fbpx
Wikipedia

Category theory

Category theory is a general theory of mathematical structures and their relations that was introduced by Samuel Eilenberg and Saunders Mac Lane in the middle of the 20th century in their foundational work on algebraic topology. Nowadays, category theory is used in almost all areas of mathematics, and in some areas of computer science. In particular, many constructions of new mathematical objects from previous ones, that appear similarly in several contexts are conveniently expressed and unified in terms of categories. Examples include quotient spaces, direct products, completion, and duality.

Schematic representation of a category with objects X, Y, Z and morphisms f, g, gf. (The category's three identity morphisms 1X, 1Y and 1Z, if explicitly represented, would appear as three arrows, from the letters X, Y, and Z to themselves, respectively.)

A category is formed by two sorts of objects: the objects of the category, and the morphisms, which relate two objects called the source and the target of the morphism. One often says that a morphism is an arrow that maps its source to its target. Morphisms can be composed if the target of the first morphism equals the source of the second one, and morphism composition has similar properties as function composition (associativity and existence of identity morphisms). Morphisms are often some sort of function, but this is not always the case. For example, a monoid may be viewed as a category with a single object, whose morphisms are the elements of the monoid.

The second fundamental concept of category theory is the concept of a functor, which plays the role of a morphism between two categories and it maps objects of to objects of and morphisms of to morphisms of in such a way that sources are mapped to sources and targets are mapped to targets (or, in the case of a contravariant functor, sources are mapped to targets and vice-versa). A third fundamental concept is a natural transformation that may be viewed as a morphism of functors.

Categories, objects, and morphisms

Categories

A category C consists of the following three mathematical entities:

  • A class ob(C), whose elements are called objects;
  • A class hom(C), whose elements are called morphisms or maps or arrows.
    Each morphism f has a source object a and target object b.
    The expression f : ab, would be verbally stated as "f is a morphism from a to b".
    The expression hom(a, b) – alternatively expressed as homC(a, b), mor(a, b), or C(a, b) – denotes the hom-class of all morphisms from a to b.
  • A binary operation ∘, called composition of morphisms, such that
    for any three objects a, b, and c, we have
∘ : hom(b, c) × hom(a, b) → hom(a, c).
The composition of f : ab and g : bc is written as gf or gf,[a] governed by two axioms:
1. Associativity: If f : ab, g : bc, and h : cd then
h ∘ (gf) = (hg) ∘ f
2. Identity: For every object x, there exists a morphism 1x : xx called the identity morphism for x,
such that
for every morphism f : ab, we have
1bf = f = f ∘ ida.[b]
From the axioms, it can be proved that there is exactly one identity morphism for every object.

Morphisms

Relations among morphisms (such as fg = h) are often depicted using commutative diagrams, with "points" (corners) representing objects and "arrows" representing morphisms.

Morphisms can have any of the following properties. A morphism f : ab is a:

  • monomorphism (or monic) if fg1 = fg2 implies g1 = g2 for all morphisms g1, g2 : xa.
  • epimorphism (or epic) if g1f = g2f implies g1 = g2 for all morphisms g1, g2 : bx.
  • bimorphism if f is both epic and monic.
  • isomorphism if there exists a morphism g : ba such that fg = 1b and gf = 1a.[c]
  • endomorphism if a = b. end(a) denotes the class of endomorphisms of a.
  • automorphism if f is both an endomorphism and an isomorphism. aut(a) denotes the class of automorphisms of a.
  • retraction if a right inverse of f exists, i.e. if there exists a morphism g : ba with fg = 1b.
  • section if a left inverse of f exists, i.e. if there exists a morphism g : ba with gf = 1a.

Every retraction is an epimorphism, and every section is a monomorphism. Furthermore, the following three statements are equivalent:

  • f is a monomorphism and a retraction;
  • f is an epimorphism and a section;
  • f is an isomorphism.

Functors

Functors are structure-preserving maps between categories. They can be thought of as morphisms in the category of all (small) categories.

A (covariant) functor F from a category C to a category D, written F : CD, consists of:

  • for each object x in C, an object F(x) in D; and
  • for each morphism f : xy in C, a morphism F(f) : F(x) → F(y) in D,

such that the following two properties hold:

  • For every object x in C, F(1x) = 1F(x);
  • For all morphisms f : xy and g : yz, F(gf) = F(g) ∘ F(f).

