fbpx
Wikipedia

Analytical mechanics

In theoretical physics and mathematical physics, analytical mechanics, or theoretical mechanics is a collection of closely related alternative formulations of classical mechanics. It was developed by many scientists and mathematicians during the 18th century and onward, after Newtonian mechanics. Since Newtonian mechanics considers vector quantities of motion, particularly accelerations, momenta, forces, of the constituents of the system, an alternative name for the mechanics governed by Newton's laws and Euler's laws is vectorial mechanics.

By contrast, analytical mechanics uses scalar properties of motion representing the system as a whole—usually its total kinetic energy and potential energy—not Newton's vectorial forces of individual particles.[1] A scalar is a quantity, whereas a vector is represented by quantity and direction. The equations of motion are derived from the scalar quantity by some underlying principle about the scalar's variation.

Analytical mechanics takes advantage of a system's constraints to solve problems. The constraints limit the degrees of freedom the system can have, and can be used to reduce the number of coordinates needed to solve for the motion. The formalism is well suited to arbitrary choices of coordinates, known in the context as generalized coordinates. The kinetic and potential energies of the system are expressed using these generalized coordinates or momenta, and the equations of motion can be readily set up, thus analytical mechanics allows numerous mechanical problems to be solved with greater efficiency than fully vectorial methods. It does not always work for non-conservative forces or dissipative forces like friction, in which case one may revert to Newtonian mechanics.

Two dominant branches of analytical mechanics are Lagrangian mechanics (using generalized coordinates and corresponding generalized velocities in configuration space) and Hamiltonian mechanics (using coordinates and corresponding momenta in phase space). Both formulations are equivalent by a Legendre transformation on the generalized coordinates, velocities and momenta, therefore both contain the same information for describing the dynamics of a system. There are other formulations such as Hamilton–Jacobi theory, Routhian mechanics, and Appell's equation of motion. All equations of motion for particles and fields, in any formalism, can be derived from the widely applicable result called the principle of least action. One result is Noether's theorem, a statement which connects conservation laws to their associated symmetries.

Analytical mechanics does not introduce new physics and is not more general than Newtonian mechanics. Rather it is a collection of equivalent formalisms which have broad application. In fact the same principles and formalisms can be used in relativistic mechanics and general relativity, and with some modifications, quantum mechanics and quantum field theory.

Analytical mechanics is used widely, from fundamental physics to applied mathematics, particularly chaos theory.

The methods of analytical mechanics apply to discrete particles, each with a finite number of degrees of freedom. They can be modified to describe continuous fields or fluids, which have infinite degrees of freedom. The definitions and equations have a close analogy with those of mechanics.

Motivation for analytical mechanics Edit

The goal of mechanical theory is to solve mechanical problems, such as arise in physics and engineering. Starting from a physical system—such as a mechanism or a star system—a mathematical model is developed in the form of a differential equation. The model can be solved numerically or analytically to determine the motion of the system.

Newton's vectorial approach to mechanics describes motion with the help of vector quantities such as force, velocity, acceleration. These quantities characterise the motion of a body idealised as a "mass point" or a "particle" understood as a single point to which a mass is attached. Newton's method has been successfully applied to a wide range of physical problems, including the motion of a particle in Earth's gravitational field and the motion of planets around the Sun. In this approach, Newton's laws describe the motion by a differential equation and then the problem is reduced to the solving of that equation.

When a mechanical system contains many particles, however (such as a complex mechanism or a fluid), Newton's approach is difficult to apply. Using a Newtonian approach is possible, under proper precautions, namely isolating each single particle from the others, and determining all the forces acting on it. Such analysis is cumbersome even in relatively simple systems. Newton thought that his third law "action equals reaction" would take care of all complications.[citation needed] This is false even for such simple system as rotations of a solid body.[clarification needed] In more complicated systems, the vectorial approach cannot give an adequate description.

The analytical approach simplifies problems by treating mechanical systems as ensembles of particles that interact with each other, rather considering each particle as an isolated unit. In the vectorial approach, forces must be determined individually for each particle, whereas in the analytical approach it is enough to know one single function which contains implicitly all the forces acting on and in the system. Such simplification is often done using certain kinematic conditions which are stated a priori. However, the analytical treatment does not require the knowledge of these forces and takes these kinematic conditions for granted.[citation needed]

Still, deriving the equations of motion of a complicated mechanical system requires a unifying basis from which they follow.[clarification needed] This is provided by various variational principles: behind each set of equations there is a principle that expresses the meaning of the entire set. Given a fundamental and universal quantity called action, the principle that this action be stationary under small variation of some other mechanical quantity generates the required set of differential equations. The statement of the principle does not require any special coordinate system, and all results are expressed in generalized coordinates. This means that the analytical equations of motion do not change upon a coordinate transformation, an invariance property that is lacking in the vectorial equations of motion.[2]

It is not altogether clear what is meant by 'solving' a set of differential equations. A problem is regarded as solved when the particles coordinates at time t are expressed as simple functions of t and of parameters defining the initial positions and velocities. However, 'simple function' is not a well-defined concept: nowadays, a function f(t) is not regarded as a formal expression in t (elementary function) as in the time of Newton but most generally as a quantity determined by t, and it is not possible to draw a sharp line between 'simple' and 'not simple' functions. If one speaks merely of 'functions', then every mechanical problem is solved as soon as it has been well stated in differential equations, because given the initial conditions and t determine the coordinates at t. This is a fact especially at present with the modern methods of computer modelling which provide arithmetical solutions to mechanical problems to any desired degree of accuracy, the differential equations being replaced by difference equations.

Still, though lacking precise definitions, it is obvious that the two-body problem has a simple solution, whereas the three-body problem has not. The two-body problem is solved by formulas involving parameters; their values can be changed to study the class of all solutions, that is, the mathematical structure of the problem. Moreover, an accurate mental or drawn picture can be made for the motion of two bodies, and it can be as real and accurate as the real bodies moving and interacting. In the three-body problem, parameters can also be assigned specific values; however, the solution at these assigned values or a collection of such solutions does not reveal the mathematical structure of the problem. As in many other problems, the mathematical structure can be elucidated only by examining the differential equations themselves.

Analytical mechanics aims at even more: not at understanding the mathematical structure of a single mechanical problem, but that of a class of problems so wide that they encompass most of mechanics. It concentrates on systems to which Lagrangian or Hamiltonian equations of motion are applicable and that include a very wide range of problems indeed.[3]

Development of analytical mechanics has two objectives: (i) increase the range of solvable problems by developing standard techniques with a wide range of applicability, and (ii) understand the mathematical structure of mechanics. In the long run, however, (ii) can help (i) more than a concentration on specific problems for which methods have already been designed.

