fbpx
Wikipedia

Bismuth selenide

Bismuth selenide (Bi2Se3) is a gray compound of bismuth and selenium also known as bismuth(III) selenide.

Bismuth selenide
Names
IUPAC name
selenoxobismuth, selanylidenebismuth [1]
Identifiers
  • 12068-69-8 Y
3D model (JSmol)
  • Interactive image
ChemSpider
  • 145787
ECHA InfoCard 100.031.901
EC Number
  • 235-104-7
  • 6379269
UNII
  • 9I1Y040903
  • DTXSID60893213
  • InChI=1S/2Bi.3Se
    Key: OMEPJWROJCQMMU-UHFFFAOYSA-N
  • [Se-2].[Se-2].[Se-2].[Bi+3].[Bi+3]
Properties
Bi2Se3
Molar mass 654.8 g/mol [2]
Appearance Dull grey [3]
Density 6.82 g/cm3[2]
Melting point 710 °C (1,310 °F; 983 K)[2]
insoluble
Solubility insoluble in organic solvents
soluble in strong acids [2]
Structure
rhombohedral
Thermochemistry
-140 kJ/mol
Hazards
Occupational safety and health (OHS/OSH):
Main hazards
Toxic [3]
NFPA 704 (fire diamond)
Health 2: Intense or continued but not chronic exposure could cause temporary incapacitation or possible residual injury. E.g. chloroformFlammability 0: Will not burn. E.g. waterInstability 0: Normally stable, even under fire exposure conditions, and is not reactive with water. E.g. liquid nitrogenSpecial hazards (white): no code
2
0
0
Related compounds
Other anions
Bismuth(III) oxide
Bismuth trisulfide
Bismuth telluride
Other cations
Arsenic triselenide
Antimony triselenide
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
Y verify (what is YN ?)

Properties edit

Bismuth selenide is a semiconductor and a thermoelectric material.[4] While stoichiometric bismuth selenide should be a semiconductor with a gap of 0.3 eV, naturally occurring selenium vacancies act as electron donors, so Bi2Se3 is intrinsically n-type.[5][6][7]

Bismuth selenide has a topologically insulating ground-state.[8] Topologically protected Dirac cone surface states have been observed in Bismuth selenide and its insulating derivatives leading to intrinsic topological insulators,[6][9][10][11] which later became the subject of world-wide scientific research.[12][13][14][15]

Bismuth selenide is a van der Waals material consisting of covalently bound five-atom layers (quintuple layers) which are held together by van der Waals interactions[16] and spin-orbit coupling effects.[17] Although the (0001) surface is chemically inert (mostly due to the inert-pair effect of Bi[17]), there are metallic surface states, protected by the non-trivial topology of the bulk. For this reason, the Bi2Se3 surface is an interesting candidate for van der Waals epitaxy and subject of scientific research. For instance, different phases of antimony layers can be grown on Bi2Se3,[18][19] by means of which topological pn-junctions can be realised.[20] More intriguingly, Sb layers undergo topological phase transitions when attached to the Bi2Se3 surface and thus inherit the non-trivial topological properties of the Bi2Se3 substrate.[21][22]

Production edit

Although bismuth selenide occurs naturally (as the mineral guanajuatite) at the Santa Catarina Mine in Guanajuato, Mexico[23] as well as some sites in the United States and Europe,[24] such deposits are rare and contain a significant level of sulfur[24] atoms as an impurity. For this reason, most bismuth selenide used in research into potential commercial applications is synthesized. Commercially-produced samples are available for use in research, but the concentration of selenium vacancies is heavily dependent upon growth conditions,[25][26] and so bismuth selenide used for research is often synthesized in the laboratory.