A contravariant functor F: CD is like a covariant functor, except that it "turns morphisms around" ("reverses all the arrows"). More specifically, every morphism f : xy in C must be assigned to a morphism F(f) : F(y) → F(x) in D. In other words, a contravariant functor acts as a covariant functor from the opposite category Cop to D.

Natural transformations

A natural transformation is a relation between two functors. Functors often describe "natural constructions" and natural transformations then describe "natural homomorphisms" between two such constructions. Sometimes two quite different constructions yield "the same" result; this is expressed by a natural isomorphism between the two functors.

If F and G are (covariant) functors between the categories C and D, then a natural transformation η from F to G associates to every object X in C a morphism ηX : F(X) → G(X) in D such that for every morphism f : XY in C, we have ηYF(f) = G(f) ∘ ηX; this means that the following diagram is commutative:

 

The two functors F and G are called naturally isomorphic if there exists a natural transformation from F to G such that ηX is an isomorphism for every object X in C.

Other concepts

Universal constructions, limits, and colimits

Using the language of category theory, many areas of mathematical study can be categorized. Categories include sets, groups and topologies.

Each category is distinguished by properties that all its objects have in common, such as the empty set or the product of two topologies, yet in the definition of a category, objects are considered atomic, i.e., we do not know whether an object A is a set, a topology, or any other abstract concept. Hence, the challenge is to define special objects without referring to the internal structure of those objects. To define the empty set without referring to elements, or the product topology without referring to open sets, one can characterize these objects in terms of their relations to other objects, as given by the morphisms of the respective categories. Thus, the task is to find universal properties that uniquely determine the objects of interest.

Numerous important constructions can be described in a purely categorical way if the category limit can be developed and dualized to yield the notion of a colimit.

Equivalent categories

It is a natural question to ask: under which conditions can two categories be considered essentially the same, in the sense that theorems about one category can readily be transformed into theorems about the other category? The major tool one employs to describe such a situation is called equivalence of categories, which is given by appropriate functors between two categories. Categorical equivalence has found numerous applications in mathematics.

Further concepts and results

The definitions of categories and functors provide only the very basics of categorical algebra; additional important topics are listed below. Although there are strong interrelations between all of these topics, the given order can be considered as a guideline for further reading.

  • The functor category DC has as objects the functors from C to D and as morphisms the natural transformations of such functors. The Yoneda lemma is one of the most famous basic results of category theory; it describes representable functors in functor categories.
  • Duality: Every statement, theorem, or definition in category theory has a dual which is essentially obtained by "reversing all the arrows". If one statement is true in a category C then its dual is true in the dual category Cop. This duality, which is transparent at the level of category theory, is often obscured in applications and can lead to surprising relationships.
  • Adjoint functors: A functor can be left (or right) adjoint to another functor that maps in the opposite direction. Such a pair of adjoint functors typically arises from a construction defined by a universal property; this can be seen as a more abstract and powerful view on universal properties.

Higher-dimensional categories

Many of the above concepts, especially equivalence of categories, adjoint functor pairs, and functor categories, can be situated into the context of higher-dimensional categories. Briefly, if we consider a morphism between two objects as a "process taking us from one object to another", then higher-dimensional categories allow us to profitably generalize this by considering "higher-dimensional processes".

For example, a (strict) 2-category is a category together with "morphisms between morphisms", i.e., processes which allow us to transform one morphism into another. We can then "compose" these "bimorphisms" both horizontally and vertically, and we require a 2-dimensional "exchange law" to hold, relating the two composition laws. In this context, the standard example is Cat, the 2-category of all (small) categories, and in this example, bimorphisms of morphisms are simply natural transformations of morphisms in the usual sense. Another basic example is to consider a 2-category with a single object; these are essentially monoidal categories. Bicategories are a weaker notion of 2-dimensional categories in which the composition of morphisms is not strictly associative, but only associative "up to" an isomorphism.

This process can be extended for all natural numbers n, and these are called n-categories. There is even a notion of ω-category corresponding to the ordinal number ω.

