fbpx
Wikipedia

Balangeroite

Balangeroite is found in one of the most important chrysotile mines in Europe, the Balangero Serpentinite. Hence, it is usually mistaken as an asbestiform in an assemblage of other mineral phases like chrysotile, magnetite and Fe-Ni alloys. However, Balangeroite does not lead to serious health problems caused by asbestos fibers.

Balangeroite
Balangeroite
General
CategoryInosilicate
Formula
(repeating unit)
(Mg,Fe,Fe,Mn)42Si16O54(OH)40
IMA symbolBal[1]
Strunz classification9.DH.35
Crystal systemMonoclinic
Crystal classPrismatic (2/m)
(same H-M symbol)
Space groupP2/n
Unit cella = 19.4 Å, b = 9.65 Å,
c = 19.4 Å; β = 91.1°; Z = 2
Identification
ColorBrown
Crystal habitFibrous
CleavageVery good in two directions
TenacityBrittle
LusterVitreous to greasy
StreakBrownish white
DiaphaneitySubtranslucent to opaque; transparent in thin section
Specific gravity2.96 - 3.10
Optical propertiesBiaxial -
Refractive indexnα = 1.680 nγ = 1.680
Birefringenceδ = 0.000
PleochroismDark brown and yellow brown parallel and perpendicular to [001]
References[2][3][4]

Introduction edit

Balangeroite is classified as an inosilicate with 4-periodic single chains, Si4O12. It is a completely separate mineral from true asbestos. It is economically important for providing building materials, especially for thermal insulation purposes, fireproofing, etc.[5] Recent publications by Turci[6] have drawn some conclusions that balangeroite was not asbestos and had poor ecopersistence and biopersistence. This study also pointed out that it was the obvious chrysotile exposures there, not balangeroite, that caused the incidence of mesotheliomas.

Composition edit

The chemical formula for balangeroite is (Mg, Fe2+, Fe3+, Mn2+)42Si16O54(OH)40[7] and it has been calculated as shown in the diagram below by Compagnoni as follows:

Table 1a. Chemical analysis of balangeroite[7]
SiO2 28.37
TiO2 0.03
Al2O3 0.27
Fe2O3 8.89
Cr2O3 0.03
FeO 16.95
MnO 3.59
MgO 31.81
CaO 0.13
H2O 9.93
Total 100.00

Wet chemical, X-ray fluorescence and electron microprobe analyses were used to deduce the composition of balangeroite.[7] The common intergrowth with chrysotile proved to be valuable in providing better chemical resolution, as portrayed in Table 1. The results varied due to submicroscopic intergrowths or zoning. From the wet chemical analysis, there was 9.5% average weight loss after calcination at 1000 °C, due to the presence of water.[7] This was calculated as the difference from 100% of the microprobe results, with the assumption that large quantities of material usually contain some impurities, and the possible oxidation of Fe2+ under heating.[7] A ratio of Fe2+/Fe3+ = 2.12 was obtained, and on the basis of the known volume and density, the empirical formula for the unit cell was derived[7] (Mg 25.70 Fe2+7.69 Fe3+3.63 Mn2+1.65 Al0.17 Ca0.07 Cr0.01 Ti0.01) total = 38.93 Si15.38O53.66(OH)35.92.

Structure edit

Balangeroite is based on an octahedral build that consists of channels that are filled by chains of silicate tetrahedra grouped in three and 4 rows running along the fiber axis.[6] Balangeroite is isostructural to gageite.[7]

In contrast to chrysotile, however, balangeroite has more metal ions than silicon ions and might be in some cases seen as complex iron oxide containing some type of silicate structure in its framework.[6] The surrounding fluid takes in a large number of the cations which are octahedrally coordinated, which unlike amphiboles, may be easily removed.[6] As a consequence, the Mg and Fe are released forcing the silicate structure to become loosely bound and therefore pass into solution.[6] Further tests have been conducted on Balangeroite's ecopersistence and it showed fairly low eco-persistence at neutral pH.[6] Further studies were conducted by imitating weathering in an experiment to predict if weathered fibers retain the toxic potential present in freshly extracted fibers.[8] The tests proved that balangeroite showed the removal of Mg and Si, which shows continuous structural severance that extends far beyond the surface.[5]

