fbpx
Wikipedia

Category of rings

In mathematics, the category of rings, denoted by Ring, is the category whose objects are rings (with identity) and whose morphisms are ring homomorphisms (that preserve the identity). Like many categories in mathematics, the category of rings is large, meaning that the class of all rings is proper.

As a concrete category

The category Ring is a concrete category meaning that the objects are sets with additional structure (addition and multiplication) and the morphisms are functions that preserve this structure. There is a natural forgetful functor

U : RingSet

for the category of rings to the category of sets which sends each ring to its underlying set (thus "forgetting" the operations of addition and multiplication). This functor has a left adjoint

F : SetRing

which assigns to each set X the free ring generated by X.

One can also view the category of rings as a concrete category over Ab (the category of abelian groups) or over Mon (the category of monoids). Specifically, there are forgetful functors

A : RingAb
M : RingMon

which "forget" multiplication and addition, respectively. Both of these functors have left adjoints. The left adjoint of A is the functor which assigns to every abelian group X (thought of as a Z-module) the tensor ring T(X). The left adjoint of M is the functor which assigns to every monoid X the integral monoid ring Z[X].

Properties

Limits and colimits

The category Ring is both complete and cocomplete, meaning that all small limits and colimits exist in Ring. Like many other algebraic categories, the forgetful functor U : RingSet creates (and preserves) limits and filtered colimits, but does not preserve either coproducts or coequalizers. The forgetful functors to Ab and Mon also create and preserve limits.

Examples of limits and colimits in Ring include:

Morphisms

Unlike many categories studied in mathematics, there do not always exist morphisms between pairs of objects in Ring. This is a consequence of the fact that ring homomorphisms must preserve the identity. For example, there are no morphisms from the zero ring 0 to any nonzero ring. A necessary condition for there to be morphisms from R to S is that the characteristic of S divide that of R.

Note that even though some of the hom-sets are empty, the category Ring is still connected since it has an initial object.

Some special classes of morphisms in Ring include:

  • Isomorphisms in Ring are the bijective ring homomorphisms.
  • Monomorphisms in Ring are the injective homomorphisms. Not every monomorphism is regular however.
  • Every surjective homomorphism is an epimorphism in Ring, but the converse is not true. The inclusion ZQ is a nonsurjective epimorphism. The natural ring homomorphism from any commutative ring R to any one of its localizations is an epimorphism which is not necessarily surjective.
  • The surjective homomorphisms can be characterized as the regular or extremal epimorphisms in Ring (these two classes coinciding).
  • Bimorphisms in Ring are the injective epimorphisms. The inclusion ZQ is an example of a bimorphism which is not an isomorphism.

Other properties

Subcategories

The category of rings has a number of important subcategories. These include the full subcategories of commutative rings, integral domains, principal ideal domains, and fields.

Category of commutative rings

The category of commutative rings, denoted CRing, is the full subcategory of Ring whose objects are all commutative rings. This category is one of the central objects of study in the subject of commutative algebra.

Any ring can be made commutative by taking the quotient by the ideal generated by all elements of the form (xyyx). This defines a functor RingCRing which is left adjoint to the inclusion functor, so that CRing is a reflective subcategory of Ring. The free commutative ring on a set of generators E is the polynomial ring Z[E] whose variables are taken from E. This gives a left adjoint functor to the forgetful functor from CRing to Set.

CRing is limit-closed in Ring, which means that limits in CRing are the same as they are in Ring. Colimits, however, are generally different. They can be formed by taking the commutative quotient of colimits in Ring. The coproduct of two commutative rings is given by the tensor product of rings. Again, the coproduct of two nonzero commutative rings can be zero.

The opposite category of CRing is equivalent to the category of affine schemes. The equivalence is given by the contravariant functor Spec which sends a commutative ring to its spectrum, an affine scheme.

Category of fields

The category of fields, denoted Field, is the full subcategory of CRing whose objects are fields. The category of fields is not nearly as well-behaved as other algebraic categories. In particular, free fields do not exist (i.e. there is no left adjoint to the forgetful functor FieldSet). It follows that Field is not a reflective subcategory of CRing.