Higher-dimensional categories are part of the broader mathematical field of higher-dimensional algebra, a concept introduced by Ronald Brown. For a conversational introduction to these ideas, see John Baez, 'A Tale of n-categories' (1996).

Historical notes

It should be observed first that the whole concept of a category is essentially an auxiliary one; our basic concepts are essentially those of a functor and of a natural transformation [...]

— Eilenberg and Mac Lane (1945) [1]

Whilst specific examples of functors and natural transformations had been given by Samuel Eilenberg and Saunders Mac Lane in a 1942 paper on group theory,[2] these concepts were introduced in a more general sense, together with the additional notion of categories, in a 1945 paper by the same authors[1] (who discussed applications of category theory to the field of algebraic topology).[3] Their work was an important part of the transition from intuitive and geometric homology to homological algebra, Eilenberg and Mac Lane later writing that their goal was to understand natural transformations, which first required the definition of functors, then categories.

Stanislaw Ulam, and some writing on his behalf, have claimed that related ideas were current in the late 1930s in Poland. Eilenberg was Polish, and studied mathematics in Poland in the 1930s. Category theory is also, in some sense, a continuation of the work of Emmy Noether (one of Mac Lane's teachers) in formalizing abstract processes;[4] Noether realized that understanding a type of mathematical structure requires understanding the processes that preserve that structure (homomorphisms).[citation needed] Eilenberg and Mac Lane introduced categories for understanding and formalizing the processes (functors) that relate topological structures to algebraic structures (topological invariants) that characterize them.

Category theory was originally introduced for the need of homological algebra, and widely extended for the need of modern algebraic geometry (scheme theory). Category theory may be viewed as an extension of universal algebra, as the latter studies algebraic structures, and the former applies to any kind of mathematical structure and studies also the relationships between structures of different nature. For this reason, it is used throughout mathematics. Applications to mathematical logic and semantics (categorical abstract machine) came later.

Certain categories called topoi (singular topos) can even serve as an alternative to axiomatic set theory as a foundation of mathematics. A topos can also be considered as a specific type of category with two additional topos axioms. These foundational applications of category theory have been worked out in fair detail as a basis for, and justification of, constructive mathematics. Topos theory is a form of abstract sheaf theory, with geometric origins, and leads to ideas such as pointless topology.

Categorical logic is now a well-defined field based on type theory for intuitionistic logics, with applications in functional programming and domain theory, where a cartesian closed category is taken as a non-syntactic description of a lambda calculus. At the very least, category theoretic language clarifies what exactly these related areas have in common (in some abstract sense).

Category theory has been applied in other fields as well. For example, John Baez has shown a link between Feynman diagrams in physics and monoidal categories.[5] Another application of category theory, more specifically: topos theory, has been made in mathematical music theory, see for example the book The Topos of Music, Geometric Logic of Concepts, Theory, and Performance by Guerino Mazzola.

More recent efforts to introduce undergraduates to categories as a foundation for mathematics include those of William Lawvere and Rosebrugh (2003) and Lawvere and Stephen Schanuel (1997) and Mirroslav Yotov (2012).

See also

Notes

  1. ^ Some authors compose in the opposite order, writing fg or fg for gf. Computer scientists using category theory very commonly write f ; g for gf
  2. ^ Instead of the notation 1x, the identity morphism for x may be denoted as idx.
  3. ^ Note that a morphism that is both epic and monic is not necessarily an isomorphism! An elementary counterexample: in the category consisting of two objects A and B, the identity morphisms, and a single morphism f from A to B, f is both epic and monic but is not an isomorphism.

References

Citations

  1. ^ a b Eilenberg, Samuel; Mac Lane, Saunders (1945). "General theory of natural equivalences" (PDF). Transactions of the American Mathematical Society. 58: 247. doi:10.1090/S0002-9947-1945-0013131-6. ISSN 0002-9947. Archived (PDF) from the original on 2022-10-10.
  2. ^ Eilenberg, S.; Mac Lane, S. (1942). "Group Extensions and Homology". Annals of Mathematics. 43 (4): 757–831. doi:10.2307/1968966. ISSN 0003-486X. JSTOR 1968966 – via JSTOR.
  3. ^ Marquis, Jean-Pierre (2019). "Category Theory". Stanford Encyclopedia of Philosophy. Department of Philosophy, Stanford University. Retrieved 26 September 2022.
  4. ^ Reck, Erich (2020). The Prehistory of Mathematical Structuralism (1st ed.). Oxford University Press. pp. 215–219. ISBN 9780190641221.
  5. ^ Baez, J.C.; Stay, M. (2009). "Physics, topology, logic and computation: A Rosetta stone". New Structures for Physics. Lecture Notes in Physics. Vol. 813. pp. 95–172. arXiv:0903.0340. doi:10.1007/978-3-642-12821-9_2. ISBN 978-3-642-12820-2. S2CID 115169297.

