9781613240755 OCLC 704277122 Pest insects www agric wa gov au Government of Western Australia Aragon P Lobo JM February 2012 Predicted effect of climate change on the invasibility and distribution of the Western corn root worm Agricultural and Forest Entomology 14 1 13 8 doi 10 1111 j 1461 9563 2011 00532 x S2CID 83952766 Cannon RJ October 1998 The implications of predicted climate change for insect pests in the UK with emphasis on non indigenous species Global Change Biology 4 7 785 96 Bibcode 1998GCBio 4 785C doi 10 1046 j 1365 2486 1998 00190 x Aragon P Lobo JM February 2012 Predicted effect of climate change on the invasibility and distribution of the Western corn root worm Agricultural and Forest Entomology 14 1 13 8 doi 10 1111 j 1461 9563 2011 00532 x S2CID 83952766 a b Yan Y Wang YC Feng CC Wan PH Chang KT 2017 Potential distributional changes of invasive crop pest species associated with global climate change Applied Geography 82 83 92 doi 10 1016 j apgeog 2017 03 011 Wolfe DW Ziska L Petzoldt C Seaman A Chase L Hayhoe K 2008 06 01 Projected change in climate thresholds in the Northeastern U S implications for crops pests livestock and farmers Mitigation and Adaptation Strategies for Global Change 13 5 555 575 Bibcode 2008MASGC 13 555W doi 10 1007 s11027 007 9125 2 hdl 2346 92624 a b Ziska LH Blumenthal DM Runion GB Hunt ER Diaz Soltero H 2011 Invasive species and climate change an agronomic perspective Climatic Change 105 1 2 13 42 Bibcode 2011ClCh 105 13Z doi 10 1007 s10584 010 9879 5 S2CID 52886411 Estay SA Lima M Labra FA 2009 Predicting insect pest status under climate change scenarios combining experimental data and population dynamics modelling Journal of Applied Entomology 133 7 491 499 doi 10 1111 j 1439 0418 2008 01380 x S2CID 85079403 Bergot Magali Cloppet Emmanuel Perarnaud Victorine Deque Michel Marcais Benoit Desprez Loustau Marie Laure September 2004 Simulation of potential range expansion of oak disease caused by Phytophthora cinnamomi under climate change PDF Global Change Biology 10 9 1539 1552 Bibcode 2004GCBio 10 1539B doi 10 1111 j 1365 2486 2004 00824 x S2CID 85844009 Aronson RB Thatje S Clarke A Peck LS Blake DB Wilga CD Seibel BA December 2007 Climate change and invasibility of the Antarctic benthos PDF Annual Review of Ecology Evolution and Systematics 3 129 54 doi 10 1146 annurev ecolsys 38 091206 095525 Heino J Virkkala R Toivonen H February 2009 Climate change and freshwater biodiversity detected patterns future trends and adaptations in northern regions Biological Reviews of the Cambridge Philosophical Society 84 1 39 54 doi 10 1111 j 1469 185X 2008 00060 x PMID 19032595 S2CID 22783943 Rieman BE Peterson JT Myers DL 2006 Have brook trout Salvelinus fontinalis displaced bull trout Salvelinus confluentus along longitudinal gradients in central Idaho streams Canadian Journal of Fisheries and Aquatic Sciences 63 63 78 doi 10 1139 f05 206 Warnock WG Rasmussen JB Magnan P 2013 Abiotic and biotic factors associated with brook trout invasiveness into bull trout streams of the Canadian Rockies Canadian Journal of Fisheries and Aquatic Sciences 70 6 905 914 doi 10 1139 cjfas 2012 0387 Rieman BE Isaak D Adams S Horan D Nagel D Luce C Myers D 2007 Anticipated Climate Warming Effects on Bull Trout Habitats and Populations Across the Interior Columbia River Basin Transactions of the American Fisheries Society 136 6 1552 1565 Bibcode 2007TrAFS 136 1552R doi 10 1577 T07 028 1 S2CID 12867486 Arismendi I Johnson SL Dunham JB Haggerty R Hockman Wert D 2012 The paradox of cooling streams in a warming world Regional climate trends do not parallel variable local trends in stream temperature in the Pacific continental United States Geophysical Research Letters 39 10 n a Bibcode 2012GeoRL 3910401A doi 10 1029 2012GL051448 a b Hulme PE October 2006 Beyond control wider implications for the management of biological invasions Wider implications for managing invasions Journal of Applied Ecology 43 5 835 847 doi 10 1111 j 1365 2664 2006 01227 x a b Preliminary Report PDF U S Commission on Ocean Policy a b Lennox R Choi K Harrison PM Paterson JE Peat TB Ward TD Cooke SJ 2015 08 01 Improving science based invasive species management with physiological knowledge concepts and tools Biological Invasions 17 8 2213 2227 Bibcode 2015BiInv 17 2213L doi 10 1007 s10530 015 0884 5 