Intrinsic motion Edit

Generalized coordinates and constraints Edit

In Newtonian mechanics, one customarily uses all three Cartesian coordinates, or other 3D coordinate system, to refer to a body's position during its motion. In physical systems, however, some structure or other system usually constrains the body's motion from taking certain directions and pathways. So a full set of Cartesian coordinates is often unneeded, as the constraints determine the evolving relations among the coordinates, which relations can be modeled by equations corresponding to the constraints. In the Lagrangian and Hamiltonian formalisms, the constraints are incorporated into the motion's geometry, reducing the number of coordinates to the minimum needed to model the motion. These are known as generalized coordinates, denoted qi (i = 1, 2, 3...).[4]

Difference between curvillinear and generalized coordinates Edit

Generalized coordinates incorporate constraints on the system. There is one generalized coordinate qi for each degree of freedom (for convenience labelled by an index i = 1, 2...N), i.e. each way the system can change its configuration; as curvilinear lengths or angles of rotation. Generalized coordinates are not the same as curvilinear coordinates. The number of curvilinear coordinates equals the dimension of the position space in question (usually 3 for 3d space), while the number of generalized coordinates is not necessarily equal to this dimension; constraints can reduce the number of degrees of freedom (hence the number of generalized coordinates required to define the configuration of the system), following the general rule:[5]

[dimension of position space (usually 3)] × [number of constituents of system ("particles")] − (number of constraints)
= (number of degrees of freedom) = (number of generalized coordinates)

For a system with N degrees of freedom, the generalized coordinates can be collected into an N-tuple:

 
and the time derivative (here denoted by an overdot) of this tuple give the generalized velocities:
 

D'Alembert's principle Edit

The foundation which the subject is built on is D'Alembert's principle.

This principle states that infinitesimal virtual work done by a force across reversible displacements is zero, which is the work done by a force consistent with ideal constraints of the system. The idea of a constraint is useful - since this limits what the system can do, and can provide steps to solving for the motion of the system. The equation for D'Alembert's principle is:

 
where
 
are the generalized forces (script Q instead of ordinary Q is used here to prevent conflict with canonical transformations below) and q are the generalized coordinates. This leads to the generalized form of Newton's laws in the language of analytical mechanics:
 

where T is the total kinetic energy of the system, and the notation

 
is a useful shorthand (see matrix calculus for this notation).

Holonomic constraints Edit

If the curvilinear coordinate system is defined by the standard position vector r, and if the position vector can be written in terms of the generalized coordinates q and time t in the form:

 
and this relation holds for all times t, then q are called Holonomic constraints.[6] Vector r is explicitly dependent on t in cases when the constraints vary with time, not just because of q(t). For time-independent situations, the constraints are also called scleronomic, for time-dependent cases they are called rheonomic.[5]

Lagrangian mechanics Edit

Lagrangian and Euler–Lagrange equations

The introduction of generalized coordinates and the fundamental Lagrangian function:

 

where T is the total kinetic energy and V is the total potential energy of the entire system, then either following the calculus of variations or using the above formula - lead to the Euler–Lagrange equations;

 

which are a set of N second-order ordinary differential equations, one for each qi(t).

This formulation identifies the actual path followed by the motion as a selection of the path over which the time integral of kinetic energy is least, assuming the total energy to be fixed, and imposing no conditions on the time of transit.

Configuration space

The Lagrangian formulation uses the configuration space of the system, the set of all possible generalized coordinates:

 

where   is N-dimensional real space (see also set-builder notation). The particular solution to the Euler–Lagrange equations is called a (configuration) path or trajectory, i.e. one particular q(t) subject to the required initial conditions. The general solutions form a set of possible configurations as functions of time:

 

The configuration space can be defined more generally, and indeed more deeply, in terms of topological manifolds and the tangent bundle.

Hamiltonian mechanics Edit

Hamiltonian and Hamilton's equations

The Legendre transformation of the Lagrangian replaces the generalized coordinates and velocities (q, ) with (q, p); the generalized coordinates and the generalized momenta conjugate to the generalized coordinates:

 

and introduces the Hamiltonian (which is in terms of generalized coordinates and momenta):

 

where   denotes the dot product, also leading to Hamilton's equations:

 

which are now a set of 2N first-order ordinary differential equations, one for each qi(t) and pi(t). Another result from the Legendre transformation relates the time derivatives of the Lagrangian and Hamiltonian:

 

which is often considered one of Hamilton's equations of motion additionally to the others. The generalized momenta can be written in terms of the generalized forces in the same way as Newton's second law:

 

Generalized momentum space

Analogous to the configuration space, the set of all momenta is the momentum space (technically in this context; generalized momentum space):

 

"Momentum space" also refers to "k-space"; the set of all wave vectors (given by De Broglie relations) as used in quantum mechanics and theory of waves: this is not referred to in this context.

Phase space

The set of all positions and momenta form the phase space;

 

that is, the Cartesian product × of the configuration space and generalized momentum space.

A particular solution to Hamilton's equations is called a phase path, a particular curve (q(t),p(t)) subject to the required initial conditions. The set of all phase paths, the general solution to the differential equations, is the phase portrait:

 
The Poisson bracket

All dynamical variables can be derived from position q, momentum p, and time t, and written as a function of these: A = A(q, p, t). If A(q, p, t) and B(q, p, t) are two scalar valued dynamical variables, the Poisson bracket is defined by the generalized coordinates and momenta:

 

Calculating the total derivative of one of these, say A, and substituting Hamilton's equations into the result leads to the time evolution of A:

 

This equation in A is closely related to the equation of motion in the Heisenberg picture of quantum mechanics, in which classical dynamical variables become quantum operators (indicated by hats (^)), and the Poisson bracket is replaced by the commutator of operators via Dirac's canonical quantization:

 

Properties of the Lagrangian and Hamiltonian functions Edit

Following are overlapping properties between the Lagrangian and Hamiltonian functions.[5][7]

  • All the individual generalized coordinates qi(t), velocities i(t) and momenta pi(t) for every degree of freedom are mutually independent. Explicit time-dependence of a function means the function actually includes time t as a variable in addition to the q(t), p(t), not simply as a parameter through q(t) and p(t), which would mean explicit time-independence.
  • The Lagrangian is invariant under addition of the total time derivative of any function of q' and t, that is:
     
    so each Lagrangian
    L and L
    describe exactly the same motion. In other words, the Lagrangian of a system is not unique.
  • Analogously, the Hamiltonian is invariant under addition of the partial time derivative of any function of q, p and t, that is:
     
    (K is a frequently used letter in this case). This property is used in canonical transformations (see below).
  • If the Lagrangian is independent of some generalized coordinates, then the generalized momenta conjugate to those coordinates are constants of the motion, i.e. are conserved, this immediately follows from Lagrange's equations:
     
    Such coordinates are "cyclic" or "ignorable". It can be shown that the Hamiltonian is also cyclic in exactly the same generalized coordinates.
  • If the Lagrangian is time-independent the Hamiltonian is also time-independent (i.e. both are constant in time).
  • If the kinetic energy is a homogeneous function of degree 2 of the generalized velocities, and the Lagrangian is explicitly time-independent, then:
     
    where λ is a constant, then the Hamiltonian will be the total conserved energy, equal to the total kinetic and potential energies of the system:
     
    This is the basis for the Schrödinger equation, inserting quantum operators directly obtains it.

