fbpx
Wikipedia

Charophyta

Charophyta (UK: /kəˈrɒfɪtə, ˌkærəˈftə/) is a group of freshwater green algae, called charophytes (/ˈkærəˌfts/), sometimes treated as a division,[2] yet also as a superdivision[3] or an unranked clade. The terrestrial plants, the Embryophyta emerged deep within Charophyta, possibly from terrestrial unicellular charophytes,[4] with the class Zygnematophyceae as a sister group.[5][6][7][8][9]

Charophyta
Scientific classification
(unranked): Viridiplantae
(unranked): Charophyta
Migula 1897,[1] sensu Leliaert et al. 2012
Groups included
Cladistically included but traditionally excluded taxa

Embryophyta

With the Embryophyta now cladistically placed in the Charophyte, it is a synonym of Streptophyta.[10][11][12][13] The sister group of the charophytes are the Chlorophyta. In some charophyte groups, such as the Zygnematophyceae or conjugating green algae, flagella are absent and sexual reproduction does not involve free-swimming flagellate sperm. Flagellate sperm, however, are found in stoneworts (Charales) and Coleochaetales, orders of parenchymatous charophytes that are the closest relatives of the land plants, where flagellate sperm are also present in all except the conifers and flowering plants.[14] Fossil stoneworts of early Devonian age that are similar to those of the present day have been described from the Rhynie chert of Scotland.[15] Somewhat different charophytes have also been collected from the Late Devonian (Famennian) Waterloo Farm lagerstätte of South Africa. These include two species each of Octochara and Hexachara, which are the oldest fossils of Charophyte axes bearing in situ oogonia.

The name comes from the genus Chara, but the finding that the Embryophyta actually emerged in them has not resulted in a much more restricted meaning of the Charophyta, namely to a much smaller side branch. This more restricted group corresponds to the Charophyceae.

Description edit

The Zygnematophyceae formerly known as the, Conjugatophyceae, generally possess two fairly elaborate chloroplasts in each cell, rather than many discoid ones. They reproduce asexually by the development of a septum between the two cell-halves or semi-cells (in unicellular forms, each daughter-cell develops the other semi-cell afresh) and sexually by conjugation, or the fusion of the entire cell-contents of the two conjugating cells. The saccoderm desmids and the placoderm or true desmids, unicellular or filamentous members of the Zygnematophyceae, are dominant in non-calcareous, acid waters of oligotrophic or primitive lakes (e.g. Wastwater), or in lochans, tarns and bogs, as in the West of Scotland, Eire, parts of Wales and of the Lake District.[16]

Klebsormidium, the type of the Klebsormidiophyceae, is a simple filamentous form with circular, plate-like chloroplasts, reproducing by fragmentation, by dorsiventral, biciliate swarmers and, according to Wille, a twentieth-century algologist, by aplanospores.[17] Sexual reproduction is simple and isogamous (the male and female gametes are outwardly indistinguishable).[17]

The Charales (Charophyceae), or stoneworts, are freshwater and brackish algae with slender green or grey stems; the grey colour of many species results from the deposition of lime on the walls, masking the green colour of the chlorophyll. The main stems are slender and branch occasionally. Lateral branchlets occur in whorls at regular intervals up the stem, they are attached by rhizoids to the substrate.[18] The reproductive organs consist of antheridia and oogonia, though the structures of these organs differ considerably from the corresponding organs in other algae. As a result of fertilization, a protonema is formed, from which the sexually reproducing algae develops.

A new terrestrial genus found in sandy soil in the Czech Republic, Streptofilum, may belong in its own class due its unique phylogenetic position. A cell wall is absent, instead the cell membrane consists of many layers of specific scales. It is a short, filamentous and unbranched algae surrounded by a mucilaginous sheath, which often disintegrates to diads and unicells.[19]

Reproduction edit

The cells in Charophyta algae are all haploid, except during sexual reproduction, where a diploid unicellular zygote is produced. The zygote becomes four new haploid cells through meiosis, which will develop into new algae. In multicellular forms these haploid cells will grow into a gametophyte. In embryophytes (land plants) the zygote will instead give rise to a multicellular sporophyte.[20][21]

Classification edit

Charophyta are complex green algae that form a sister group to the Chlorophyta and within which the Embryophyta emerged. The chlorophyte and charophyte green algae and the embryophytes or land plants form a clade called the green plants or Viridiplantae, that is united among other things by the absence of phycobilins, the presence of chlorophyll a and chlorophyll b, cellulose in the cell wall and the use of starch, stored in the plastids, as a storage polysaccharide. The charophytes and embryophytes share several traits that distinguish them from the chlorophytes, such as the presence of certain enzymes (class I aldolase, Cu/Zn superoxide dismutase, glycolate oxidase, flagellar peroxidase), lateral flagella (when present), and, in many species, the use of phragmoplasts in mitosis.[22] Thus Charophyta and Embryophyta together form the clade Streptophyta, excluding the Chlorophyta.