Sources

Further reading

  • Marquis, Jean-Pierre (2008). From a Geometrical Point of View: A Study of the History and Philosophy of Category Theory. Springer. ISBN 978-1-4020-9384-5.

External links

  • Theory and Application of Categories, an electronic journal of category theory, full text, free, since 1995.
  • nLab, a wiki project on mathematics, physics and philosophy with emphasis on the n-categorical point of view.
  • The n-Category Café, essentially a colloquium on topics in category theory.
  • Category Theory, a web page of links to lecture notes and freely available books on category theory.
  • Hillman, Chris (2001), A Categorical Primer, CiteSeerX 10.1.1.24.3264, a formal introduction to category theory.
  • Adamek, J.; Herrlich, H.; Stecker, G. "Abstract and Concrete Categories-The Joy of Cats" (PDF). (PDF) from the original on 2006-06-10.
  • "Category Theory" entry by Jean-Pierre Marquis in the Stanford Encyclopedia of Philosophy, with an extensive bibliography.
  • List of academic conferences on category theory
  • Baez, John (1996). "The Tale of n-categories". — An informal introduction to higher order categories.
  • WildCats is a category theory package for Mathematica. Manipulation and visualization of objects, morphisms, categories, functors, natural transformations, universal properties.
  • The catsters's channel on YouTube, a channel about category theory.
  • Category theory at PlanetMath..
  • Video archive of recorded talks relevant to categories, logic and the foundations of physics.
  • which generates examples of categorical constructions in the category of finite sets.
  • , an instruction on category theory as a tool throughout the sciences.
  • Category Theory for Programmers A book in blog form explaining category theory for computer programmers.
  • Introduction to category theory.