Principle of least action Edit

 
As the system evolves, q traces a path through configuration space (only some are shown). The path taken by the system (red) has a stationary action (δS = 0) under small changes in the configuration of the system (δq).[8]

Action is another quantity in analytical mechanics defined as a functional of the Lagrangian:

 

A general way to find the equations of motion from the action is the principle of least action:[9]

 

where the departure t1 and arrival t2 times are fixed.[1] The term "path" or "trajectory" refers to the time evolution of the system as a path through configuration space  , in other words q(t) tracing out a path in  . The path for which action is least is the path taken by the system.

From this principle, all equations of motion in classical mechanics can be derived. This approach can be extended to fields rather than a system of particles (see below), and underlies the path integral formulation of quantum mechanics,[10][11] and is used for calculating geodesic motion in general relativity.[12]

Hamiltonian-Jacobi mechanics Edit

Canonical transformations

The invariance of the Hamiltonian (under addition of the partial time derivative of an arbitrary function of p, q, and t) allows the Hamiltonian in one set of coordinates q and momenta p to be transformed into a new set Q = Q(q, p, t) and P = P(q, p, t), in four possible ways:

 

With the restriction on P and Q such that the transformed Hamiltonian system is:

 

the above transformations are called canonical transformations, each function Gn is called a generating function of the "nth kind" or "type-n". The transformation of coordinates and momenta can allow simplification for solving Hamilton's equations for a given problem.

The choice of Q and P is completely arbitrary, but not every choice leads to a canonical transformation. One simple criterion for a transformation qQ and pP to be canonical is the Poisson bracket be unity,

 

for all i = 1, 2,...N. If this does not hold then the transformation is not canonical.[5]

The Hamilton–Jacobi equation

By setting the canonically transformed Hamiltonian K = 0, and the type-2 generating function equal to Hamilton's principal function (also the action  ) plus an arbitrary constant C:

 

the generalized momenta become:

 

and P is constant, then the Hamiltonian-Jacobi equation (HJE) can be derived from the type-2 canonical transformation:

 

where H is the Hamiltonian as before:

 

Another related function is Hamilton's characteristic function

 

used to solve the HJE by additive separation of variables for a time-independent Hamiltonian H.

The study of the solutions of the Hamilton–Jacobi equations leads naturally to the study of symplectic manifolds and symplectic topology.[13][14] In this formulation, the solutions of the Hamilton–Jacobi equations are the integral curves of Hamiltonian vector fields.

Routhian mechanics Edit

Routhian mechanics is a hybrid formulation of Lagrangian and Hamiltonian mechanics, not often used but especially useful for removing cyclic coordinates. If the Lagrangian of a system has s cyclic coordinates q = q1, q2, ... qs with conjugate momenta p = p1, p2, ... ps, with the rest of the coordinates non-cyclic and denoted ζ = ζ1, ζ1, ..., ζN − s, they can be removed by introducing the Routhian:

 

which leads to a set of 2s Hamiltonian equations for the cyclic coordinates q,

 

and Ns Lagrangian equations in the non cyclic coordinates ζ.

 

Set up in this way, although the Routhian has the form of the Hamiltonian, it can be thought of a Lagrangian with Ns degrees of freedom.

The coordinates q do not have to be cyclic, the partition between which coordinates enter the Hamiltonian equations and those which enter the Lagrangian equations is arbitrary. It is simply convenient to let the Hamiltonian equations remove the cyclic coordinates, leaving the non cyclic coordinates to the Lagrangian equations of motion.

Appellian mechanics Edit

Appell's equation of motion involve generalized accelerations, the second time derivatives of the generalized coordinates:

 

as well as generalized forces mentioned above in D'Alembert's principle. The equations are

 

where

 

is the acceleration of the k particle, the second time derivative of its position vector. Each acceleration ak is expressed in terms of the generalized accelerations αr, likewise each rk are expressed in terms the generalized coordinates qr.

Extensions to classical field theory Edit

Lagrangian field theory

Generalized coordinates apply to discrete particles. For N scalar fields φi(r, t) where i = 1, 2, ... N, the Lagrangian density is a function of these fields and their space and time derivatives, and possibly the space and time coordinates themselves:

 
and the Euler–Lagrange equations have an analogue for fields:
 
where μ denotes the 4-gradient and the summation convention has been used. For N scalar fields, these Lagrangian field equations are a set of N second order partial differential equations in the fields, which in general will be coupled and nonlinear.

This scalar field formulation can be extended to vector fields, tensor fields, and spinor fields.

The Lagrangian is the volume integral of the Lagrangian density:[11][15]

 

Originally developed for classical fields, the above formulation is applicable to all physical fields in classical, quantum, and relativistic situations: such as Newtonian gravity, classical electromagnetism, general relativity, and quantum field theory. It is a question of determining the correct Lagrangian density to generate the correct field equation.

Hamiltonian field theory

The corresponding "momentum" field densities conjugate to the N scalar fields φi(r, t) are:[11]

 
where in this context the overdot denotes a partial time derivative, not a total time derivative. The Hamiltonian density   is defined by analogy with mechanics:
 

The equations of motion are:

 
where the variational derivative
 
must be used instead of merely partial derivatives. For N fields, these Hamiltonian field equations are a set of 2N first order partial differential equations, which in general will be coupled and nonlinear.

Again, the volume integral of the Hamiltonian density is the Hamiltonian

 

Symmetry, conservation, and Noether's theorem Edit

Symmetry transformations in classical space and time

Each transformation can be described by an operator (i.e. function acting on the position r or momentum p variables to change them). The following are the cases when the operator does not change r or p, i.e. symmetries.[10]

Transformation Operator Position Momentum
Translational symmetry      
Time translation      
Rotational invariance      
Galilean transformations      
Parity      
T-symmetry      

where R(, θ) is the rotation matrix about an axis defined by the unit vector and angle θ.