Charophytes such as Palaeonitella cranii and possibly the yet unassigned Parka decipiens[23] are present in the fossil record of the Devonian.[15] Palaeonitella differed little from some present-day stoneworts.

Cladogram edit

There is an emerging consensus on green algal relationships, mainly based on molecular data.[22][24][25][26][10][2][6][27][28][29][30][31][19][32] The Mesostigmatophyceae (including Spirotaenia, and Chlorokybophyceae) are at the base of charophytes (streptophytes). The cladograms below show consensus phylogenetic relationships based on plastid genomes[33] and a new proposal for a third phylum of green plants based on analysis of nuclear genomes.[34]

Mesostigmatophyceae s.l. in the cladograms corresponds to a clade of a narrower circumscription, Mesostigmatophyceae s.s., and a separate class Chlorokybophyceae, as used by AlgaeBase.[1]

The Mesostigmatophyceae are not filamentous, but the other basal charophytes (streptophytes) are.[35][19][29]

References edit

  1. ^ a b Guiry, M.D.; Guiry, G.M. "Charophytes". AlgaeBase. World-wide electronic publication, National University of Ireland, Galway. Retrieved 2022-02-21.
  2. ^ a b Lewis, Louise A.; McCourt, Richard M. (2004). "Green algae and the origin of land plants". American Journal of Botany. 91 (10): 1535–56. doi:10.3732/ajb.91.10.1535. PMID 21652308.
  3. ^ Ruggiero, M. A.; Gordon, D. P.; Orrell, T. M.; Bailly, N.; Bourgoin, T.; Brusca, R. C.; et al. (2015). "A higher level classification of all living organisms". PLOS One. 10 (4): e0119248. Bibcode:2015PLoSO..1019248R. doi:10.1371/journal.pone.0119248. PMC 4418965. PMID 25923521.
  4. ^ de Vries, J; Archibald, JM (March 2018). "Plant evolution: landmarks on the path to terrestrial life". The New Phytologist. 217 (4): 1428–1434. doi:10.1111/nph.14975. PMID 29318635.
  5. ^ Del-Bem, Luiz-Eduardo (2018-05-31). "Xyloglucan evolution and the terrestrialization of green plants". New Phytologist. 219 (4): 1150–1153. doi:10.1111/nph.15191. hdl:1843/36860. ISSN 0028-646X. PMID 29851097.
  6. ^ a b Ruhfel, Brad R.; Gitzendanner, Matthew A.; Soltis, Pamela S.; Soltis, Douglas E.; Burleigh, J. Gordon (2014-02-17). "From algae to angiosperms–inferring the phylogeny of green plants (Viridiplantae) from 360 plastid genomes". BMC Evolutionary Biology. 14: 23. doi:10.1186/1471-2148-14-23. ISSN 1471-2148. PMC 3933183. PMID 24533922.
  7. ^ Wickett, Norman J.; Mirarab, Siavash; Nguyen, Nam; Warnow, Tandy; Carpenter, Eric; Matasci, Naim; Ayyampalayam, Saravanaraj; Barker, Michael S.; Burleigh, J. Gordon (2014-11-11). "Phylotranscriptomic analysis of the origin and early diversification of land plants". Proceedings of the National Academy of Sciences. 111 (45): E4859–E4868. Bibcode:2014PNAS..111E4859W. doi:10.1073/pnas.1323926111. ISSN 0027-8424. PMC 4234587. PMID 25355905.
  8. ^ Vries, Jan de; Stanton, Amanda; Archibald, John M.; Gould, Sven B. (2016-02-16). "Streptophyte Terrestrialization in Light of Plastid Evolution". Trends in Plant Science. 21 (6): 467–476. doi:10.1016/j.tplants.2016.01.021. ISSN 1360-1385. PMID 26895731.
  9. ^ Treatise on invertebrate paleontology. Part B. Protoctista 1. Volume1: Charophyta.[1]