A stoichiometric mixture of elemental bismuth and selenium, when heated above the melting points of these elements in the absence of air, will become a liquid that freezes to crystalline Bi2Se3.[27] Large single crystals of bismuth selenide can be prepared by the Bridgman–Stockbarger method.[28]

See also edit

References edit

  1. ^ "Bismuth(III) selenide - PubChem Public Chemical Database". Pubchem.ncbi.nlm.nih.gov. 2011-10-21. Retrieved 2011-11-01.
  2. ^ a b c d "bismuth selenide | Bi2Se3". ChemSpider. Retrieved 2011-11-01.
  3. ^ a b . Espimetals.com. Archived from the original on 2011-09-08. Retrieved 2011-11-01.
  4. ^ Mishra, S K; S Satpathy; O Jepsen (1997-01-13). "Electronic structure and thermoelectric properties of bismuth telluride and bismuth selenide". Journal of Physics: Condensed Matter. 9 (2): 461–470. Bibcode:1997JPCM....9..461M. doi:10.1088/0953-8984/9/2/014. hdl:10355/9466. ISSN 0953-8984. S2CID 250922249.
  5. ^ Analytis, James G.; Chu, Jiun-Haw; Chen, Yulin; Corredor, Felipe; McDonald, Ross D.; Shen, Z. X.; Fisher, Ian R. (2010-05-05). "Bulk Fermi surface coexistence with Dirac surface state in Bi 2 Se 3 : A comparison of photoemission and Shubnikov–de Haas measurements". Physical Review B. 81 (20): 205407. arXiv:1001.4050. Bibcode:2010PhRvB..81t5407A. doi:10.1103/PhysRevB.81.205407. ISSN 1098-0121. S2CID 118322170.
  6. ^ a b Xia, Y; Qian, D; Hsieh, D; Wray, L; Pal, A; Lin, H; Bansil, A; Grauer, D; Hor, Y. S; Cava, R. J; Hasan, M. Z (2009). "Observation of a large-gap topological-insulator class with a single Dirac cone on the surface". Nature Physics. 5 (6): 398–402. arXiv:0908.3513. Bibcode:2009NatPh...5..398X. doi:10.1038/nphys1274.
  7. ^ Hor, Y. S.; A. Richardella; P. Roushan; Y. Xia; J. G. Checkelsky; A. Yazdani; M. Z. Hasan; N. P. Ong; R. J. Cava (2009-05-21). "p-type Bi2Se3 for topological insulator and low-temperature thermoelectric applications". Physical Review B. 79 (19): 195208. arXiv:0903.4406. Bibcode:2009PhRvB..79s5208H. doi:10.1103/PhysRevB.79.195208. S2CID 119217126.
  8. ^ Xia, Y.; Qian, D.; Hsieh, D.; Wray, L.; Pal, A.; Lin, H.; Bansil, A.; Grauer, D.; Hor, Y. S.; Cava, R. J.; Hasan, M. Zahid (2009). "Discovery (theoretical prediction and experimental observation) of a large-gap topological-insulator class with spin-polarized single-Dirac-cone on the surface". Nature Physics. arXiv:0908.3513. doi:10.1038/nphys1274. ISSN 1745-2473. S2CID 119195663.
  9. ^ Hsieh, D.; Y. Xia; D. Qian; L. Wray; J. H. Dil; F. Meier; J. Osterwalder; L. Patthey; J. G. Checkelsky; N. P. Ong; A. V. Fedorov; H. Lin; A. Bansil; D. Grauer; Y. S. Hor; R. J. Cava; M. Z. Hasan (2009). "A tunable topological insulator in the spin helical Dirac transport regime". Nature. 460 (7259): 1101–1105. arXiv:1001.1590. Bibcode:2009Natur.460.1101H. doi:10.1038/nature08234. ISSN 0028-0836. PMID 19620959. S2CID 4369601.