The category of fields is neither finitely complete nor finitely cocomplete. In particular, Field has neither products nor coproducts.

Another curious aspect of the category of fields is that every morphism is a monomorphism. This follows from the fact that the only ideals in a field F are the zero ideal and F itself. One can then view morphisms in Field as field extensions.

The category of fields is not connected. There are no morphisms between fields of different characteristic. The connected components of Field are the full subcategories of characteristic p, where p = 0 or is a prime number. Each such subcategory has an initial object: the prime field of characteristic p (which is Q if p = 0, otherwise the finite field Fp).

Related categories and functors

Category of groups

There is a natural functor from Ring to the category of groups, Grp, which sends each ring R to its group of units U(R) and each ring homomorphism to the restriction to U(R). This functor has a left adjoint which sends each group G to the integral group ring Z[G].

Another functor between these categories sends each ring R to the group of units of the matrix ring M2(R) which acts on the projective line over a ring P(R).

R-algebras

Given a commutative ring R one can define the category R-Alg whose objects are all R-algebras and whose morphisms are R-algebra homomorphisms.

The category of rings can be considered a special case. Every ring can be considered a Z-algebra in a unique way. Ring homomorphisms are precisely the Z-algebra homomorphisms. The category of rings is, therefore, isomorphic to the category Z-Alg.[1] Many statements about the category of rings can be generalized to statements about the category of R-algebras.

For each commutative ring R there is a functor R-AlgRing which forgets the R-module structure. This functor has a left adjoint which sends each ring A to the tensor product RZA, thought of as an R-algebra by setting r·(sa) = rsa.

Rings without identity

Many authors do not require rings to have a multiplicative identity element and, accordingly, do not require ring homomorphism to preserve the identity (should it exist). This leads to a rather different category. For distinction we call such algebraic structures rngs and their morphisms rng homomorphisms. The category of all rngs will be denoted by Rng.

The category of rings, Ring, is a nonfull subcategory of Rng. It is nonfull because there are rng homomorphisms between rings which do not preserve the identity, and are therefore not morphisms in Ring. The inclusion functor RingRng has a left adjoint which formally adjoins an identity to any rng. The inclusion functor RingRng respects limits but not colimits.

The zero ring serves as both an initial and terminal object in Rng (that is, it is a zero object). It follows that Rng, like Grp but unlike Ring, has zero morphisms. These are just the rng homomorphisms that map everything to 0. Despite the existence of zero morphisms, Rng is still not a preadditive category. The pointwise sum of two rng homomorphisms is generally not a rng homomorphism.

There is a fully faithful functor from the category of abelian groups to Rng sending an abelian group to the associated rng of square zero.

Free constructions are less natural in Rng than they are in Ring. For example, the free rng generated by a set {x} is the ring of all integral polynomials over x with no constant term, while the free ring generated by {x} is just the polynomial ring Z[x].

References

  1. ^ Tennison, B. R. (1975), Sheaf Theory, London Mathematical Society Lecture Note Series, vol. 20, Cambridge University Press, p. 74, ISBN 9780521207843.