  10. ^ a b Cook, Martha E.; Graham, Linda E. (2017). "Chlorokybophyceae, Klebsormidiophyceae, Coleochaetophyceae". In Archibald, John M.; Simpson, Alastair G. B.; Slamovits, Claudio H. (eds.). Handbook of the Protists. Springer International Publishing. pp. 185–204. doi:10.1007/978-3-319-28149-0_36. ISBN 9783319281476.
  11. ^ Delwiche, Charles F.; Timme, Ruth E. (2011). "Plants". Current Biology. 21 (11): R417–R422. doi:10.1016/j.cub.2011.04.021. PMID 21640897.
  12. ^ Karol, Kenneth G.; McCourt, Richard M.; Cimino, Matthew T.; Delwiche, Charles F. (2001-12-14). "The Closest Living Relatives of Land Plants". Science. 294 (5550): 2351–2353. Bibcode:2001Sci...294.2351K. doi:10.1126/science.1065156. ISSN 0036-8075. PMID 11743201. S2CID 35983109.
  13. ^ Lewis, Louise A.; McCourt, Richard M. (2004). "Green algae and the origin of land plants". American Journal of Botany. 91 (10): 1535–1556. doi:10.3732/ajb.91.10.1535. ISSN 1537-2197. PMID 21652308.
  14. ^ Vaughn, K.C.; Renzaglia, K.S. (2006). "Structural and immunocytochemical characterization of the Ginkgo biloba L. sperm motility apparatus". Protoplasma. 227 (2–4): 165–73. doi:10.1007/s00709-005-0141-3. PMID 16736257. S2CID 9864200.
  15. ^ a b Kelman, R.; Feist, M.; Trewin, N.H.; Hass, H. (2003). "Charophyte algae from the Rhynie chert". Transactions of the Royal Society of Edinburgh: Earth Sciences. 94 (4): 445–455. doi:10.1017/s0263593300000808. S2CID 128869547.
  16. ^ West, G.S; Fritsch, F.E. (1927). A Treatise of the British Freshwater Algae. Cambridge: Cambridge University Press.
  17. ^ a b Fritsch, F.E. (1935). The Structure and Reproduction of the Algae, vol I. Cambridge University Press. pp. 205–206.
  18. ^ Bryant 2007, J. The Stoneworts (Chlorophyta, Charales) in Guiry, M.D., John, D.M., Rindi, F. and McCarthy, T.K (Ed) New Survey of Clare Island Volume 6: The Freshwater and Terrestrial Algae. Royal Irish Academy. ISBN 9781904890317
  19. ^ a b c Mikhailyuk, Tatiana; Lukešová, Alena; Glaser, Karin; Holzinger, Andreas; Obwegeser, Sabrina; Nyporko, Svetlana; Friedl, Thomas; Karsten, Ulf (2018). "New Taxa of Streptophyte Algae (Streptophyta) from Terrestrial Habitats Revealed Using an Integrative Approach". Protist. 169 (3): 406–431. doi:10.1016/j.protis.2018.03.002. ISSN 1434-4610. PMC 6071840. PMID 29860113.
  20. ^ Evolution and development of land plant embryos - GtR - UKRI
  21. ^ Becker, B.; Marin, B. (2009). "Streptophyte algae and the origin of embryophytes". Annals of Botany. 103 (7): 999–1004. doi:10.1093/aob/mcp044. PMC 2707909. PMID 19273476.
  22. ^ a b Leliaert, Frederik; Smith, David R.; Moreau, Hervé; Herron, Matthew D.; Verbruggen, Heroen; Delwiche, Charles F.; De Clerck, Olivier (2012). (PDF). Critical Reviews in Plant Sciences. 31: 1–46. doi:10.1080/07352689.2011.615705. S2CID 17603352. Archived from the original (PDF) on 2015-06-26. Retrieved 2016-10-04.
  23. ^ Hemsley, A.R. (1989). "The ultrastructure of the spores of the Devonian plant Parka decipiens". Annals of Botany. 64 (3): 359–367. doi:10.1093/oxfordjournals.aob.a087852.
  24. ^ Marin, Birger (2012). "Nested in the Chlorellales or Independent Class? Phylogeny and Classification of the Pedinophyceae (Viridiplantae) Revealed by Molecular Phylogenetic Analyses of Complete Nuclear and Plastid-encoded rRNA Operons". Protist. 163 (5): 778–805. doi:10.1016/j.protis.2011.11.004. PMID 22192529.