  10. ^ Hasan, M. Zahid; Moore, Joel E. (2011-02-08). "Three-Dimensional Topological Insulators". Annual Review of Condensed Matter Physics. 2 (1): 55–78. arXiv:1011.5462. Bibcode:2011ARCMP...2...55H. doi:10.1146/annurev-conmatphys-062910-140432. ISSN 1947-5454. S2CID 11516573.
  11. ^ Xu, Yang; Miotkowski, Ireneusz; Liu, Chang; Tian, Jifa; Nam, Hyoungdo; Alidoust, Nasser; Hu, Jiuning; Shih, Chih-Kang; Hasan, M. Zahid; Chen, Yong P. (2014). "Observation of topological surface state quantum Hall effect in an intrinsic three-dimensional topological insulator". Nature Physics. 10 (12): 956–963. arXiv:1409.3778. Bibcode:2014NatPh..10..956X. doi:10.1038/nphys3140. ISSN 1745-2481. S2CID 51843826.
  12. ^ Hasan, M. Z.; Kane, C. L. (2010-11-08). "Colloquium: Topological insulators". Reviews of Modern Physics. 82 (4): 3045–3067. arXiv:1002.3895. Bibcode:2010RvMP...82.3045H. doi:10.1103/RevModPhys.82.3045. S2CID 16066223.
  13. ^ "The Strange Topology That Is Reshaping Physics". Scientific American. Retrieved 2020-04-22.
  14. ^ "Welcome to the Weird Mathematical World of Topology". Discover Magazine. Retrieved 2020-04-22.
  15. ^ Ornes, Stephen (2016-09-13). "Topological insulators promise computing advances, insights into matter itself". Proceedings of the National Academy of Sciences. 113 (37): 10223–10224. doi:10.1073/pnas.1611504113. ISSN 0027-8424. PMC 5027448. PMID 27625422.
  16. ^ Luo, Xin; Sullivan, Michael B.; Quek, Su Ying (2012-11-27). "First-principles investigations of the atomic, electronic, and thermoelectric properties of equilibrium and strained Bi 2 Se 3 and Bi 2 Te 3 including van der Waals interactions". Physical Review B. 86 (18): 184111. arXiv:1308.1523. Bibcode:2012PhRvB..86r4111L. doi:10.1103/PhysRevB.86.184111. ISSN 1098-0121. S2CID 118022274.
  17. ^ a b Holtgrewe, Kris (2022). Theoretical modelling of nano-scaled systems with heavy ions. Universitätsbibliothek Gießen (Thesis). doi:10.22029/jlupub-7899.
  18. ^ Flammini, R; Colonna, S; Hogan, C; Mahatha, S K; Papagno, M; Barla, A; Sheverdyaeva, P M; Moras, P; Aliev, Z S; Babanly, M B; Chulkov, E V; Carbone, C; Ronci, F (2018-02-09). "Evidence of β -antimonene at the Sb/Bi 2 Se 3 interface". Nanotechnology. 29 (6): 065704. Bibcode:2018Nanot..29f5704F. doi:10.1088/1361-6528/aaa2c4. ISSN 0957-4484. PMID 29320369.
  19. ^ Hogan, Conor; Holtgrewe, Kris; Ronci, Fabio; Colonna, Stefano; Sanna, Simone; Moras, Paolo; Sheverdyaeva, Polina M.; Mahatha, Sanjoy; Papagno, Marco; Aliev, Ziya S.; Babanly, Mahammad; Chulkov, Evgeni V.; Carbone, Carlo; Flammini, Roberto (2019-09-24). "Temperature Driven Phase Transition at the Antimonene/Bi 2 Se 3 van der Waals Heterostructure". ACS Nano. 13 (9): 10481–10489. arXiv:1906.01901. doi:10.1021/acsnano.9b04377. ISSN 1936-0851. PMID 31469534. S2CID 174799137.