Physical properties edit

Balangeroite can develop as loose fibers or be compact when in large volumes, which can be prismatic.[7] Antigorite flakes are included in relict prismatic balangeroite, while transmission electron microscopy observation shows that fibrous balangeroite is partially replaced by chrysotile.[9] The fibers run for a couple of centimeters in [001].

Geologic occurrences edit

The piemonte zone, remnant of the Piemontese Ocean from the Late Jurassic, is home to the majority of the serpentines of the Western Alps. The Balangero mine is located in the Lanzu Ultramafic Massif which is in the inner part of the piemonte zone.[9] The Lanzu Ultramafic Massif is believed to have been involved in the subduction processes that were affiliated with the closure of the Piemontese Ocean in the Late Jurassic.[9] The earliest generation of metamorphic veins and in particular type 1 Vein that constitute relict prismatic balangeroite (often includes antigorite flakes) were formed during prograde high pressure metamorphism.[9] Fibrous balangeroite is limited to the serpentine-infested rim of the northern Lanzu Ultramafic Massif, with its abundance in the inactive Balangero asbestos mine, where it was discovered.[9]

Balangeroite was named after the location in which it was discovered.[7] Mine workers at the Balangero mine had first discovered it and named it, based on its overall color and fibrous nature of other minerals present in the mine, xylotile or metaxite.[7] This new mineral, balangeroite, was tested and found to be completely different from xylotile and metaxite in composition as well as optical properties.[7] Balangeroite was already discovered and a somewhat pure specimen was in the Turin University Mineralogy institute's museum since 1925, inventory no. 14873, labeled as "fibrous serpentine (asbestos)- San Vittore, Balangero".[7]

References edit

  1. ^ Warr, L.N. (2021). "IMA–CNMNC approved mineral symbols". Mineralogical Magazine. 85 (3): 291–320. Bibcode:2021MinM...85..291W. doi:10.1180/mgm.2021.43. S2CID 235729616.
  2. ^ Mindat.org
  3. ^ Webmineral.com
  4. ^ Handbook of Mineralogy
  5. ^ a b Klein, Cornelius; Barbara Duttrow (2008). "19". In Ryan Flahive (ed.). The Manual of Mineral Science (23rd ed.). John Wiley & Sons, Inc. pp. 515–520. ISBN 978-0-471-72157-4.
  6. ^ a b c d e f Turci, Francesco; Tomatis M; Compagnoni R; et al. (2009). "The Role of Associated Mineral Fibers in Chrysotile Asbestos Health effects: The Case of Balangeroite". Annals of Occupational Hygiene. 53 (5): 491–497. doi:10.1093/annhyg/mep028. PMID 19435981.
  7. ^ a b c d e f g h i j k l Compagnoni, Roberto; Ferraris G; Fiora L (1983). "Balangeroite, a new fibrous silicate related to Gageite from Balangero, Italy". American Mineralogist. 68: 214–29.
  8. ^ Favero-Longo, Sergio E; Turci F; Tomatis M; Compagnoni R; et al. (2009). "The Effects of Weathering on Ecopersistence, Reactivity, and Potential Toxicity of Naturally Occurring Asbestos and Asbestiform Minerals". Journal of Toxicology and Environmental Health, Part A. 68 (5): 305–313. doi:10.1080/15287390802529864. PMID 19184746. S2CID 25489486.
  9. ^ a b c d e Groppo, C; Tomatis M; Turci F; et al. (2005). "The Potential Toxicity of Non-Regulated Asbestiform Minerals: Balangeroite from the Western Alps Part 1: Identification and Characterization". Journal of Toxicology and Environmental Health, Part A. 68 (1): 1–19. doi:10.1080/15287390590523867. PMID 15739801. S2CID 32736985.