category, theory, this, article, includes, list, general, references, lacks, sufficient, corresponding, inline, citations, please, help, improve, this, article, introducing, more, precise, citations, november, 2009, learn, when, remove, this, template, message. This article includes a list of general references but it lacks sufficient corresponding inline citations Please help to improve this article by introducing more precise citations November 2009 Learn how and when to remove this template message Category theory is a general theory of mathematical structures and their relations that was introduced by Samuel Eilenberg and Saunders Mac Lane in the middle of the 20th century in their foundational work on algebraic topology Nowadays category theory is used in almost all areas of mathematics and in some areas of computer science In particular many constructions of new mathematical objects from previous ones that appear similarly in several contexts are conveniently expressed and unified in terms of categories Examples include quotient spaces direct products completion and duality Schematic representation of a category with objects X Y Z and morphisms f g g f The category s three identity morphisms 1X 1Y and 1Z if explicitly represented would appear as three arrows from the letters X Y and Z to themselves respectively A category is formed by two sorts of objects the objects of the category and the morphisms which relate two objects called the source and the target of the morphism One often says that a morphism is an arrow that maps its source to its target Morphisms can be composed if the target of the first morphism equals the source of the second one and morphism composition has similar properties as function composition associativity and existence of identity morphisms Morphisms are often some sort of function but this is not always the case For example a monoid may be viewed as a category with a single object whose morphisms are the elements of the monoid The second fundamental concept of category theory is the concept of a functor which plays the role of a morphism between two categories C 1 displaystyle C 1 and C 2 displaystyle C 2 it maps objects of C 1 displaystyle C 1 to objects of C 2 displaystyle C 2 and morphisms of C 1 displaystyle C 1 to morphisms of C 2 displaystyle C 2 in such a way that sources are mapped to sources and targets are mapped to targets or in the case of a contravariant functor sources are mapped to targets and vice versa A third fundamental concept is a natural transformation that may be viewed as a morphism of functors Contents 1 Categories objects and morphisms 1 1 Categories 1 2 Morphisms 2 Functors 3 Natural transformations 4 Other concepts 4 1 Universal constructions limits and colimits 4 2 Equivalent categories 4 3 Further concepts and results 4 4 Higher dimensional categories 5 Historical notes 6 See also 7 Notes 8 References 8 1 Citations 8 2 Sources 9 Further reading 10 External linksCategories objects and morphisms EditMain articles Category mathematics and Morphism Categories Edit A category C consists of the following three mathematical entities A class ob C whose elements are called objects A class hom C whose elements are called morphisms or maps or arrows Each morphism f has a source object a and target object b The expression f a b would be verbally stated as f is a morphism from a to b The expression hom a b alternatively expressed as homC a b mor a b or C a b denotes the hom class of all morphisms from a to b A binary operation called composition of morphisms such that for any three objects a b and c we have hom b c hom a b hom a c dd The composition of f a b and g b c is written as g f or gf a governed by two axioms 1 Associativity If f a b g b c and h c d thenh g f h g f dd 2 Identity For every object x there exists a morphism 1x x x called the identity morphism for x such thatfor every morphism f a b we have 1b f f f ida b dd From the axioms it can be proved that there is exactly one identity morphism for every object dd Morphisms Edit Relations among morphisms such as fg h are often depicted using commutative diagrams with points corners representing objects and arrows representing morphisms Morphisms can have any of the following properties A morphism f a b is a monomorphism or monic if f g1 f g2 implies g1 g2 for all morphisms g1 g2 x a epimorphism or epic if g1 f g2 f implies g1 g2 for all morphisms g1 g2 b x bimorphism if f is both epic and monic isomorphism if there exists a morphism g b a such that f g 1b and g f 1a c endomorphism if a b end a denotes the class of endomorphisms of a automorphism if f is both an endomorphism and an isomorphism aut a denotes the class of automorphisms of a retraction if a right inverse of f exists i e if there exists a morphism g b a with f g 1b section if a left inverse of f exists i e if there exists a morphism g b a with g f 1a Every retraction is an epimorphism and every section is a monomorphism Furthermore the following three statements are equivalent f is a monomorphism and a retraction f is an epimorphism and a section f is an isomorphism Functors EditMain article Functor Functors are structure preserving maps between categories They can be thought of as morphisms in the category of all small categories A covariant functor F from a category C to a category D written F C D consists of for each object x in C an object F x in D and for each morphism f x y in C a morphism F f F x F y in D such that the following two properties hold For every object x in C F 1x 1F x For all morphisms f x y and g y z F g f F g F f A contravariant functor F C D is