  20. ^ Jin, Kyung-Hwan; Yeom, Han Woong; Jhi, Seung-Hoon (2016-02-19). "Band structure engineering of topological insulator heterojunctions". Physical Review B. 93 (7): 075308. Bibcode:2016PhRvB..93g5308J. doi:10.1103/PhysRevB.93.075308. ISSN 2469-9950.
  21. ^ Holtgrewe, K.; Mahatha, S. K.; Sheverdyaeva, P. M.; Moras, P.; Flammini, R.; Colonna, S.; Ronci, F.; Papagno, M.; Barla, A.; Petaccia, L.; Aliev, Z. S.; Babanly, M. B.; Chulkov, E. V.; Sanna, S.; Hogan, C. (2020-09-03). "Topologization of β-antimonene on Bi2Se3 via proximity effects". Scientific Reports. 10 (1): 14619. Bibcode:2020NatSR..1014619H. doi:10.1038/s41598-020-71624-4. ISSN 2045-2322. PMC 7471962. PMID 32884112.
  22. ^ Holtgrewe, Kris; Hogan, Conor; Sanna, Simone (2021-04-02). "Evolution of Topological Surface States Following Sb Layer Adsorption on Bi2Se3". Materials. 14 (7): 1763. Bibcode:2021Mate...14.1763H. doi:10.3390/ma14071763. ISSN 1996-1944. PMC 8061775. PMID 33918428.
  23. ^ "Santa Catarina Mine, Rancho Calvillo, Santa Rosa, Sierra de Santa Rosa, Guanajuato Municipality, Guanajuato, Mexico". mindat.org. Retrieved April 3, 2022.
  24. ^ a b Anthony, John W.; Bideaux, Richard A.; Bladh, Kenneth W.; Nichols, Monte C. "Guanajuatite" (PDF). Handbook of Mineralogy. Mineralogical Society of America. Retrieved April 3, 2022.
  25. ^ Nisson, D. M.; Dioguardi, A. P.; Klavins, P.; Lin, C. H.; Shirer, K.; Shockley, A. C.; Crocker, J.; Curro, N. J. (2013-05-13). "Nuclear magnetic resonance as a probe of electronic states of Bi 2 Se 3". Physical Review B. 87 (19): 195202. arXiv:1304.6768. Bibcode:2013PhRvB..87s5202N. doi:10.1103/PhysRevB.87.195202. ISSN 1098-0121. S2CID 118621215.
  26. ^ Butch, N. P.; Kirshenbaum, K.; Syers, P.; Sushkov, A. B.; Jenkins, G. S.; Drew, H. D.; Paglione, J. (2010-06-01). "Strong surface scattering in ultrahigh-mobility Bi 2 Se 3 topological insulator crystals". Physical Review B. 81 (24): 241301. arXiv:1003.2382. Bibcode:2010PhRvB..81x1301B. doi:10.1103/PhysRevB.81.241301. ISSN 1098-0121. S2CID 55078840.
  27. ^ Chen, Yang; Liu, Yajun; Chu, Maoyou; Wang, Lijun (2014-12-25). "Phase diagrams and thermodynamic descriptions for the Bi–Se and Zn–Se binary systems". Journal of Alloys and Compounds. 617: 423–428. doi:10.1016/j.jallcom.2014.08.001. ISSN 0925-8388.
  28. ^ Atuchin, V. V.; Golyashov, V. A.; Kokh, K. A.; Korolkov, I. V.; Kozhukhov, A. S.; Kruchinin, V. N.; Makarenko, S. V.; Pokrovsky, L. D.; Prosvirin, I. P.; Romanyuk, K. N.; Tereshchenko, O. E. (2011-12-07). "Formation of Inert Bi2Se3(0001) Cleaved Surface". Crystal Growth & Design. 11 (12): 5507–5514. doi:10.1021/cg201163v. ISSN 1528-7483.