External links edit

  • Entry on Mineraldata.com

balangeroite, found, most, important, chrysotile, mines, europe, balangero, serpentinite, hence, usually, mistaken, asbestiform, assemblage, other, mineral, phases, like, chrysotile, magnetite, alloys, however, does, lead, serious, health, problems, caused, as. Balangeroite is found in one of the most important chrysotile mines in Europe the Balangero Serpentinite Hence it is usually mistaken as an asbestiform in an assemblage of other mineral phases like chrysotile magnetite and Fe Ni alloys However Balangeroite does not lead to serious health problems caused by asbestos fibers BalangeroiteBalangeroiteGeneralCategoryInosilicateFormula repeating unit Mg Fe Fe Mn 42Si16O54 OH 40IMA symbolBal 1 Strunz classification9 DH 35Crystal systemMonoclinicCrystal classPrismatic 2 m same H M symbol Space groupP2 nUnit cella 19 4 A b 9 65 A c 19 4 A b 91 1 Z 2IdentificationColorBrownCrystal habitFibrousCleavageVery good in two directionsTenacityBrittleLusterVitreous to greasyStreakBrownish whiteDiaphaneitySubtranslucent to opaque transparent in thin sectionSpecific gravity2 96 3 10Optical propertiesBiaxial Refractive indexna 1 680 ng 1 680Birefringenced 0 000PleochroismDark brown and yellow brown parallel and perpendicular to 001 References 2 3 4 Contents 1 Introduction 2 Composition 3 Structure 4 Physical properties 5 Geologic occurrences 6 References 7 External linksIntroduction editBalangeroite is classified as an inosilicate with 4 periodic single chains Si4O12 It is a completely separate mineral from true asbestos It is economically important for providing building materials especially for thermal insulation purposes fireproofing etc 5 Recent publications by Turci 6 have drawn some conclusions that balangeroite was not asbestos and had poor ecopersistence and biopersistence This study also pointed out that it was the obvious chrysotile exposures there not balangeroite that caused the incidence of mesotheliomas Composition editThe chemical formula for balangeroite is Mg Fe2 Fe3 Mn2 42Si16O54 OH 40 7 and it has been calculated as shown in the diagram below by Compagnoni as follows Table 1a Chemical analysis of balangeroite 7 SiO2 28 37 TiO2 0 03 Al2O3 0 27 Fe2O3 8 89 Cr2O3 0 03 FeO 16 95 MnO 3 59 MgO 31 81 CaO 0 13 H2O 9 93 Total 100 00 Wet chemical X ray fluorescence and electron microprobe analyses were used to deduce the composition of balangeroite 7 The common intergrowth with chrysotile proved to be valuable in providing better chemical resolution as portrayed in Table 1 The results varied due to submicroscopic intergrowths or zoning From the wet chemical analysis there was 9 5 average weight loss after calcination at 1000 C due to the presence of water 7 This was calculated as the difference from 100 of the microprobe results with the assumption that large quantities of material usually contain some impurities and the possible oxidation of Fe2 under heating 7 A ratio of Fe2 Fe3 2 12 was obtained and on the basis of the known volume and density the empirical formula for the unit cell was derived 7 Mg 25 70 Fe2 7 69 Fe3 3 63 Mn2 1 65 Al0 17 Ca0 07 Cr0 01 Ti0 01 total 38 93 Si15 38O53 66 OH 35 92 Structure editBalangeroite is based on an octahedral build that consists of channels that are filled by chains of silicate tetrahedra grouped in three and 4 rows running along the fiber axis 6 Balangeroite is isostructural to gageite 7 In contrast to chrysotile however balangeroite has more metal ions than silicon ions and might be in some cases seen as complex iron oxide containing some type of silicate structure in its framework 6 The surrounding fluid takes in a large number of the cations which are octahedrally coordinated which unlike amphiboles may be easily removed 6 As a consequence the Mg and Fe are released forcing the silicate structure to become loosely bound and therefore pass