category, rings, mathematics, category, rings, denoted, ring, category, whose, objects, rings, with, identity, whose, morphisms, ring, homomorphisms, that, preserve, identity, like, many, categories, mathematics, category, rings, large, meaning, that, class, r. In mathematics the category of rings denoted by Ring is the category whose objects are rings with identity and whose morphisms are ring homomorphisms that preserve the identity Like many categories in mathematics the category of rings is large meaning that the class of all rings is proper Contents 1 As a concrete category 2 Properties 2 1 Limits and colimits 2 2 Morphisms 2 3 Other properties 3 Subcategories 3 1 Category of commutative rings 3 2 Category of fields 4 Related categories and functors 4 1 Category of groups 4 2 R algebras 4 3 Rings without identity 5 ReferencesAs a concrete category EditThe category Ring is a concrete category meaning that the objects are sets with additional structure addition and multiplication and the morphisms are functions that preserve this structure There is a natural forgetful functor U Ring Setfor the category of rings to the category of sets which sends each ring to its underlying set thus forgetting the operations of addition and multiplication This functor has a left adjoint F Set Ringwhich assigns to each set X the free ring generated by X One can also view the category of rings as a concrete category over Ab the category of abelian groups or over Mon the category of monoids Specifically there are forgetful functors A Ring Ab M Ring Monwhich forget multiplication and addition respectively Both of these functors have left adjoints The left adjoint of A is the functor which assigns to every abelian group X thought of as a Z module the tensor ring T X The left adjoint of M is the functor which assigns to every monoid X the integral monoid ring Z X Properties EditLimits and colimits Edit The category Ring is both complete and cocomplete meaning that all small limits and colimits exist in Ring Like many other algebraic categories the forgetful functor U Ring Set creates and preserves limits and filtered colimits but does not preserve either coproducts or coequalizers The forgetful functors to Ab and Mon also create and preserve limits Examples of limits and colimits in Ring include The ring of integers Z is an initial object in Ring The zero ring is a terminal object in Ring The product in Ring is given by the direct product of rings This is just the cartesian product of the underlying sets with addition and multiplication defined component wise The coproduct of a family of rings exists and is given by a construction analogous to the free product of groups The coproduct of nonzero rings can be the zero ring in particular this happens whenever the factors have relatively prime characteristic since the characteristic of the coproduct of Ri i I must divide the characteristics of each of the rings Ri The equalizer in Ring is just the set theoretic equalizer the equalizer of two ring homomorphisms is always a subring The coequalizer of two ring homomorphisms f and g from R to S is the quotient of S by the ideal generated by all elements of the form f r g r for r R Given a ring homomorphism f R S the kernel pair of f this is just the pullback of f with itself is a congruence relation on R The ideal determined by this congruence relation is precisely the ring theoretic kernel of f Note that category theoretic kernels do not make sense in Ring since there are no zero morphisms see below Morphisms Edit Main article ring homomorphism Unlike many categories studied in mathematics there do not always exist morphisms between pairs of objects in Ring This is a consequence of the fact that ring homomorphisms must preserve the identity For example there are no morphisms from the zero ring 0 to any nonzero ring A necessary condition for there to be morphisms from R to S is that the characteristic of S divide that of R Note that even though some of the hom sets are empty the category Ring is still connected since it has an initial object Some special classes of morphisms in Ring include Isomorphisms in Ring are the bijective ring homomorphisms Monomorphisms in Ring are the injective homomorphisms Not every monomorphism is regular however Every surjective homomorphism is an epimorphism in Ring but the converse is not true The inclusion Z Q is a nonsurjective epimorphism The natural ring homomorphism from any commutative ring R to any one of its localizations is an epimorphism which is not necessarily surjective The surjective homomorphisms can be characterized as the regular or extremal epimorphisms in Ring these two classes coinciding Bimorphisms in Ring are the injective epimorphisms The inclusion Z Q is an example of a bimorphism which is not an isomorphism Other properties Edit The only injective object in Ring up to isomorphism is the zero ring i e the terminal object Lacking zero morphisms the category of rings cannot be a preadditive category However every ring considered as a category with a single object is a preadditive category The category of rings is a symmetric monoidal category with the tensor product of rings Z as the monoidal product and the ring of integers Z as the unit object It follows from the Eckmann Hilton theorem that a monoid in Ring is a commutative ring The action of a monoid commutative ring R on an object ring A of Ring is an R algebra Subcategories EditThe category of rings has a number of important subcategories These include the full subcategories of commutative rings integral domains principal ideal domains and fields Category of commutative rings Edit