  25. ^ Laurin-Lemay, Simon; Brinkmann, Henner; Philippe, Hervé (2012). "Origin of land plants revisited in the light of sequence contamination and missing data". Current Biology. 22 (15): R593–R594. doi:10.1016/j.cub.2012.06.013. PMID 22877776.
  26. ^ Leliaert, Frederik; Tronholm, Ana; Lemieux, Claude; Turmel, Monique; DePriest, Michael S.; Bhattacharya, Debashish; Karol, Kenneth G.; Fredericq, Suzanne; Zechman, Frederick W. (2016-05-09). "Chloroplast phylogenomic analyses reveal the deepest-branching lineage of the Chlorophyta, Palmophyllophyceae class. nov". Scientific Reports. 6: 25367. Bibcode:2016NatSR...625367L. doi:10.1038/srep25367. ISSN 2045-2322. PMC 4860620. PMID 27157793.
  27. ^ Adl, Sina M.; Simpson, Alastair G. B.; Lane, Christopher E.; Lukeš, Julius; Bass, David; Bowser, Samuel S.; Brown, Matthew W.; Burki, Fabien; Dunthorn, Micah (2012-09-01). "The Revised Classification of Eukaryotes". Journal of Eukaryotic Microbiology. 59 (5): 429–514. doi:10.1111/j.1550-7408.2012.00644.x. ISSN 1550-7408. PMC 3483872. PMID 23020233.
  28. ^ Lemieux, Claude; Otis, Christian; Turmel, Monique (2007-01-12). "A clade uniting the green algae Mesostigma viride and Chlorokybus atmophyticus represents the deepest branch of the Streptophyta in chloroplast genome-based phylogenies". BMC Biology. 5: 2. doi:10.1186/1741-7007-5-2. ISSN 1741-7007. PMC 1781420. PMID 17222354.
  29. ^ a b Umen, James G. (2014-11-01). "Green Algae and the Origins of Multicellularity in the Plant Kingdom". Cold Spring Harbor Perspectives in Biology. 6 (11): a016170. doi:10.1101/cshperspect.a016170. ISSN 1943-0264. PMC 4413236. PMID 25324214.
  30. ^ Sánchez-Baracaldo, Patricia; Raven, John A.; Pisani, Davide; Knoll, Andrew H. (2017-09-12). "Early photosynthetic eukaryotes inhabited low-salinity habitats". Proceedings of the National Academy of Sciences. 114 (37): E7737–E7745. Bibcode:2017PNAS..114E7737S. doi:10.1073/pnas.1620089114. PMC 5603991. PMID 28808007.
  31. ^ Gitzendanner, Matthew A.; Soltis, Pamela S.; Wong, Gane K.-S.; Ruhfel, Brad R.; Soltis, Douglas E. (2018). "Plastid phylogenomic analysis of green plants: A billion years of evolutionary history". American Journal of Botany. 105 (3): 291–301. doi:10.1002/ajb2.1048. ISSN 0002-9122. PMID 29603143.
  32. ^ Glass, Sarah (2021). Chloroplast Genome Evolution in the Klebsormidiophyceae and Streptofilum (MS thesis). Lehman College.
  33. ^ a b Turmel, Monique; Lemieux, Claude (2018), "Evolution of the Plastid Genome in Green Algae", Advances in Botanical Research, Elsevier, pp. 157–193, doi:10.1016/bs.abr.2017.11.010, ISBN 9780128134573
  34. ^ a b Li, Linzhou; Wang, Sibo; Wang, Hongli; Sahu, Sunil Kumar; Marin, Birger; Li, Haoyuan; Xu, Yan; Liang, Hongping; Li, Zhen; Cheng, Shifeng; Reder, Tanja (2020). "The genome of Prasinoderma coloniale unveils the existence of a third phylum within green plants". Nature Ecology & Evolution. 4 (9): 1220–1231. doi:10.1038/s41559-020-1221-7. ISSN 2397-334X. PMC 7455551. PMID 32572216.
  35. ^ Nishiyama, Tomoaki; Sakayama, Hidetoshi; de Vries, Jan; Buschmann, Henrik; Saint-Marcoux, Denis; Ullrich, Kristian K.; Haas, Fabian B.; Vanderstraeten, Lisa; Becker, Dirk (2018). "The Chara Genome: Secondary Complexity and Implications for Plant Terrestrialization". Cell. 174 (2): 448–464.e24. doi:10.1016/j.cell.2018.06.033. ISSN 0092-8674. PMID 30007417.