Noether's theorem

Noether's theorem states that a continuous symmetry transformation of the action corresponds to a conservation law, i.e. the action (and hence the Lagrangian) does not change under a transformation parameterized by a parameter s:

 
the Lagrangian describes the same motion independent of s, which can be length, angle of rotation, or time. The corresponding momenta to q will be conserved.[5]

See also Edit

References and notes Edit

  1. ^ a b Lanczos, Cornelius (1970). The variational principles of mechanics (4th ed.). New York: Dover Publications Inc. Introduction, pp. xxi–xxix. ISBN 0-486-65067-7.
  2. ^ Lanczos, Cornelius (1970). The variational principles of mechanics (4th ed.). New York: Dover Publications Inc. pp. 3–6. ISBN 978-0-486-65067-8.
  3. ^ Synge, J. L. (1960). "Classical dynamics". In Flügge, S. (ed.). Principles of Classical Mechanics and Field Theory / Prinzipien der Klassischen Mechanik und Feldtheorie. Encyclopedia of Physics / Handbuch der Physik. Vol. 2 / 3 / 1. Berlin, Heidelberg: Springer Berlin Heidelberg. doi:10.1007/978-3-642-45943-6. ISBN 978-3-540-02547-4. OCLC 165699220.
  4. ^ The Road to Reality, Roger Penrose, Vintage books, 2007, ISBN 0-679-77631-1
  5. ^ a b c d e Analytical Mechanics, L.N. Hand, J.D. Finch, Cambridge University Press, 2008, ISBN 978-0-521-57572-0
  6. ^ McGraw Hill Encyclopaedia of Physics (2nd Edition), C.B. Parker, 1994, ISBN 0-07-051400-3
  7. ^ Classical Mechanics, T.W.B. Kibble, European Physics Series, McGraw-Hill (UK), 1973, ISBN 0-07-084018-0
  8. ^ Penrose, R. (2007). The Road to Reality. Vintage books. p. 474. ISBN 978-0-679-77631-4.
  9. ^ Encyclopaedia of Physics (2nd Edition), R.G. Lerner, G.L. Trigg, VHC publishers, 1991, ISBN (Verlagsgesellschaft) 3-527-26954-1, ISBN (VHC Inc.) 0-89573-752-3
  10. ^ a b Quantum Mechanics, E. Abers, Pearson Ed., Addison Wesley, Prentice Hall Inc, 2004, ISBN 978-0-13-146100-0
  11. ^ a b c Quantum Field Theory, D. McMahon, Mc Graw Hill (US), 2008, ISBN 978-0-07-154382-8
  12. ^ Relativity, Gravitation, and Cosmology, R.J.A. Lambourne, Open University, Cambridge University Press, 2010, ISBN 978-0-521-13138-4
  13. ^ Arnolʹd, VI (1989). Mathematical methods of classical mechanics (2nd ed.). Springer. Chapter 8. ISBN 978-0-387-96890-2.
  14. ^ Doran, C; Lasenby, A (2003). Geometric algebra for physicists. Cambridge University Press. p. §12.3, pp. 432–439. ISBN 978-0-521-71595-9.
  15. ^ Gravitation, J.A. Wheeler, C. Misner, K.S. Thorne, W.H. Freeman & Co, 1973, ISBN 0-7167-0344-0