ISSN 1573 1464 S2CID 13983660 a b Management Plan 2016 2018 PDF National Invasive Species Council Report 2016 a b c Stingelin JK March 2010 Early detection of invasive species surveillance monitoring and rapid response Eastern Rivers and Mountains Network summary report 2008 2009 NPS ERMN NRDS 2010 038 Fort Collins Colorado U S Department of the Interior National Park Service Natural Resource Program Center Sales NG McKenzie MB Drake J Harper LR Browett SS Coscia I et al 2020 Mosher B ed Fishing for mammals Landscape level monitoring of terrestrial and semi aquatic communities using eDNA from riverine systems PDF Journal of Applied Ecology 57 4 707 716 doi 10 1111 1365 2664 13592 S2CID 216384292 Deiner K Bik HM Machler E Seymour M Lacoursiere Roussel A Altermatt F et al November 2017 Environmental DNA metabarcoding Transforming how we survey animal and plant communities Molecular Ecology 26 21 5872 5895 Bibcode 2017MolEc 26 5872D doi 10 1111 mec 14350 hdl 20 500 11850 455284 PMID 28921802 a b c Mack RN Simberloff D Mark Lonsdale W Evans H Clout M Bazzaz FA 2000 Biotic invasions causes epidemiology global consequences and contro Ecological Applications 10 3 689 710 doi 10 1890 1051 0761 2000 010 0689 bicegc 2 0 co 2 S2CID 711038 Ikeda Dana H Max Tamara L Allan Gerard J Lau Matthew K Shuster Stephen M Whitham Thomas G January 2017 Genetically informed ecological niche models improve climate change predictions Global Change Biology 23 1 164 176 Bibcode 2017GCBio 23 164I doi 10 1111 gcb 13470 PMID 27543682 S2CID 205143996 Harvey Samuel T Ant T Alphey L 2017 06 01 Towards the genetic control of invasive species Biological Invasions 19 6 1683 1703 Bibcode 2017BiInv 19 1683H doi 10 1007 s10530 017 1384 6 PMC 5446844 PMID 28620268 Thresher RE Hayes K Bax NJ Teem J Benfey TJ Gould F 2014 06 01 Genetic control of invasive fish technological options and its role in integrated pest management Biological Invasions 16 6 1201 1216 Bibcode 2014BiInv 16 1201T doi 10 1007 s10530 013 0477 0 ISSN 1573 1464 S2CID 15272109 a b Trojan Y Invasive Species Control Sex Marker Identification U S Geological Survey www usgs gov Retrieved 2022 05 28 Teem JL Alphey L Descamps S Edgington MP Edwards O Gemmell N et al 2020 Genetic Biocontrol for Invasive Species Frontiers in Bioengineering and Biotechnology 8 452 doi 10 3389 fbioe 2020 00452 PMC 7261935 PMID 32523938 a b Jeschke JM Strayer DL 2008 Usefulness of bioclimatic models for studying climate change and invasive species Annals of the New York Academy of Sciences 1134 1 1 24 Bibcode 2008NYASA1134 1J doi 10 1196 annals 1439 002 PMID 18566088 S2CID 13837954 a b Bellard C Thuiller W Leroy B Genovesi P Bakkenes M Courchamp F December 2013 Will climate change promote future invasions Global Change Biology 19 12 3740 3748 Bibcode 2013GCBio 19 3740B doi 10 1111 gcb 12344 PMC 3880863 PMID 23913552 a b c Bellard C Jeschke JM Leroy B Mace GM June 2018 Insights from modeling studies on how climate change affects invasive alien species geography Ecology and Evolution 8 11 5688 5700 Bibcode 2018EcoEv 8 5688B doi 10 1002 ece3 4098 PMC 6010883 PMID 29938085 Blackburn TM Pysek P Bacher S Carlton JT Duncan RP Jarosik V et al July 2011 A proposed unified framework for biological invasions Trends in Ecology amp Evolution 26 7 333 339 doi 10 1016 j tree 2011 03 023 hdl 10019 1 112277 PMID 21601306 Shannon Joseph Kolka Randall Van Grinsven Matthew Liu Fengjing 2022 Joint impacts of future climate conditions and invasive species on black ash forested wetlands Frontiers in Forests and Global Change 5 Bibcode 2022FrFGC 5 7526S doi 10 3389 ffgc 2022 957526 ISSN 2624 893X Ritchie Hannah 18 September 2020 Sector by sector where do global greenhouse gas emissions come from Our World in Data Retrieved 28 October 2020 Allen M R Dube O P Solecki W Aragon Durand F et al 2018 Chapter 1 Framing and Context PDF Global Warming of 1 5 C An IPCC Special Report on the impacts of global warming of 1 5 C above pre industrial levels and related global greenhouse gas emission pathways in the context of strengthening the global response to the threat of climate change sustainable development and efforts to eradicate poverty pp 49 91 Retrieved from https en wikipedia org w index php title Climate change and invasive species amp oldid 1204324635, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.