External links edit

  •   Data related to Charophyta at Wikispecies

charophyta, explanation, very, similar, terms, streptophyta, group, freshwater, green, algae, called, charophytes, sometimes, treated, division, also, superdivision, unranked, clade, terrestrial, plants, embryophyta, emerged, deep, within, possibly, from, terr. For an explanation of very similar terms see Streptophyta Charophyta UK k e ˈ r ɒ f ɪ t e ˌ k aer e ˈ f aɪ t e is a group of freshwater green algae called charophytes ˈ k aer e ˌ f aɪ t s sometimes treated as a division 2 yet also as a superdivision 3 or an unranked clade The terrestrial plants the Embryophyta emerged deep within Charophyta possibly from terrestrial unicellular charophytes 4 with the class Zygnematophyceae as a sister group 5 6 7 8 9 CharophytaScientific classification unranked Viridiplantae unranked CharophytaMigula 1897 1 sensu Leliaert et al 2012Groups includedMesostigmatophyceae Chlorokybophyceae Streptofilum Klebsormidiophyceae Phragmoplastophyta Charophyceae Coleochaetophyceae ZygnematophyceaeCladistically included but traditionally excluded taxaEmbryophytaWith the Embryophyta now cladistically placed in the Charophyte it is a synonym of Streptophyta 10 11 12 13 The sister group of the charophytes are the Chlorophyta In some charophyte groups such as the Zygnematophyceae or conjugating green algae flagella are absent and sexual reproduction does not involve free swimming flagellate sperm Flagellate sperm however are found in stoneworts Charales and Coleochaetales orders of parenchymatous charophytes that are the closest relatives of the land plants where flagellate sperm are also present in all except the conifers and flowering plants 14 Fossil stoneworts of early Devonian age that are similar to those of the present day have been described from the Rhynie chert of Scotland 15 Somewhat different charophytes have also been collected from the Late Devonian Famennian Waterloo Farm lagerstatte of South Africa These include two species each of Octochara and Hexachara which are the oldest fossils of Charophyte axes bearing in situ oogonia The name comes from the genus Chara but the finding that the Embryophyta actually emerged in them has not resulted in a much more restricted meaning of the Charophyta namely to a much smaller side branch This more restricted group corresponds to the Charophyceae Contents 1 Description 1 1 Reproduction 2 Classification 2 1 Cladogram 3 References 4 External linksDescription editThe Zygnematophyceae formerly known as the Conjugatophyceae generally possess two fairly elaborate chloroplasts in each cell rather than many discoid ones They reproduce asexually by the development of a septum between the two cell halves or semi cells in unicellular forms each daughter cell develops the other semi cell afresh and sexually by conjugation or the fusion of the entire cell contents of the two conjugating cells The saccoderm desmids and the placoderm or true desmids unicellular or filamentous members of the Zygnematophyceae are dominant in non calcareous acid waters of oligotrophic or primitive lakes e g Wastwater or in lochans tarns and bogs as in the West of Scotland Eire parts of Wales and of the Lake District 16 Klebsormidium the type of the Klebsormidiophyceae is a simple filamentous form with circular plate like chloroplasts reproducing by fragmentation by dorsiventral biciliate swarmers and according to Wille a twentieth century algologist by aplanospores 17 Sexual reproduction is simple and isogamous the male and female gametes are outwardly indistinguishable 17 The Charales Charophyceae or stoneworts are freshwater and brackish algae with slender green or grey stems the grey colour of many species results from the deposition of lime on the walls masking the green colour of the chlorophyll The main stems are slender and branch occasionally Lateral branchlets occur in whorls at regular