analytical, mechanics, theoretical, physics, mathematical, physics, analytical, mechanics, theoretical, mechanics, collection, closely, related, alternative, formulations, classical, mechanics, developed, many, scientists, mathematicians, during, 18th, century. In theoretical physics and mathematical physics analytical mechanics or theoretical mechanics is a collection of closely related alternative formulations of classical mechanics It was developed by many scientists and mathematicians during the 18th century and onward after Newtonian mechanics Since Newtonian mechanics considers vector quantities of motion particularly accelerations momenta forces of the constituents of the system an alternative name for the mechanics governed by Newton s laws and Euler s laws is vectorial mechanics By contrast analytical mechanics uses scalar properties of motion representing the system as a whole usually its total kinetic energy and potential energy not Newton s vectorial forces of individual particles 1 A scalar is a quantity whereas a vector is represented by quantity and direction The equations of motion are derived from the scalar quantity by some underlying principle about the scalar s variation Analytical mechanics takes advantage of a system s constraints to solve problems The constraints limit the degrees of freedom the system can have and can be used to reduce the number of coordinates needed to solve for the motion The formalism is well suited to arbitrary choices of coordinates known in the context as generalized coordinates The kinetic and potential energies of the system are expressed using these generalized coordinates or momenta and the equations of motion can be readily set up thus analytical mechanics allows numerous mechanical problems to be solved with greater efficiency than fully vectorial methods It does not always work for non conservative forces or dissipative forces like friction in which case one may revert to Newtonian mechanics Two dominant branches of analytical mechanics are Lagrangian mechanics using generalized coordinates and corresponding generalized velocities in configuration space and Hamiltonian mechanics using coordinates and corresponding momenta in phase space Both formulations are equivalent by a Legendre transformation on the generalized coordinates velocities and momenta therefore both contain the same information for describing the dynamics of a system There are other formulations such as Hamilton Jacobi theory Routhian mechanics and Appell s equation of motion All equations of motion for particles and fields in any formalism can be derived from the widely applicable result called the principle of least action One result is Noether s theorem a statement which connects conservation laws to their associated symmetries Analytical mechanics does not introduce new physics and is not more general than Newtonian mechanics Rather it is a collection of equivalent formalisms which have broad application In fact the same principles and formalisms can be used in relativistic mechanics and general relativity and with some modifications quantum mechanics and quantum field theory Analytical mechanics is used widely from fundamental physics to applied mathematics particularly chaos theory The methods of analytical mechanics apply to discrete particles each with a finite number of degrees of freedom They can be modified to describe continuous fields or fluids which have infinite degrees of freedom The definitions and equations have a close analogy with those of mechanics Contents 1 Motivation for analytical mechanics 2 Intrinsic motion 2 1 Generalized coordinates and constraints 2 2 Difference between curvillinear and generalized coordinates 2 3 D Alembert s principle 2 4 Holonomic constraints 3 Lagrangian mechanics 4 Hamiltonian mechanics 5 Properties of the Lagrangian and Hamiltonian functions 6 Principle of least action 7 Hamiltonian Jacobi mechanics 8 Routhian mechanics 9 Appellian mechanics 10 Extensions to classical field theory 11 Symmetry conservation and Noether s theorem 12 See also 13 References and notesMotivation for analytical mechanics EditThis section has multiple issues Please help improve it or discuss these issues on the talk page Learn how and when to remove these template messages The template below Overly detailed is being considered for merging See templates for discussion to help reach a consensus This section may contain an excessive amount of intricate detail that may interest only a particular audience Please help by spinning off or relocating any relevant information and removing excessive detail that may be against Wikipedia s inclusion policy February 2023 Learn how and when to remove this template message This section needs additional citations for verification Please help improve this article by adding citations to reliable sources in this section Unsourced material may be challenged and removed Find sources Analytical mechanics news newspapers books scholar JSTOR February 2023 Learn how and when to remove this template message Learn how and when to remove this template message The goal of mechanical theory is to solve mechanical problems such as arise in physics and engineering Starting from a physical system such as a mechanism or a star system a mathematical model is developed in the form of a differential equation The model can be solved numerically or analytically to determine the motion of the system Newton s vectorial approach to mechanics describes motion with the help of vector quantities such as force velocity acceleration These quantities characterise the motion of a body idealised as a mass point or a particle understood as a single point to which a mass is attached Newton s method has been successfully applied to a wide range of physical problems including the motion of a particle in Earth s gravitational field and the motion of planets around the Sun In this approach Newton s laws describe the motion by a differential equation and then the problem is reduced to the solving of that equation When a mechanical system contains many particles however such as a complex mechanism or a fluid Newton s approach is difficult to apply Using a Newtonian approach is possible under proper precautions namely isolating each single particle from the others and determining all the forces acting on it Such analysis is cumbersome even in relatively simple systems Newton thought that his third law action equals reaction would take care of all complications citation needed This is false even for such simple system as rotations of a solid body clarification needed In more complicated systems the vectorial approach cannot give an adequate description The analytical approach simplifies problems by treating mechanical systems as ensembles of particles that interact with each other rather considering each particle as an isolated unit In the vectorial approach forces must be determined individually for each particle whereas in the analytical approach it is enough to know one single function which contains implicitly all the forces acting on and in the system Such simplification is often done using certain kinematic conditions which are stated a priori However the analytical treatment does not require the knowledge of these forces and takes these kinematic conditions for granted citation needed Still deriving the equations of motion of a complicated mechanical system requires a unifying basis from which they follow clarification needed This is provided by various variational principles behind each set of equations there is a principle that expresses the meaning of the entire set Given a fundamental and universal quantity called action the principle that this action be stationary under small variation of some other mechanical quantity generates the required set of differential equations The statement of the principle does not require any special coordinate system and all results are expressed in generalized coordinates This means that the analytical equations of motion do not change upon a coordinate transformation an invariance property that is lacking in the vectorial equations of motion 2 It is not altogether clear what is meant by solving a set of differential equations A problem is regarded as solved when the particles coordinates at time t are expressed as simple functions of t and of parameters defining the initial positions and velocities However simple function is not a well defined concept nowadays a function f t is not regarded as a formal expression in t elementary function as in the time of Newton but most generally as a quantity determined by t and it is not possible to draw a sharp line between simple and not simple functions If one speaks merely of functions then every mechanical problem is solved as soon as it has been well stated in differential equations because given the initial conditions and t determine the coordinates at t This is a fact especially at present with