The category of commutative rings denoted CRing is the full subcategory of Ring whose objects are all commutative rings This category is one of the central objects of study in the subject of commutative algebra Any ring can be made commutative by taking the quotient by the ideal generated by all elements of the form xy yx This defines a functor Ring CRing which is left adjoint to the inclusion functor so that CRing is a reflective subcategory of Ring The free commutative ring on a set of generators E is the polynomial ring Z E whose variables are taken from E This gives a left adjoint functor to the forgetful functor from CRing to Set CRing is limit closed in Ring which means that limits in CRing are the same as they are in Ring Colimits however are generally different They can be formed by taking the commutative quotient of colimits in Ring The coproduct of two commutative rings is given by the tensor product of rings Again the coproduct of two nonzero commutative rings can be zero The opposite category of CRing is equivalent to the category of affine schemes The equivalence is given by the contravariant functor Spec which sends a commutative ring to its spectrum an affine scheme Category of fields Edit The category of fields denoted Field is the full subcategory of CRing whose objects are fields The category of fields is not nearly as well behaved as other algebraic categories In particular free fields do not exist i e there is no left adjoint to the forgetful functor Field Set It follows that Field is not a reflective subcategory of CRing The category of fields is neither finitely complete nor finitely cocomplete In particular Field has neither products nor coproducts Another curious aspect of the category of fields is that every morphism is a monomorphism This follows from the fact that the only ideals in a field F are the zero ideal and F itself One can then view morphisms in Field as field extensions The category of fields is not connected There are no morphisms between fields of different characteristic The connected components of Field are the full subcategories of characteristic p where p 0 or is a prime number Each such subcategory has an initial object the prime field of characteristic p which is Q if p 0 otherwise the finite field Fp Related categories and functors EditCategory of groups Edit There is a natural functor from Ring to the category of groups Grp which sends each ring R to its group of units U R and each ring homomorphism to the restriction to U R This functor has a left adjoint which sends each group G to the integral group ring Z G Another functor between these categories sends each ring R to the group of units of the matrix ring M2 R which acts on the projective line over a ring P R R algebras Edit Given a commutative ring R one can define the category R Alg whose objects are all R algebras and whose morphisms are R algebra homomorphisms The category of rings can be considered a special case Every ring can be considered a Z algebra in a unique way Ring homomorphisms are precisely the Z algebra homomorphisms The category of rings is therefore isomorphic to the category Z Alg 1 Many statements about the category of rings can be generalized to statements about the category of R algebras For each commutative ring R there is a functor R Alg Ring which forgets the R module structure This functor has a left adjoint which sends each ring A to the tensor product R ZA thought of as an R algebra by setting r s a rs a Rings without identity Edit Many authors do not require rings to have a multiplicative identity element and accordingly do not require ring homomorphism to preserve the identity should it exist This leads to a rather different category For distinction we call such algebraic structures rngs and their morphisms rng homomorphisms The category of all rngs will be denoted by Rng The category of rings Ring is a nonfull subcategory of Rng It is nonfull because there are rng homomorphisms between rings which do not preserve the identity and are therefore not morphisms in Ring The inclusion functor Ring Rng has a left adjoint which formally adjoins an identity to any rng The inclusion functor Ring Rng respects limits but not colimits The zero ring serves as both an initial and terminal object in Rng that is it is a zero object It follows that Rng like Grp but unlike Ring has zero morphisms These are just the rng homomorphisms that map everything to 0 Despite the existence of zero morphisms Rng is still not a preadditive category The pointwise sum of two rng homomorphisms is generally not a rng homomorphism There is a fully faithful functor from the category of abelian groups to Rng sending an abelian group to the associated rng of square zero Free constructions are less natural in Rng than they are in Ring For example the free rng generated by a set x is the ring of all integral polynomials over x with no constant term while the free ring generated by x is just the polynomial ring Z x References Edit Tennison B R 1975 Sheaf Theory London Mathematical Society Lecture Note Series vol 20 Cambridge University Press p 74 ISBN 9780521207843 Adamek Jiri Herrlich Horst Strecker George E 1990 Abstract and Concrete Categories PDF Wiley ISBN 0 471 60922 6 Mac Lane Saunders Birkhoff Garrett 1999 Algebra 3rd ed American Mathematical Society ISBN 0 8218 1646 2 Mac Lane Saunders 1998 Categories for the Working Mathematician Graduate Texts in Mathematics Vol 5 2nd ed Springer ISBN 0 387 98403 8 Retrieved from https en wikipedia org w index php title Category of rings amp oldid 1111691821 Category of fields, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.