intervals up the stem they are attached by rhizoids to the substrate 18 The reproductive organs consist of antheridia and oogonia though the structures of these organs differ considerably from the corresponding organs in other algae As a result of fertilization a protonema is formed from which the sexually reproducing algae develops A new terrestrial genus found in sandy soil in the Czech Republic Streptofilum may belong in its own class due its unique phylogenetic position A cell wall is absent instead the cell membrane consists of many layers of specific scales It is a short filamentous and unbranched algae surrounded by a mucilaginous sheath which often disintegrates to diads and unicells 19 Reproduction edit The cells in Charophyta algae are all haploid except during sexual reproduction where a diploid unicellular zygote is produced The zygote becomes four new haploid cells through meiosis which will develop into new algae In multicellular forms these haploid cells will grow into a gametophyte In embryophytes land plants the zygote will instead give rise to a multicellular sporophyte 20 21 Classification editCharophyta are complex green algae that form a sister group to the Chlorophyta and within which the Embryophyta emerged The chlorophyte and charophyte green algae and the embryophytes or land plants form a clade called the green plants or Viridiplantae that is united among other things by the absence of phycobilins the presence of chlorophyll a and chlorophyll b cellulose in the cell wall and the use of starch stored in the plastids as a storage polysaccharide The charophytes and embryophytes share several traits that distinguish them from the chlorophytes such as the presence of certain enzymes class I aldolase Cu Zn superoxide dismutase glycolate oxidase flagellar peroxidase lateral flagella when present and in many species the use of phragmoplasts in mitosis 22 Thus Charophyta and Embryophyta together form the clade Streptophyta excluding the Chlorophyta Charophytes such as Palaeonitella cranii and possibly the yet unassigned Parka decipiens 23 are present in the fossil record of the Devonian 15 Palaeonitella differed little from some present day stoneworts Cladogram edit There is an emerging consensus on green algal relationships mainly based on molecular data 22 24 25 26 10 2 6 27 28 29 30 31 19 32 The Mesostigmatophyceae including Spirotaenia and Chlorokybophyceae are at the base of charophytes streptophytes The cladograms below show consensus phylogenetic relationships based on plastid genomes 33 and a new proposal for a third phylum of green plants based on analysis of nuclear genomes 34 Consensus plastid phylogenyViridiplantae ChlorophytaStreptophyta Mesostigmatophyceae s l KlebsormidiophyceaeCharophyceaeColeochaetophyceaeZygnematophyceaeEmbryophytes land plants Charophyta s l Consensus relationships among major green algal lineages inferred in recent plastid phylogenomic studies 33 Prasinodermophyta hypothesisViridiplantae Prasinodermophyta PalmophyllophyceaePrasinodermophyceaeChlorophytaStreptophyta Mesostigmatophyceae s l KlebsormidiophyceaeCharophyceaeColeochaetophyceaeZygnematophyceaeEmbryophytes land plants Charophyta s l green algaeRelationships among major green algal lineages based on a recent nuclear phylogenomic study 34 Mesostigmatophyceae s l in the cladograms corresponds to a clade of a narrower circumscription Mesostigmatophyceae s s and a separate class Chlorokybophyceae as used by AlgaeBase 1 The Mesostigmatophyceae are not filamentous but the other basal charophytes streptophytes are 35 19 29 References edit a b Guiry M D Guiry G M Charophytes AlgaeBase World wide electronic publication National University of Ireland Galway Retrieved 2022 02 21 a b Lewis Louise A McCourt Richard M 2004 Green algae and the origin of land plants American Journal of Botany 91 10 1535 56 doi 10 3732 ajb 91 10 1535 PMID 21652308 Ruggiero