the modern methods of computer modelling which provide arithmetical solutions to mechanical problems to any desired degree of accuracy the differential equations being replaced by difference equations Still though lacking precise definitions it is obvious that the two body problem has a simple solution whereas the three body problem has not The two body problem is solved by formulas involving parameters their values can be changed to study the class of all solutions that is the mathematical structure of the problem Moreover an accurate mental or drawn picture can be made for the motion of two bodies and it can be as real and accurate as the real bodies moving and interacting In the three body problem parameters can also be assigned specific values however the solution at these assigned values or a collection of such solutions does not reveal the mathematical structure of the problem As in many other problems the mathematical structure can be elucidated only by examining the differential equations themselves Analytical mechanics aims at even more not at understanding the mathematical structure of a single mechanical problem but that of a class of problems so wide that they encompass most of mechanics It concentrates on systems to which Lagrangian or Hamiltonian equations of motion are applicable and that include a very wide range of problems indeed 3 Development of analytical mechanics has two objectives i increase the range of solvable problems by developing standard techniques with a wide range of applicability and ii understand the mathematical structure of mechanics In the long run however ii can help i more than a concentration on specific problems for which methods have already been designed Intrinsic motion EditGeneralized coordinates and constraints Edit In Newtonian mechanics one customarily uses all three Cartesian coordinates or other 3D coordinate system to refer to a body s position during its motion In physical systems however some structure or other system usually constrains the body s motion from taking certain directions and pathways So a full set of Cartesian coordinates is often unneeded as the constraints determine the evolving relations among the coordinates which relations can be modeled by equations corresponding to the constraints In the Lagrangian and Hamiltonian formalisms the constraints are incorporated into the motion s geometry reducing the number of coordinates to the minimum needed to model the motion These are known as generalized coordinates denoted qi i 1 2 3 4 Difference between curvillinear and generalized coordinates Edit Generalized coordinates incorporate constraints on the system There is one generalized coordinate qi for each degree of freedom for convenience labelled by an index i 1 2 N i e each way the system can change its configuration as curvilinear lengths or angles of rotation Generalized coordinates are not the same as curvilinear coordinates The number of curvilinear coordinates equals the dimension of the position space in question usually 3 for 3d space while the number of generalized coordinates is not necessarily equal to this dimension constraints can reduce the number of degrees of freedom hence the number of generalized coordinates required to define the configuration of the system following the general rule 5 dimension of position space usually 3 number of constituents of system particles number of constraints number of degrees of freedom number of generalized coordinates For a system with N degrees of freedom the generalized coordinates can be collected into an N tuple q q 1 q 2 q N displaystyle mathbf q q 1 q 2 dots q N nbsp and the time derivative here denoted by an overdot of this tuple give the generalized velocities d q d t d q 1 d t d q 2 d t d q N d t q q 1 q 2 q N displaystyle frac d mathbf q dt left frac dq 1 dt frac dq 2 dt dots frac dq N dt right equiv mathbf dot q dot q 1 dot q 2 dots dot q N nbsp D Alembert s principle Edit The foundation which the subject is built on is D Alembert s principle This principle states that infinitesimal virtual work done by a force across reversible displacements is zero which is the work done by a force consistent with ideal constraints of the system The idea of a constraint is useful since this limits what the system can do and can provide steps to solving for the motion of the system The equation for D Alembert s principle is d W Q d q 0 displaystyle delta W boldsymbol mathcal Q cdot delta mathbf q 0 nbsp where Q Q 1 Q 2 Q N displaystyle boldsymbol mathcal Q mathcal Q 1 mathcal Q 2 dots mathcal Q N nbsp are the generalized forces script Q instead of ordinary Q is used here to prevent conflict with canonical transformations below and q are the generalized coordinates This leads to the generalized form of Newton s laws in the language of analytical mechanics Q d d t T q T q displaystyle boldsymbol mathcal Q frac d dt left frac partial T partial mathbf dot q right frac partial T partial mathbf q nbsp where T is the total kinetic energy of the system and the notation q q 1 q 2 q N displaystyle frac partial partial mathbf q left frac partial partial q 1 frac partial partial q 2 dots frac partial partial q N right nbsp is a useful shorthand see matrix calculus for this notation Holonomic constraints Edit If the curvilinear coordinate system is defined by the standard position vector r and if the position vector can be written in terms of the generalized coordinates q and time t in the form r r q t t displaystyle mathbf r mathbf r mathbf q t t nbsp and this relation holds for all times t then q are called Holonomic constraints 6 Vector r is explicitly dependent on t in cases when the constraints vary with time not just because of q t For time independent situations the constraints are also called scleronomic for time dependent cases they are called rheonomic 5 Lagrangian mechanics EditLagrangian and Euler Lagrange equationsThe introduction of generalized coordinates and the fundamental Lagrangian function L q q t T q q t V q q t displaystyle L mathbf q mathbf dot q t T mathbf q mathbf dot q t V mathbf q mathbf dot q t nbsp where T is the total kinetic energy and V is the total potential energy of the entire system then either following the calculus of variations or using the above formula lead to the Euler Lagrange equations d d t L q L q displaystyle frac d dt left frac partial L partial mathbf dot q right frac partial L partial mathbf q nbsp which are a set of N second order ordinary differential equations one for each qi t This formulation identifies the actual path followed by the motion as a selection of the path over which the time integral of kinetic energy is least assuming the total energy to be fixed and imposing no conditions on the time of transit Configuration spaceThe Lagrangian formulation uses the configuration space of the system the set of all possible generalized coordinates C q R N displaystyle mathcal C mathbf q in mathbb R N nbsp where R N displaystyle mathbb R N nbsp is N dimensional real space see also set builder notation The particular solution to the Euler Lagrange equations is called a configuration path or trajectory i e one particular q t subject to the required initial conditions The general solutions form a set of possible configurations as functions of time q t R N t 0 t R C displaystyle mathbf q t in mathbb R N t geq 0 t in mathbb R subseteq mathcal C nbsp The configuration space can be defined more generally and indeed more deeply in terms of topological manifolds and the tangent bundle Hamiltonian mechanics EditHamiltonian and Hamilton s equationsThe Legendre transformation of the Lagrangian replaces the generalized coordinates and velocities q q with q p the generalized coordinates and the generalized momenta conjugate to the generalized coordinates p L q L q 1 L q 2 L q N p 1 p 2 p N displaystyle mathbf p frac partial L partial mathbf dot q left frac partial L partial dot q 1 frac partial L partial dot q 2 cdots frac partial L partial dot q N right p 1 p 2 cdots p N nbsp and introduces the Hamiltonian which is in terms of generalized coordinates and momenta H q p t p q L q q t displaystyle H mathbf q mathbf p t mathbf p cdot mathbf dot q L mathbf q mathbf dot q t nbsp where displaystyle cdot nbsp denotes the dot product also leading to Hamilton s equations p H q q H p displaystyle mathbf dot p frac partial H partial mathbf q quad mathbf dot q frac partial H partial mathbf p nbsp which are now a set of 2N first order ordinary differential equations one for each qi t and pi t Another result from the Legendre transformation relates the time derivatives of the Lagrangian and Hamiltonian d H d t L t displaystyle frac dH dt frac partial L partial t nbsp which is often considered one of Hamilton s equations of motion additionally to the others The generalized momenta can be written in terms of the generalized forces in the same way as Newton s second law p Q displaystyle mathbf dot p boldsymbol