bismuth, selenide, bi2se3, gray, compound, bismuth, selenium, also, known, bismuth, selenide, names, iupac, name, selenoxobismuth, selanylidenebismuth, identifiers, number, 12068, model, jsmol, interactive, image, chemspider, 145787, echa, infocard, number, pu. Bismuth selenide Bi2Se3 is a gray compound of bismuth and selenium also known as bismuth III selenide Bismuth selenide Names IUPAC name selenoxobismuth selanylidenebismuth 1 Identifiers CAS Number 12068 69 8 Y 3D model JSmol Interactive image ChemSpider 145787 ECHA InfoCard 100 031 901 EC Number 235 104 7 PubChem CID 6379269 UNII 9I1Y040903 CompTox Dashboard EPA DTXSID60893213 InChI InChI 1S 2Bi 3SeKey OMEPJWROJCQMMU UHFFFAOYSA N SMILES Se 2 Se 2 Se 2 Bi 3 Bi 3 Properties Chemical formula Bi2Se3 Molar mass 654 8 g mol 2 Appearance Dull grey 3 Density 6 82 g cm3 2 Melting point 710 C 1 310 F 983 K 2 Solubility in water insoluble Solubility insoluble in organic solvents soluble in strong acids 2 Structure Crystal structure rhombohedral Thermochemistry Std enthalpy offormation DfH 298 140 kJ mol Hazards Occupational safety and health OHS OSH Main hazards Toxic 3 NFPA 704 fire diamond 200 Related compounds Other anions Bismuth III oxide Bismuth trisulfide Bismuth telluride Other cations Arsenic triselenideAntimony triselenide Except where otherwise noted data are given for materials in their standard state at 25 C 77 F 100 kPa Y verify what is Y N Infobox references Contents 1 Properties 2 Production 3 See also 4 ReferencesProperties editBismuth selenide is a semiconductor and a thermoelectric material 4 While stoichiometric bismuth selenide should be a semiconductor with a gap of 0 3 eV naturally occurring selenium vacancies act as electron donors so Bi2Se3 is intrinsically n type 5 6 7 Bismuth selenide has a topologically insulating ground state 8 Topologically protected Dirac cone surface states have been observed in Bismuth selenide and its insulating derivatives leading to intrinsic topological insulators 6 9 10 11 which later became the subject of world wide scientific research 12 13 14 15 Bismuth selenide is a van der Waals material consisting of covalently bound five atom layers quintuple layers which are held together by van der Waals interactions 16 and spin orbit coupling effects 17 Although the 0001 surface is chemically inert mostly due to the inert pair effect of Bi 17 there are metallic surface states protected by the non trivial topology of the bulk For this reason the Bi2Se3 surface is an interesting candidate for van der Waals epitaxy and subject of scientific research For instance different phases of antimony layers can be grown on Bi2Se3 18 19 by means of which topological pn junctions can be realised 20 More intriguingly Sb layers undergo topological phase transitions when attached to the Bi2Se3 surface and thus inherit the non trivial topological properties of the Bi2Se3 substrate 21 22 Production editAlthough bismuth selenide occurs naturally as the mineral guanajuatite at the Santa Catarina Mine in Guanajuato Mexico 23 as well as some sites in the United States and Europe 24 such deposits are rare and contain a significant level of sulfur 24 atoms as an impurity For this reason most bismuth selenide used in research into potential commercial applications is synthesized Commercially produced samples are available for use in research but the concentration of selenium vacancies is heavily dependent upon growth conditions 25 26 and so bismuth selenide used for research is often synthesized in the laboratory A stoichiometric mixture of elemental bismuth and selenium when heated above the melting points of these elements in the absence of air will become