M A Gordon D P Orrell T M Bailly N Bourgoin T Brusca R C et al 2015 A higher level classification of all living organisms PLOS One 10 4 e0119248 Bibcode 2015PLoSO 1019248R doi 10 1371 journal pone 0119248 PMC 4418965 PMID 25923521 de Vries J Archibald JM March 2018 Plant evolution landmarks on the path to terrestrial life The New Phytologist 217 4 1428 1434 doi 10 1111 nph 14975 PMID 29318635 Del Bem Luiz Eduardo 2018 05 31 Xyloglucan evolution and the terrestrialization of green plants New Phytologist 219 4 1150 1153 doi 10 1111 nph 15191 hdl 1843 36860 ISSN 0028 646X PMID 29851097 a b Ruhfel Brad R Gitzendanner Matthew A Soltis Pamela S Soltis Douglas E Burleigh J Gordon 2014 02 17 From algae to angiosperms inferring the phylogeny of green plants Viridiplantae from 360 plastid genomes BMC Evolutionary Biology 14 23 doi 10 1186 1471 2148 14 23 ISSN 1471 2148 PMC 3933183 PMID 24533922 Wickett Norman J Mirarab Siavash Nguyen Nam Warnow Tandy Carpenter Eric Matasci Naim Ayyampalayam Saravanaraj Barker Michael S Burleigh J Gordon 2014 11 11 Phylotranscriptomic analysis of the origin and early diversification of land plants Proceedings of the National Academy of Sciences 111 45 E4859 E4868 Bibcode 2014PNAS 111E4859W doi 10 1073 pnas 1323926111 ISSN 0027 8424 PMC 4234587 PMID 25355905 Vries Jan de Stanton Amanda Archibald John M Gould Sven B 2016 02 16 Streptophyte Terrestrialization in Light of Plastid Evolution Trends in Plant Science 21 6 467 476 doi 10 1016 j tplants 2016 01 021 ISSN 1360 1385 PMID 26895731 Treatise on invertebrate paleontology Part B Protoctista 1 Volume1 Charophyta 1 a b Cook Martha E Graham Linda E 2017 Chlorokybophyceae Klebsormidiophyceae Coleochaetophyceae In Archibald John M Simpson Alastair G B Slamovits Claudio H eds Handbook of the Protists Springer International Publishing pp 185 204 doi 10 1007 978 3 319 28149 0 36 ISBN 9783319281476 Delwiche Charles F Timme Ruth E 2011 Plants Current Biology 21 11 R417 R422 doi 10 1016 j cub 2011 04 021 PMID 21640897 Karol Kenneth G McCourt Richard M Cimino Matthew T Delwiche Charles F 2001 12 14 The Closest Living Relatives of Land Plants Science 294 5550 2351 2353 Bibcode 2001Sci 294 2351K doi 10 1126 science 1065156 ISSN 0036 8075 PMID 11743201 S2CID 35983109 Lewis Louise A McCourt Richard M 2004 Green algae and the origin of land plants American Journal of Botany 91 10 1535 1556 doi 10 3732 ajb 91 10 1535 ISSN 1537 2197 PMID 21652308 Vaughn K C Renzaglia K S 2006 Structural and immunocytochemical characterization of the Ginkgo biloba L sperm motility apparatus Protoplasma 227 2 4 165 73 doi 10 1007 s00709 005 0141 3 PMID 16736257 S2CID 9864200 a b Kelman R Feist M Trewin N H Hass H 2003 Charophyte algae from the Rhynie chert Transactions of the Royal Society of Edinburgh Earth Sciences 94 4 445 455 doi 10 1017 s0263593300000808 S2CID 128869547 West G S Fritsch F E 1927 A Treatise of the British Freshwater Algae Cambridge Cambridge University Press a b Fritsch F E 1935 The Structure and Reproduction of the Algae vol I Cambridge University Press pp 205 206 Bryant 2007 J The Stoneworts Chlorophyta Charales in Guiry M D John D M Rindi F and McCarthy T K Ed New Survey of Clare Island Volume 6 The Freshwater and Terrestrial Algae Royal Irish Academy ISBN 9781904890317 a b c Mikhailyuk Tatiana Lukesova Alena Glaser Karin Holzinger Andreas Obwegeser Sabrina Nyporko Svetlana Friedl Thomas Karsten Ulf 2018 New Taxa of Streptophyte Algae Streptophyta from Terrestrial Habitats Revealed Using an Integrative Approach Protist 169 3 406 431 doi 10 1016 j protis 2018 03 002 ISSN 1434 4610 PMC 6071840 PMID 29860113 Evolution and development of land plant embryos GtR UKRI Becker B Marin B 2009 Streptophyte algae and the origin of embryophytes Annals of Botany 103 7 999 1004 doi 10 1093 aob mcp044 PMC 2707909 PMID 19273476 a b Leliaert Frederik Smith David R Moreau Herve Herron Matthew D Verbruggen Heroen