mathcal Q nbsp Generalized momentum spaceAnalogous to the configuration space the set of all momenta is the momentum space technically in this context generalized momentum space M p R N displaystyle mathcal M mathbf p in mathbb R N nbsp Momentum space also refers to k space the set of all wave vectors given by De Broglie relations as used in quantum mechanics and theory of waves this is not referred to in this context Phase spaceThe set of all positions and momenta form the phase space P C M q p R 2 N displaystyle mathcal P mathcal C times mathcal M mathbf q mathbf p in mathbb R 2N nbsp that is the Cartesian product of the configuration space and generalized momentum space A particular solution to Hamilton s equations is called a phase path a particular curve q t p t subject to the required initial conditions The set of all phase paths the general solution to the differential equations is the phase portrait q t p t R 2 N t 0 t R P displaystyle mathbf q t mathbf p t in mathbb R 2N t geq 0 t in mathbb R subseteq mathcal P nbsp The Poisson bracketAll dynamical variables can be derived from position q momentum p and time t and written as a function of these A A q p t If A q p t and B q p t are two scalar valued dynamical variables the Poisson bracket is defined by the generalized coordinates and momenta A B A B q p A q B p A p B q k A q k B p k A p k B q k displaystyle begin aligned A B equiv A B mathbf q mathbf p amp frac partial A partial mathbf q cdot frac partial B partial mathbf p frac partial A partial mathbf p cdot frac partial B partial mathbf q amp equiv sum k frac partial A partial q k frac partial B partial p k frac partial A partial p k frac partial B partial q k end aligned nbsp Calculating the total derivative of one of these say A and substituting Hamilton s equations into the result leads to the time evolution of A d A d t A H A t displaystyle frac dA dt A H frac partial A partial t nbsp This equation in A is closely related to the equation of motion in the Heisenberg picture of quantum mechanics in which classical dynamical variables become quantum operators indicated by hats and the Poisson bracket is replaced by the commutator of operators via Dirac s canonical quantization A B 1 i ℏ A B displaystyle A B rightarrow frac 1 i hbar hat A hat B nbsp Properties of the Lagrangian and Hamiltonian functions EditFollowing are overlapping properties between the Lagrangian and Hamiltonian functions 5 7 All the individual generalized coordinates qi t velocities q i t and momenta pi t for every degree of freedom are mutually independent Explicit time dependence of a function means the function actually includes time t as a variable in addition to the q t p t not simply as a parameter through q t and p t which would mean explicit time independence The Lagrangian is invariant under addition of the total time derivative of any function of q andt that is L L d d t F q t displaystyle L L frac d dt F mathbf q t nbsp so each LagrangianLandL describe exactly the same motion In other words the Lagrangian of a system is not unique Analogously the Hamiltonian is invariant under addition of the partial time derivative of any function of q p and t that is K H t G q p t displaystyle K H frac partial partial t G mathbf q mathbf p t nbsp K is a frequently used letter in this case This property is used in canonical transformations see below If the Lagrangian is independent of some generalized coordinates then the generalized momenta conjugate to those coordinates are constants of the motion i e are conserved this immediately follows from Lagrange s equations L q j 0 d p j d t d d t L q j 0 displaystyle frac partial L partial q j 0 rightarrow frac dp j dt frac d dt frac partial L partial dot q j 0 nbsp Such coordinates are cyclic or ignorable It can be shown that the Hamiltonian is also cyclic in exactly the same generalized coordinates If the Lagrangian is time independent the Hamiltonian is also time independent i e both are constant in time If the kinetic energy is a homogeneous function of degree 2 of the generalized velocities and the Lagrangian is explicitly time independent then T l q i 2 l q j l q k q l 2 T q i 2 q j q k q L q q displaystyle T lambda dot q i 2 lambda dot q j lambda dot q k mathbf q lambda 2 T dot q i 2 dot q j dot q k mathbf q quad L mathbf q mathbf dot q nbsp where l is a constant then the Hamiltonian will be the total conserved energy equal to the total kinetic and potential energies of the system H T V E displaystyle H T V E nbsp This is the basis for the Schrodinger equation inserting quantum operators directly obtains it Principle of least action Edit nbsp As the system evolves q traces a path through configuration space only some are shown The path taken by the system red has a stationary action dS 0 under small changes in the configuration of the system dq 8 Action is another quantity in analytical mechanics defined as a functional of the Lagrangian S t 1 t 2 L q q t d t displaystyle mathcal S int t 1 t 2 L mathbf q mathbf dot q t dt nbsp A general way to find the equations of motion from the action is the principle of least action 9 d S d t 1 t 2 L q q t d t 0 displaystyle delta mathcal S delta int t 1 t 2 L mathbf q mathbf dot q t dt 0 nbsp where the departure t1 and arrival t2 times are fixed 1 The term path or trajectory refers to the time evolution of the system as a path through configuration space C displaystyle mathcal C nbsp in other words q t tracing out a path in C displaystyle mathcal C nbsp The path for which action is least is the path taken by the system From this principle all equations of motion in classical mechanics can be derived This approach can be extended to fields rather than a system of particles see below and underlies the path integral formulation of quantum mechanics 10 11 and is used for calculating geodesic motion in general relativity 12 Hamiltonian Jacobi mechanics EditCanonical transformationsThe invariance of the Hamiltonian under addition of the partial time derivative of an arbitrary function of p q and t allows the Hamiltonian in one set of coordinates q and momenta p to be transformed into a new set Q Q q p t and P P q p t in four possible ways K Q P t H q p t t G 1 q Q t K Q P t H q p t t G 2 q P t K Q P t H q p t t G 3 p Q t K Q P t H q p t t G 4 p P t displaystyle begin aligned amp K mathbf Q mathbf P t H mathbf q mathbf p t frac partial partial t G 1 mathbf q mathbf Q t amp K mathbf Q mathbf P t H mathbf q mathbf p t frac partial partial t G 2 mathbf q mathbf P t amp K mathbf Q mathbf P t H mathbf q mathbf p t frac partial partial t G 3 mathbf p mathbf Q t amp K mathbf Q mathbf P t H mathbf q mathbf p t frac partial partial t G 4 mathbf p mathbf P t end aligned nbsp With the restriction on P and Q such that the transformed Hamiltonian system is P K Q Q K P displaystyle mathbf dot P frac partial K partial mathbf Q quad mathbf dot Q frac partial K partial mathbf P nbsp the above transformations are called canonical transformations each function Gn is called a generating function of the nth kind or type n The transformation of coordinates and momenta can allow simplification for solving Hamilton s equations for a given problem The choice of Q and P is completely arbitrary but not every choice leads to a canonical transformation One simple criterion for a transformation q Q and p P to be canonical is the Poisson bracket be unity Q i P i 1 displaystyle Q i P i 1 nbsp for all i 1 2 N If this does not hold then the transformation is not canonical 5 The Hamilton Jacobi equationBy setting the canonically transformed Hamiltonian K 0 and the type 2 generating function equal to Hamilton s principal function also the action S displaystyle mathcal S nbsp plus an arbitrary constant C G 2 q t S q t C displaystyle G 2 mathbf q t mathcal S mathbf q t C nbsp the generalized momenta become p S q displaystyle mathbf p frac partial mathcal S partial mathbf q nbsp and P is constant then the Hamiltonian Jacobi equation HJE can be derived from the type 2 canonical transformation H S t displaystyle H frac partial mathcal S partial t nbsp where H is the Hamiltonian as before H H q p t H q S q t displaystyle H H mathbf q mathbf p t H left mathbf q frac partial mathcal S partial mathbf q t right nbsp Another related function is Hamilton s characteristic function W q S q t E t displaystyle W mathbf q mathcal S mathbf q t Et nbsp used to solve the HJE by additive separation of variables for a time independent Hamiltonian H The study of the solutions of the Hamilton Jacobi equations leads naturally to the study of symplectic manifolds and symplectic topology 13 14 In this formulation the solutions of the Hamilton Jacobi equations are the integral curves of Hamiltonian vector fields Routhian mechanics EditRouthian mechanics is a hybrid formulation of Lagrangian and Hamiltonian mechanics not often used but especially useful for removing cyclic coordinates If the Lagrangian of a system has s cyclic