into solution 6 Further tests have been conducted on Balangeroite s ecopersistence and it showed fairly low eco persistence at neutral pH 6 Further studies were conducted by imitating weathering in an experiment to predict if weathered fibers retain the toxic potential present in freshly extracted fibers 8 The tests proved that balangeroite showed the removal of Mg and Si which shows continuous structural severance that extends far beyond the surface 5 Physical properties editBalangeroite can develop as loose fibers or be compact when in large volumes which can be prismatic 7 Antigorite flakes are included in relict prismatic balangeroite while transmission electron microscopy observation shows that fibrous balangeroite is partially replaced by chrysotile 9 The fibers run for a couple of centimeters in 001 Geologic occurrences editThe piemonte zone remnant of the Piemontese Ocean from the Late Jurassic is home to the majority of the serpentines of the Western Alps The Balangero mine is located in the Lanzu Ultramafic Massif which is in the inner part of the piemonte zone 9 The Lanzu Ultramafic Massif is believed to have been involved in the subduction processes that were affiliated with the closure of the Piemontese Ocean in the Late Jurassic 9 The earliest generation of metamorphic veins and in particular type 1 Vein that constitute relict prismatic balangeroite often includes antigorite flakes were formed during prograde high pressure metamorphism 9 Fibrous balangeroite is limited to the serpentine infested rim of the northern Lanzu Ultramafic Massif with its abundance in the inactive Balangero asbestos mine where it was discovered 9 Balangeroite was named after the location in which it was discovered 7 Mine workers at the Balangero mine had first discovered it and named it based on its overall color and fibrous nature of other minerals present in the mine xylotile or metaxite 7 This new mineral balangeroite was tested and found to be completely different from xylotile and metaxite in composition as well as optical properties 7 Balangeroite was already discovered and a somewhat pure specimen was in the Turin University Mineralogy institute s museum since 1925 inventory no 14873 labeled as fibrous serpentine asbestos San Vittore Balangero 7 References edit Warr L N 2021 IMA CNMNC approved mineral symbols Mineralogical Magazine 85 3 291 320 Bibcode 2021MinM 85 291W doi 10 1180 mgm 2021 43 S2CID 235729616 Mindat org Webmineral com Handbook of Mineralogy a b Klein Cornelius Barbara Duttrow 2008 19 In Ryan Flahive ed The Manual of Mineral Science 23rd ed John Wiley amp Sons Inc pp 515 520 ISBN 978 0 471 72157 4 a b c d e f Turci Francesco Tomatis M Compagnoni R et al 2009 The Role of Associated Mineral Fibers in Chrysotile Asbestos Health effects The Case of Balangeroite Annals of Occupational Hygiene 53 5 491 497 doi 10 1093 annhyg mep028 PMID 19435981 a b c d e f g h i j k l Compagnoni Roberto Ferraris G Fiora L 1983 Balangeroite a new fibrous silicate related to Gageite from Balangero Italy American Mineralogist 68 214 29 Favero Longo Sergio E Turci F Tomatis M Compagnoni R et al 2009 The Effects of Weathering on Ecopersistence Reactivity and Potential Toxicity of Naturally Occurring Asbestos and Asbestiform Minerals Journal of Toxicology and Environmental Health Part A 68 5 305 313 doi 10 1080 15287390802529864 PMID 19184746 S2CID 25489486 a b c d e Groppo C Tomatis M Turci F et al 2005 The Potential Toxicity of Non Regulated Asbestiform Minerals Balangeroite from the Western Alps Part 1 Identification and Characterization Journal of Toxicology and Environmental Health Part A 68 1 1 19 doi 10 1080 15287390590523867 PMID 15739801 S2CID 32736985 External links editEntry on Mineraldata com Retrieved from https en wikipedia org w index php title Balangeroite amp oldid 1181847370, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.