a liquid that freezes to crystalline Bi2Se3 27 Large single crystals of bismuth selenide can be prepared by the Bridgman Stockbarger method 28 See also editThermoelectric materials Thermoelectric effect Topological insulatorsReferences edit Bismuth III selenide PubChem Public Chemical Database Pubchem ncbi nlm nih gov 2011 10 21 Retrieved 2011 11 01 a b c d bismuth selenide Bi2Se3 ChemSpider Retrieved 2011 11 01 a b Bismuth Selenide Bismuth Selenide Espimetals com Archived from the original on 2011 09 08 Retrieved 2011 11 01 Mishra S K S Satpathy O Jepsen 1997 01 13 Electronic structure and thermoelectric properties of bismuth telluride and bismuth selenide Journal of Physics Condensed Matter 9 2 461 470 Bibcode 1997JPCM 9 461M doi 10 1088 0953 8984 9 2 014 hdl 10355 9466 ISSN 0953 8984 S2CID 250922249 Analytis James G Chu Jiun Haw Chen Yulin Corredor Felipe McDonald Ross D Shen Z X Fisher Ian R 2010 05 05 Bulk Fermi surface coexistence with Dirac surface state in Bi 2 Se 3 A comparison of photoemission and Shubnikov de Haas measurements Physical Review B 81 20 205407 arXiv 1001 4050 Bibcode 2010PhRvB 81t5407A doi 10 1103 PhysRevB 81 205407 ISSN 1098 0121 S2CID 118322170 a b Xia Y Qian D Hsieh D Wray L Pal A Lin H Bansil A Grauer D Hor Y S Cava R J Hasan M Z 2009 Observation of a large gap topological insulator class with a single Dirac cone on the surface Nature Physics 5 6 398 402 arXiv 0908 3513 Bibcode 2009NatPh 5 398X doi 10 1038 nphys1274 Hor Y S A Richardella P Roushan Y Xia J G Checkelsky A Yazdani M Z Hasan N P Ong R J Cava 2009 05 21 p type Bi2Se3 for topological insulator and low temperature thermoelectric applications Physical Review B 79 19 195208 arXiv 0903 4406 Bibcode 2009PhRvB 79s5208H doi 10 1103 PhysRevB 79 195208 S2CID 119217126 Xia Y Qian D Hsieh D Wray L Pal A Lin H Bansil A Grauer D Hor Y S Cava R J Hasan M Zahid 2009 Discovery theoretical prediction and experimental observation of a large gap topological insulator class with spin polarized single Dirac cone on the surface Nature Physics arXiv 0908 3513 doi 10 1038 nphys1274 ISSN 1745 2473 S2CID 119195663 Hsieh D Y Xia D Qian L Wray J H Dil F Meier J Osterwalder L Patthey J G Checkelsky N P Ong A V Fedorov H Lin A Bansil D Grauer Y S Hor R J Cava M Z Hasan 2009 A tunable topological insulator in the spin helical Dirac transport regime Nature 460 7259 1101 1105 arXiv 1001 1590 Bibcode 2009Natur 460 1101H doi 10 1038 nature08234 ISSN 0028 0836 PMID 19620959 S2CID 4369601 Hasan M Zahid Moore Joel E 2011 02 08 Three Dimensional Topological Insulators Annual Review of Condensed Matter Physics 2 1 55 78 arXiv 1011 5462 Bibcode 2011ARCMP 2 55H doi 10 1146 annurev conmatphys 062910 140432 ISSN 1947 5454 S2CID 11516573 Xu Yang Miotkowski Ireneusz Liu Chang Tian Jifa Nam Hyoungdo Alidoust Nasser Hu Jiuning Shih Chih Kang Hasan M Zahid Chen Yong P 2014 Observation of topological surface state quantum Hall effect in an intrinsic three dimensional topological insulator Nature Physics 10 12 956 963 arXiv 1409 3778 Bibcode 2014NatPh 10 956X doi 10 1038 nphys3140 ISSN 1745 2481 S2CID 51843826 Hasan M Z Kane C L 2010 11 08 Colloquium Topological insulators Reviews of Modern Physics 82 4 3045 3067 arXiv 1002 3895 Bibcode 2010RvMP 82 3045H doi 10 1103 RevModPhys 82 3045 S2CID 16066223 The Strange Topology That Is Reshaping Physics Scientific American Retrieved 2020 04 22 Welcome to the Weird Mathematical World of Topology Discover Magazine Retrieved 2020 04 22 Ornes Stephen 2016 09 13 Topological insulators promise computing advances insights into matter itself Proceedings of the National Academy of Sciences 113 37 10223 10224 doi 10 1073 pnas 1611504113 ISSN 0027 8424 PMC 