Delwiche Charles F De Clerck Olivier 2012 Phylogeny and molecular evolution of the green algae PDF Critical Reviews in Plant Sciences 31 1 46 doi 10 1080 07352689 2011 615705 S2CID 17603352 Archived from the original PDF on 2015 06 26 Retrieved 2016 10 04 Hemsley A R 1989 The ultrastructure of the spores of the Devonian plant Parka decipiens Annals of Botany 64 3 359 367 doi 10 1093 oxfordjournals aob a087852 Marin Birger 2012 Nested in the Chlorellales or Independent Class Phylogeny and Classification of the Pedinophyceae Viridiplantae Revealed by Molecular Phylogenetic Analyses of Complete Nuclear and Plastid encoded rRNA Operons Protist 163 5 778 805 doi 10 1016 j protis 2011 11 004 PMID 22192529 Laurin Lemay Simon Brinkmann Henner Philippe Herve 2012 Origin of land plants revisited in the light of sequence contamination and missing data Current Biology 22 15 R593 R594 doi 10 1016 j cub 2012 06 013 PMID 22877776 Leliaert Frederik Tronholm Ana Lemieux Claude Turmel Monique DePriest Michael S Bhattacharya Debashish Karol Kenneth G Fredericq Suzanne Zechman Frederick W 2016 05 09 Chloroplast phylogenomic analyses reveal the deepest branching lineage of the Chlorophyta Palmophyllophyceae class nov Scientific Reports 6 25367 Bibcode 2016NatSR 625367L doi 10 1038 srep25367 ISSN 2045 2322 PMC 4860620 PMID 27157793 Adl Sina M Simpson Alastair G B Lane Christopher E Lukes Julius Bass David Bowser Samuel S Brown Matthew W Burki Fabien Dunthorn Micah 2012 09 01 The Revised Classification of Eukaryotes Journal of Eukaryotic Microbiology 59 5 429 514 doi 10 1111 j 1550 7408 2012 00644 x ISSN 1550 7408 PMC 3483872 PMID 23020233 Lemieux Claude Otis Christian Turmel Monique 2007 01 12 A clade uniting the green algae Mesostigma viride and Chlorokybus atmophyticus represents the deepest branch of the Streptophyta in chloroplast genome based phylogenies BMC Biology 5 2 doi 10 1186 1741 7007 5 2 ISSN 1741 7007 PMC 1781420 PMID 17222354 a b Umen James G 2014 11 01 Green Algae and the Origins of Multicellularity in the Plant Kingdom Cold Spring Harbor Perspectives in Biology 6 11 a016170 doi 10 1101 cshperspect a016170 ISSN 1943 0264 PMC 4413236 PMID 25324214 Sanchez Baracaldo Patricia Raven John A Pisani Davide Knoll Andrew H 2017 09 12 Early photosynthetic eukaryotes inhabited low salinity habitats Proceedings of the National Academy of Sciences 114 37 E7737 E7745 Bibcode 2017PNAS 114E7737S doi 10 1073 pnas 1620089114 PMC 5603991 PMID 28808007 Gitzendanner Matthew A Soltis Pamela S Wong Gane K S Ruhfel Brad R Soltis Douglas E 2018 Plastid phylogenomic analysis of green plants A billion years of evolutionary history American Journal of Botany 105 3 291 301 doi 10 1002 ajb2 1048 ISSN 0002 9122 PMID 29603143 Glass Sarah 2021 Chloroplast Genome Evolution in the Klebsormidiophyceae and Streptofilum MS thesis Lehman College a b Turmel Monique Lemieux Claude 2018 Evolution of the Plastid Genome in Green Algae Advances in Botanical Research Elsevier pp 157 193 doi 10 1016 bs abr 2017 11 010 ISBN 9780128134573 a b Li Linzhou Wang Sibo Wang Hongli Sahu Sunil Kumar Marin Birger Li Haoyuan Xu Yan Liang Hongping Li Zhen Cheng Shifeng Reder Tanja 2020 The genome of Prasinoderma coloniale unveils the existence of a third phylum within green plants Nature Ecology amp Evolution 4 9 1220 1231 doi 10 1038 s41559 020 1221 7 ISSN 2397 334X PMC 7455551 PMID 32572216 Nishiyama Tomoaki Sakayama Hidetoshi de Vries Jan Buschmann Henrik Saint Marcoux Denis Ullrich Kristian K Haas Fabian B Vanderstraeten Lisa Becker Dirk 2018 The Chara Genome Secondary Complexity and Implications for Plant Terrestrialization Cell 174 2 448 464 e24 doi 10 1016 j cell 2018 06 033 ISSN 0092 8674 PMID 30007417 External links edit nbsp Data related to Charophyta at Wikispecies Retrieved from https en wikipedia org w index php title Charophyta amp oldid 1212022640, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.