like a covariant functor except that it turns morphisms around reverses all the arrows More specifically every morphism f x y in C must be assigned to a morphism F f F y F x in D In other words a contravariant functor acts as a covariant functor from the opposite category Cop to D Natural transformations EditMain article Natural transformation A natural transformation is a relation between two functors Functors often describe natural constructions and natural transformations then describe natural homomorphisms between two such constructions Sometimes two quite different constructions yield the same result this is expressed by a natural isomorphism between the two functors If F and G are covariant functors between the categories C and D then a natural transformation h from F to G associates to every object X in C a morphism hX F X G X in D such that for every morphism f X Y in C we have hY F f G f hX this means that the following diagram is commutative The two functors F and G are called naturally isomorphic if there exists a natural transformation from F to G such that hX is an isomorphism for every object X in C Other concepts EditUniversal constructions limits and colimits Edit Main articles Universal property and Limit category theory Using the language of category theory many areas of mathematical study can be categorized Categories include sets groups and topologies Each category is distinguished by properties that all its objects have in common such as the empty set or the product of two topologies yet in the definition of a category objects are considered atomic i e we do not know whether an object A is a set a topology or any other abstract concept Hence the challenge is to define special objects without referring to the internal structure of those objects To define the empty set without referring to elements or the product topology without referring to open sets one can characterize these objects in terms of their relations to other objects as given by the morphisms of the respective categories Thus the task is to find universal properties that uniquely determine the objects of interest Numerous important constructions can be described in a purely categorical way if the category limit can be developed and dualized to yield the notion of a colimit Equivalent categories Edit Main articles Equivalence of categories and Isomorphism of categories It is a natural question to ask under which conditions can two categories be considered essentially the same in the sense that theorems about one category can readily be transformed into theorems about the other category The major tool one employs to describe such a situation is called equivalence of categories which is given by appropriate functors between two categories Categorical equivalence has found numerous applications in mathematics Further concepts and results Edit The definitions of categories and functors provide only the very basics of categorical algebra additional important topics are listed below Although there are strong interrelations between all of these topics the given order can be considered as a guideline for further reading The functor category DC has as objects the functors from C to D and as morphisms the natural transformations of such functors The Yoneda lemma is one of the most famous basic results of category theory it describes representable functors in functor categories Duality Every statement theorem or definition in category theory has a dual which is essentially obtained by reversing all the arrows If one statement is true in a category C then its dual is true in the dual category Cop This duality which is transparent at the level of category theory is often obscured in applications and can lead to surprising relationships Adjoint functors A functor can be left or right adjoint to another functor that maps in the opposite direction Such a pair of adjoint functors typically arises from a construction defined by a universal property this can be seen as a more abstract and powerful view on universal properties Higher dimensional categories Edit Main article Higher category theory Many of the above concepts especially equivalence of categories adjoint functor pairs and functor categories can be situated into the context of higher dimensional categories Briefly if we consider a morphism between two objects as a process taking us from one object to another then higher dimensional categories allow us to profitably generalize this by considering higher dimensional processes For example a strict 2 category is a category together with morphisms between morphisms i e processes which allow us to transform one morphism into another We can then compose these bimorphisms both horizontally and vertically and we require a 2 dimensional exchange law to hold relating the two composition laws In this context the standard example is Cat the 2 category of all small categories and in this example bimorphisms of morphisms are simply natural transformations of morphisms in the usual sense Another basic example is to consider a 2 category with a single object these are essentially monoidal categories Bicategories are a weaker notion of 2 dimensional categories in which the composition of morphisms is not strictly associative but only associative up to an isomorphism This process can be extended for all natural numbers n and these are called n categories There is even a notion of w category corresponding to the ordinal number w Higher dimensional categories are part of the broader mathematical field of higher dimensional algebra a concept introduced by Ronald Brown For a conversational