5027448 PMID 27625422 Luo Xin Sullivan Michael B Quek Su Ying 2012 11 27 First principles investigations of the atomic electronic and thermoelectric properties of equilibrium and strained Bi 2 Se 3 and Bi 2 Te 3 including van der Waals interactions Physical Review B 86 18 184111 arXiv 1308 1523 Bibcode 2012PhRvB 86r4111L doi 10 1103 PhysRevB 86 184111 ISSN 1098 0121 S2CID 118022274 a b Holtgrewe Kris 2022 Theoretical modelling of nano scaled systems with heavy ions Universitatsbibliothek Giessen Thesis doi 10 22029 jlupub 7899 Flammini R Colonna S Hogan C Mahatha S K Papagno M Barla A Sheverdyaeva P M Moras P Aliev Z S Babanly M B Chulkov E V Carbone C Ronci F 2018 02 09 Evidence of b antimonene at the Sb Bi 2 Se 3 interface Nanotechnology 29 6 065704 Bibcode 2018Nanot 29f5704F doi 10 1088 1361 6528 aaa2c4 ISSN 0957 4484 PMID 29320369 Hogan Conor Holtgrewe Kris Ronci Fabio Colonna Stefano Sanna Simone Moras Paolo Sheverdyaeva Polina M Mahatha Sanjoy Papagno Marco Aliev Ziya S Babanly Mahammad Chulkov Evgeni V Carbone Carlo Flammini Roberto 2019 09 24 Temperature Driven Phase Transition at the Antimonene Bi 2 Se 3 van der Waals Heterostructure ACS Nano 13 9 10481 10489 arXiv 1906 01901 doi 10 1021 acsnano 9b04377 ISSN 1936 0851 PMID 31469534 S2CID 174799137 Jin Kyung Hwan Yeom Han Woong Jhi Seung Hoon 2016 02 19 Band structure engineering of topological insulator heterojunctions Physical Review B 93 7 075308 Bibcode 2016PhRvB 93g5308J doi 10 1103 PhysRevB 93 075308 ISSN 2469 9950 Holtgrewe K Mahatha S K Sheverdyaeva P M Moras P Flammini R Colonna S Ronci F Papagno M Barla A Petaccia L Aliev Z S Babanly M B Chulkov E V Sanna S Hogan C 2020 09 03 Topologization of b antimonene on Bi2Se3 via proximity effects Scientific Reports 10 1 14619 Bibcode 2020NatSR 1014619H doi 10 1038 s41598 020 71624 4 ISSN 2045 2322 PMC 7471962 PMID 32884112 Holtgrewe Kris Hogan Conor Sanna Simone 2021 04 02 Evolution of Topological Surface States Following Sb Layer Adsorption on Bi2Se3 Materials 14 7 1763 Bibcode 2021Mate 14 1763H doi 10 3390 ma14071763 ISSN 1996 1944 PMC 8061775 PMID 33918428 Santa Catarina Mine Rancho Calvillo Santa Rosa Sierra de Santa Rosa Guanajuato Municipality Guanajuato Mexico mindat org Retrieved April 3 2022 a b Anthony John W Bideaux Richard A Bladh Kenneth W Nichols Monte C Guanajuatite PDF Handbook of Mineralogy Mineralogical Society of America Retrieved April 3 2022 Nisson D M Dioguardi A P Klavins P Lin C H Shirer K Shockley A C Crocker J Curro N J 2013 05 13 Nuclear magnetic resonance as a probe of electronic states of Bi 2 Se 3 Physical Review B 87 19 195202 arXiv 1304 6768 Bibcode 2013PhRvB 87s5202N doi 10 1103 PhysRevB 87 195202 ISSN 1098 0121 S2CID 118621215 Butch N P Kirshenbaum K Syers P Sushkov A B Jenkins G S Drew H D Paglione J 2010 06 01 Strong surface scattering in ultrahigh mobility Bi 2 Se 3 topological insulator crystals Physical Review B 81 24 241301 arXiv 1003 2382 Bibcode 2010PhRvB 81x1301B doi 10 1103 PhysRevB 81 241301 ISSN 1098 0121 S2CID 55078840 Chen Yang Liu Yajun Chu Maoyou Wang Lijun 2014 12 25 Phase diagrams and thermodynamic descriptions for the Bi Se and Zn Se binary systems Journal of Alloys and Compounds 617 423 428 doi 10 1016 j jallcom 2014 08 001 ISSN 0925 8388 Atuchin V V Golyashov V A Kokh K A Korolkov I V Kozhukhov A S Kruchinin V N Makarenko S V Pokrovsky L D Prosvirin I P Romanyuk K N Tereshchenko O E 2011 12 07 Formation of Inert Bi2Se3 0001 Cleaved Surface Crystal Growth amp Design 11 12 5507 5514 doi 10 1021 cg201163v ISSN 1528 7483 Retrieved from https en wikipedia org w index php title Bismuth selenide amp oldid 1193789697, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.