coordinates q q1 q2 qs with conjugate momenta p p1 p2 ps with the rest of the coordinates non cyclic and denoted z z1 z1 zN s they can be removed by introducing the Routhian R p q L q p z z displaystyle R mathbf p cdot mathbf dot q L mathbf q mathbf p boldsymbol zeta dot boldsymbol zeta nbsp which leads to a set of 2s Hamiltonian equations for the cyclic coordinates q q R p p R q displaystyle dot mathbf q frac partial R partial mathbf p quad dot mathbf p frac partial R partial mathbf q nbsp and N s Lagrangian equations in the non cyclic coordinates z d d t R z R z displaystyle frac d dt frac partial R partial dot boldsymbol zeta frac partial R partial boldsymbol zeta nbsp Set up in this way although the Routhian has the form of the Hamiltonian it can be thought of a Lagrangian with N s degrees of freedom The coordinates q do not have to be cyclic the partition between which coordinates enter the Hamiltonian equations and those which enter the Lagrangian equations is arbitrary It is simply convenient to let the Hamiltonian equations remove the cyclic coordinates leaving the non cyclic coordinates to the Lagrangian equations of motion Appellian mechanics EditAppell s equation of motion involve generalized accelerations the second time derivatives of the generalized coordinates a r q r d 2 q r d t 2 displaystyle alpha r ddot q r frac d 2 q r dt 2 nbsp as well as generalized forces mentioned above in D Alembert s principle The equations are Q r S a r S 1 2 k 1 N m k a k 2 displaystyle mathcal Q r frac partial S partial alpha r quad S frac 1 2 sum k 1 N m k mathbf a k 2 nbsp where a k r k d 2 r k d t 2 displaystyle mathbf a k ddot mathbf r k frac d 2 mathbf r k dt 2 nbsp is the acceleration of the k particle the second time derivative of its position vector Each acceleration ak is expressed in terms of the generalized accelerations ar likewise each rk are expressed in terms the generalized coordinates qr Extensions to classical field theory EditLagrangian field theoryGeneralized coordinates apply to discrete particles For N scalar fields fi r t where i 1 2 N the Lagrangian density is a function of these fields and their space and time derivatives and possibly the space and time coordinates themselves L L ϕ 1 ϕ 2 ϕ 1 ϕ 2 t ϕ 1 t ϕ 2 r t displaystyle mathcal L mathcal L phi 1 phi 2 dots nabla phi 1 nabla phi 2 dots partial t phi 1 partial t phi 2 ldots mathbf r t nbsp and the Euler Lagrange equations have an analogue for fields m L m ϕ i L ϕ i displaystyle partial mu left frac partial mathcal L partial partial mu phi i right frac partial mathcal L partial phi i nbsp where m denotes the 4 gradient and the summation convention has been used For N scalar fields these Lagrangian field equations are a set of N second order partial differential equations in the fields which in general will be coupled and nonlinear This scalar field formulation can be extended to vector fields tensor fields and spinor fields The Lagrangian is the volume integral of the Lagrangian density 11 15 L V L d V displaystyle L int mathcal V mathcal L dV nbsp Originally developed for classical fields the above formulation is applicable to all physical fields in classical quantum and relativistic situations such as Newtonian gravity classical electromagnetism general relativity and quantum field theory It is a question of determining the correct Lagrangian density to generate the correct field equation Hamiltonian field theoryThe corresponding momentum field densities conjugate to the N scalar fields fi r t are 11 p i r t L ϕ i ϕ i ϕ i t displaystyle pi i mathbf r t frac partial mathcal L partial dot phi i quad dot phi i equiv frac partial phi i partial t nbsp where in this context the overdot denotes a partial time derivative not a total time derivative The Hamiltonian density H displaystyle mathcal H nbsp is defined by analogy with mechanics H ϕ 1 ϕ 2 p 1 p 2 r t i 1 N ϕ i r t p i r t L displaystyle mathcal H phi 1 phi 2 ldots pi 1 pi 2 ldots mathbf r t sum i 1 N dot phi i mathbf r t pi i mathbf r t mathcal L nbsp The equations of motion are ϕ i d H d p i p i d H d ϕ i displaystyle dot phi i frac delta mathcal H delta pi i quad dot pi i frac delta mathcal H delta phi i nbsp where the variational derivative d d ϕ i ϕ i m m ϕ i displaystyle frac delta delta phi i frac partial partial phi i partial mu frac partial partial partial mu phi i nbsp must be used instead of merely partial derivatives For N fields these Hamiltonian field equations are a set of 2N first order partial differential equations which in general will be coupled and nonlinear Again the volume integral of the Hamiltonian density is the HamiltonianH V H d V displaystyle H int mathcal V mathcal H dV nbsp Symmetry conservation and Noether s theorem EditSymmetry transformations in classical space and timeEach transformation can be described by an operator i e function acting on the position r or momentum p variables to change them The following are the cases when the operator does not change r or p i e symmetries 10 Transformation Operator Position MomentumTranslational symmetry X a displaystyle X mathbf a nbsp r r a displaystyle mathbf r rightarrow mathbf r mathbf a nbsp p p displaystyle mathbf p rightarrow mathbf p nbsp Time translation U t 0 displaystyle U t 0 nbsp r t r t t 0 displaystyle mathbf r t rightarrow mathbf r t t 0 nbsp p t p t t 0 displaystyle mathbf p t rightarrow mathbf p t t 0 nbsp Rotational invariance R n 8 displaystyle R mathbf hat n theta nbsp r R n 8 r displaystyle mathbf r rightarrow R mathbf hat n theta mathbf r nbsp p R n 8 p displaystyle mathbf p rightarrow R mathbf hat n theta mathbf p nbsp Galilean transformations G v displaystyle G mathbf v nbsp r r v t displaystyle mathbf r rightarrow mathbf r mathbf v t nbsp p p m v displaystyle mathbf p rightarrow mathbf p m mathbf v nbsp Parity P displaystyle P nbsp r r displaystyle mathbf r rightarrow mathbf r nbsp p p displaystyle mathbf p rightarrow mathbf p nbsp T symmetry T displaystyle T nbsp r r t displaystyle mathbf r rightarrow mathbf r t nbsp p p t displaystyle mathbf p rightarrow mathbf p t nbsp where R n 8 is the rotation matrix about an axis defined by the unit vector n and angle 8 Noether s theoremNoether s theorem states that a continuous symmetry transformation of the action corresponds to a conservation law i e the action and hence the Lagrangian does not change under a transformation parameterized by a parameter s L q s t q s t L q t q t displaystyle L q s t dot q s t L q t dot q t nbsp the Lagrangian describes the same motion independent of s which can be length angle of rotation or time The corresponding momenta to q will be conserved 5 See also EditLagrangian mechanics Hamiltonian mechanics Theoretical mechanics Classical mechanics Dynamics Nazariy Mexanika Hamilton Jacobi equation Hamilton s principle Kinematics Kinetics physics Non autonomous mechanics Udwadia Kalaba equation neutrality is disputed References and notes Edit a b Lanczos Cornelius 1970 The variational principles of mechanics 4th ed New York Dover Publications Inc Introduction pp xxi xxix ISBN 0 486 65067 7 Lanczos Cornelius 1970 The variational principles of mechanics 4th ed New York Dover Publications Inc pp 3 6 ISBN 978 0 486 65067 8 Synge J L 1960 Classical dynamics In Flugge S ed Principles of Classical Mechanics and Field Theory Prinzipien der Klassischen Mechanik und Feldtheorie Encyclopedia of Physics Handbuch der Physik Vol 2 3 1 Berlin Heidelberg Springer Berlin Heidelberg doi 10 1007 978 3 642 45943 6 ISBN 978 3 540 02547 4 OCLC 165699220 The Road to Reality Roger Penrose Vintage books 2007 ISBN 0 679 77631 1 a b c d e Analytical Mechanics L N Hand J D Finch Cambridge University Press 2008 ISBN 978 0 521 57572 0 McGraw Hill Encyclopaedia of Physics 2nd Edition C B Parker 1994 ISBN 0 07 051400 3 Classical Mechanics T W B Kibble European Physics Series McGraw Hill UK 1973 ISBN 0 07 084018 0 Penrose R 2007 The Road to Reality Vintage books p 474 ISBN 978 0 679 77631 4 Encyclopaedia of Physics 2nd Edition R G Lerner G L Trigg VHC publishers 1991 ISBN Verlagsgesellschaft 3 527 26954 1 ISBN VHC Inc 0 89573 752 3 a b Quantum Mechanics E Abers Pearson Ed Addison Wesley Prentice Hall Inc 2004 ISBN 978 0 13 146100 0 a b c Quantum Field Theory D McMahon Mc Graw Hill US 2008 ISBN 978 0 07 154382 8 Relativity Gravitation and Cosmology R J A Lambourne Open University Cambridge University Press 2010 ISBN 978 0 521 13138 4 Arnolʹd VI 1989 Mathematical methods of classical mechanics 2nd ed Springer Chapter 8 ISBN 978 0 387 96890 2 Doran C Lasenby A 2003 Geometric algebra for physicists Cambridge University Press p 12 3 pp 432 439 ISBN 978 0 521 71595 9 Gravitation J A Wheeler C Misner K S Thorne W H Freeman amp Co 1973 ISBN 0 7167 0344 0 nbsp Wikimedia Commons has media related to Analytical mechanics Retrieved from https en wikipedia org w index php title Analytical mechanics amp oldid 1165186697, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.