introduction to these ideas see John Baez A Tale of n categories 1996 Historical notes EditThis section needs additional citations for verification Please help improve this article by adding citations to reliable sources Unsourced material may be challenged and removed November 2015 Learn how and when to remove this template message Main article Timeline of category theory and related mathematics It should be observed first that the whole concept of a category is essentially an auxiliary one our basic concepts are essentially those of a functor and of a natural transformation Eilenberg and Mac Lane 1945 1 Whilst specific examples of functors and natural transformations had been given by Samuel Eilenberg and Saunders Mac Lane in a 1942 paper on group theory 2 these concepts were introduced in a more general sense together with the additional notion of categories in a 1945 paper by the same authors 1 who discussed applications of category theory to the field of algebraic topology 3 Their work was an important part of the transition from intuitive and geometric homology to homological algebra Eilenberg and Mac Lane later writing that their goal was to understand natural transformations which first required the definition of functors then categories Stanislaw Ulam and some writing on his behalf have claimed that related ideas were current in the late 1930s in Poland Eilenberg was Polish and studied mathematics in Poland in the 1930s Category theory is also in some sense a continuation of the work of Emmy Noether one of Mac Lane s teachers in formalizing abstract processes 4 Noether realized that understanding a type of mathematical structure requires understanding the processes that preserve that structure homomorphisms citation needed Eilenberg and Mac Lane introduced categories for understanding and formalizing the processes functors that relate topological structures to algebraic structures topological invariants that characterize them Category theory was originally introduced for the need of homological algebra and widely extended for the need of modern algebraic geometry scheme theory Category theory may be viewed as an extension of universal algebra as the latter studies algebraic structures and the former applies to any kind of mathematical structure and studies also the relationships between structures of different nature For this reason it is used throughout mathematics Applications to mathematical logic and semantics categorical abstract machine came later Certain categories called topoi singular topos can even serve as an alternative to axiomatic set theory as a foundation of mathematics A topos can also be considered as a specific type of category with two additional topos axioms These foundational applications of category theory have been worked out in fair detail as a basis for and justification of constructive mathematics Topos theory is a form of abstract sheaf theory with geometric origins and leads to ideas such as pointless topology Categorical logic is now a well defined field based on type theory for intuitionistic logics with applications in functional programming and domain theory where a cartesian closed category is taken as a non syntactic description of a lambda calculus At the very least category theoretic language clarifies what exactly these related areas have in common in some abstract sense Category theory has been applied in other fields as well For example John Baez has shown a link between Feynman diagrams in physics and monoidal categories 5 Another application of category theory more specifically topos theory has been made in mathematical music theory see for example the book The Topos of Music Geometric Logic of Concepts Theory and Performance by Guerino Mazzola More recent efforts to introduce undergraduates to categories as a foundation for mathematics include those of William Lawvere and Rosebrugh 2003 and Lawvere and Stephen Schanuel 1997 and Mirroslav Yotov 2012 See also Edit Mathematics portalDomain theory Enriched category theory Glossary of category theory Group theory Higher category theory Higher dimensional algebra Important publications in category theory Lambda calculus Outline of category theory Timeline of category theory and related mathematicsNotes Edit Some authors compose in the opposite order writing fg or f g for g f Computer scientists using category theory very commonly write f g for g f Instead of the notation 1x the identity morphism for x may be denoted as idx Note that a morphism that is both epic and monic is not necessarily an isomorphism An elementary counterexample in the category consisting of two objects A and B the identity morphisms and a single morphism f from A to B f is both epic and monic but is not an isomorphism References EditCitations Edit a b Eilenberg Samuel Mac Lane Saunders 1945 General theory of natural equivalences PDF Transactions of the American Mathematical Society 58 247 doi 10 1090 S0002 9947 1945 0013131 6 ISSN 0002 9947 Archived PDF from the original on 2022 10 10 Eilenberg S Mac Lane S 1942 Group Extensions and Homology Annals of Mathematics 43 4 757 831 doi 10 2307 1968966 ISSN 0003 486X JSTOR 1968966 via JSTOR Marquis Jean Pierre 2019 Category Theory Stanford Encyclopedia of Philosophy Department of Philosophy Stanford University Retrieved 26 September 2022 Reck Erich 2020 The Prehistory of Mathematical Structuralism 1st ed Oxford University Press pp 215 219 ISBN 9780190641221 Baez J C Stay M 2009 Physics topology logic and computation A Rosetta stone New Structures for Physics Lecture Notes in Physics Vol 813 pp 95 172 arXiv 0903 0340 doi 10 1007 978 3 642 12821 9 2 ISBN 978 3 642 12820 2 S2CID 115169297 Sources Edit Adamek Jiri Herrlich Horst Strecker George E 2004 Abstract and Concrete Categories Heldermann Verlag Berlin Barr Michael Wells Charles 2012 1995 Category Theory for Computing Science Reprints in Theory and Applications of Categories vol 22 3rd ed Barr Michael Wells Charles 2005 Toposes Triples and Theories Reprints in Theory and Applications of Categories vol 12 MR 2178101 Borceux Francis 1994 Handbook of categorical algebra Encyclopedia of Mathematics and its Applications Cambridge University Press pp 50 52 ISBN 9780521441780 Freyd Peter J 2003 1964 Abelian Categories Reprints in Theory and Applications of Categories Vol 3 Freyd Peter J Scedrov Andre 1990 Categories allegories North Holland Mathematical Library Vol 39 North Holland ISBN 978 0 08 088701 2 Goldblatt Robert 2006 1979 Topoi The Categorial Analysis of Logic Studies in logic and the foundations of mathematics Vol 94 Dover ISBN 978 0 486 45026 1 Herrlich Horst Strecker George E 2007 Category Theory 3rd ed Heldermann Verlag Berlin ISBN 978 3 88538 001 6 Kashiwara Masaki Schapira Pierre 2006 Categories and Sheaves Grundlehren der Mathematischen Wissenschaften Vol 332 Springer ISBN 978 3 540 27949 5 Lawvere F William Rosebrugh Robert 2003 Sets for Mathematics Cambridge University Press ISBN 978 0 521 01060 3 Lawvere F William Schanuel Stephen Hoel 2009 1997 Conceptual Mathematics A First Introduction to Categories 2nd ed Cambridge University Press ISBN 978 0 521 89485 2 Leinster Tom 2004 Higher Operads Higher Categories Higher Operads London Math Society Lecture Note Series Vol 298 Cambridge University Press p 448 Bibcode 2004hohc book L ISBN 978 0 521 53215 0 Archived from the original on 2003 10 25 Retrieved 2006 04 03 Leinster Tom 2014 Basic Category Theory Cambridge Studies in Advanced Mathematics Vol 143 Cambridge University Press arXiv 1612 09375 ISBN 9781107044241 Lurie Jacob 2009 Higher Topos Theory Annals of Mathematics Studies Vol 170 Princeton University Press arXiv math CT 0608040 ISBN 978 0 691 14049 0 MR 2522659 Mac Lane Saunders 1998 Categories for the Working Mathematician Graduate Texts in Mathematics Vol 5 2nd ed Springer Verlag ISBN 978 0 387 98403 2 MR 1712872 Mac Lane Saunders Birkhoff Garrett 1999 1967 Algebra 2nd ed Chelsea ISBN 978 0 8218 1646 2 Martini A Ehrig H Nunes D 1996 Elements of basic category theory Technical Report 96 5 May Peter 1999 A Concise Course in Algebraic Topology University of Chicago Press ISBN 978 0 226 51183 2 Mazzola Guerino 2002 The Topos of Music Geometric Logic of Concepts Theory and Performance Birkhauser ISBN 978 3 7643 5731 3 Pedicchio Maria Cristina Tholen Walter eds 2004 Categorical foundations Special topics in order topology algebra and sheaf theory Encyclopedia of Mathematics and Its Applications Vol 97 Cambridge University Press ISBN 978 0 521 83414 8 Zbl 1034 18001 Pierce Benjamin C 1991 Basic Category Theory for Computer Scientists MIT Press ISBN 978 0 262 66071 6 Schalk A Simmons H 2005 An introduction to Category Theory in four easy movements PDF Archived from the original PDF on 2017 03 21 Retrieved 2007 12 03 Notes for a course offered as part of the MSc in Mathematical Logic Manchester University Simpson Carlos 2010 Homotopy theory of higher categories arXiv 1001 4071 Bibcode 2010arXiv1001 4071S draft of a book Taylor Paul 1999 Practical Foundations of Mathematics Cambridge Studies in Advanced Mathematics Vol 59 Cambridge University Press ISBN 978 0 521 63107 5 Turi Daniele 1996 2001 Category Theory Lecture Notes PDF Retrieved 11 December 2009 Based on Mac Lane 1998 Further reading EditMarquis Jean Pierre 2008 From a Geometrical Point of View A Study of the History and Philosophy of Category Theory Springer ISBN 978 1 4020 9384 5 External links Edit Wikimedia Commons has media related to Category theory Wikiquote has quotations related to Category theory Theory and Application of Categories an electronic journal of category theory full text free since 1995 nLab a wiki project on mathematics physics and philosophy with emphasis on the n categorical point of view The n Category Cafe essentially a colloquium on topics in category theory Category Theory a web page of links to lecture notes and freely available books on category theory Hillman Chris 2001 A Categorical Primer CiteSeerX 10 1 1 24 3264 a formal introduction to category theory Adamek J Herrlich H Stecker G Abstract and Concrete Categories The Joy of Cats PDF Archived PDF from the original on 2006 06 10 Category Theory entry by Jean Pierre Marquis in the Stanford Encyclopedia of Philosophy with an extensive bibliography List of academic conferences on category theory Baez John 1996 The Tale of n categories An informal introduction to higher order categories WildCats is a category theory package for Mathematica Manipulation and visualization of objects morphisms categories functors natural transformations universal properties The catsters s channel on YouTube a channel about category theory Category theory at PlanetMath Video archive of recorded talks relevant to categories logic and the foundations of physics Interactive Web page which generates examples of categorical constructions in the category of finite sets Category Theory for the Sciences an instruction on category theory as a tool throughout the sciences Category Theory for Programmers A book in blog form explaining category theory for computer programmers Introduction to category theory Retrieved from https en wikipedia org w index php title Category theory amp oldid 1142454037, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.