fbpx
Wikipedia

Amanita virosa

Amanita virosa, commonly known in Europe as the destroying angel or the European destroying angel amanita,[1] is a deadly poisonous basidiomycete fungus, one of many in the genus Amanita. Occurring in Europe, A. virosa associates with various deciduous and coniferous trees. The large fruiting bodies (i.e., the mushrooms) appear in summer and autumn; the caps, stipes and gills are all white in colour.

Destroying angel
Scientific classification
Domain: Eukaryota
Kingdom: Fungi
Division: Basidiomycota
Class: Agaricomycetes
Order: Agaricales
Family: Amanitaceae
Genus: Amanita
Species:
A. virosa
Binomial name
Amanita virosa
(Fr.) Bertillon
Amanita virosa
Gills on hymenium
Cap is convex or flat
Hymenium is free
Stipe has a ring and volva
Spore print is white
Ecology is mycorrhizal
Edibility is deadly

Immature specimens of A. virosa resemble several edible species commonly consumed by humans, increasing the risk of accidental poisoning. Small specimens may resemble the common Portobello mushroom to non-experts, but just one cap of A. virosa is enough to kill an adult human.[2] The symptoms of poisoning generally come several hours afterwards, a fact which makes this fungus even more problematic. Along with its geographical namesakes, A. virosa is one of the most poisonous of all known poisonous mushrooms; its principal toxic constituent α-Amanitin damages the liver and kidneys, usually fatally.

Taxonomy edit

The common name of destroying angel is applied to several all-white species of poisonous Amanita, to this species in Europe and to Amanita bisporigera in eastern North America, and A. ocreata in the west. A. virosa was first collected and described by Elias Magnus Fries in Sweden. Its specific epithet virosa derived from the Latin adjective virōsus 'toxic'[3][4] (compare virus).

Amanita virosa is very similar to several other species of all-white amanitas known as destroying angels, which has led to confusion over which occurs where. This specific name has been applied to all-white destroying angels occurring in North America, though others propose these all belong to Amanita bisporigera and other rarer species instead. There has been some question over whether Amanita verna is a valid species.

Description edit

 
Mature specimen of Amanita virosa showing veil ring on stipe

Amanita virosa first appears as a white egg-shaped object covered with a universal veil. As it grows, the mushroom breaks free, though there may be ragged patches of veil at the cap edges. The cap is initially conical with inturned edges, before becoming hemispherical and flattening with a diameter up to 12 cm (4+34 in). The cap often has a distinctive boss; it is able to be peeled and white, though the centre may be ivory in colour. The crowded free gills are white, as is the stipe and volva. The thin stipe is up to 15 cm (5.9 in) tall, with a hanging grooved ring. The spore print is white and the spores egg-shaped conical and 7–10 μm long. They stain blue with iodine. The flesh is white, with a taste reminiscent of radishes, and turns bright yellow with sodium hydroxide.[5]

This fungus highlights the danger of picking immature fungi as it resembles the edible mushrooms Agaricus arvensis and A. campestris, and the puffballs (Lycoperdon spp.) before the caps have opened and the gills have become visible.

The ability to be peeled has been taken as a sign of edibility in mushrooming, which is a potentially lethal mistake in this species. It is unclear why this fungus, which more closely resembles edible species, has been implicated in fewer deaths than the death cap, though its rarity may contribute to this.[6]

Distribution and habitat edit

Amanita virosa is found in mixed woodland, especially in association with beech, on mossy ground in summer and autumn.[5] Most Amanita species form ectomycorrhizal relationships with the roots of certain trees.

Toxicity edit

 
Young fruiting bodies showing conical caps

Amanita virosa is highly toxic, and has been responsible for severe mushroom poisonings.[2] Like the closely related death cap (A. phalloides), it contains the highly toxic amatoxins, as well as phallotoxins. Some authorities strongly advise against putting these fungi in the same basket with those collected for the table and to avoid touching them.[7][8]

Amatoxins consist of at least eight compounds with a similar structure, that of eight amino-acid rings; they were isolated in 1941 by Heinrich O. Wieland and Rudolf Hallermayer of the University of Munich.[9] Of the amatoxins, α-Amanitin is the chief component and along with β-Amanitin is likely responsible for the toxic effects.[10][11] Their major toxic mechanism is the inhibition of RNA polymerase II, a vital enzyme in the synthesis of messenger RNA (mRNA), microRNA, and small nuclear RNA (snRNA). Without mRNA essential protein synthesis and hence cell metabolism grind to a halt and the cell dies.[12] The liver is the principal organ affected, as it is the organ which is first encountered after absorption in the gastrointestinal tract, though other organs, especially the kidneys, are susceptible.[2]

The phallotoxins consist of at least seven compounds, all of which have seven similar peptide rings. Phalloidin was isolated in 1937 by Feodor Lynen, Heinrich Wieland's student and son-in-law, and Ulrich Wieland of the University of Munich. Though phallotoxins are highly toxic to liver cells,[13] they have since been found to have little input into the destroying angel's toxicity as they are not absorbed through the gut.[12] Furthermore, phalloidin is also found in the edible (and sought-after) Blusher (Amanita rubescens).[9] Another group of minor active peptides are the virotoxins, which consist of six similar monocyclic heptapeptides.[14] Like the phallotoxins they do not exert any acute toxicity after ingestion in humans.[12]

Treatment edit

Consumption of Amanita virosa is a medical emergency requiring hospitalization. There are four main categories of therapy for poisoning: preliminary medical care, supportive measures, specific treatments, and liver transplantation.[15]

Preliminary care consists of gastric decontamination with either activated carbon or gastric lavage. However, due to the delay between ingestion and the first symptoms of poisoning, it is commonplace for patients to arrive for treatment many hours after ingestion, potentially reducing the efficacy of these interventions.[15][16] Supportive measures are directed towards treating the dehydration which results from fluid loss during the gastrointestinal phase of intoxication and correction of metabolic acidosis, hypoglycemia, electrolyte imbalances, and impaired coagulation.[15]

No definitive antidote for amatoxin poisoning is available, but some specific treatments have been shown to improve survivability. High-dose continuous intravenous penicillin G has been reported to be of benefit, though the exact mechanism is unknown,[17] and trials with cephalosporins show promise.[2][18] There is some evidence that intravenous silibinin, an extract from the blessed milk thistle (Silybum marianum), may be beneficial in reducing the effects of death cap poisoning. Silibinin prevents the uptake of amatoxins by hepatocytes, thereby protecting undamaged hepatic tissue; it also stimulates DNA-dependent RNA polymerases, leading to an increase in RNA synthesis.[19][20][21] N-acetylcysteine has shown promise in combination with other therapies.[22] Animal studies indicate the amatoxins deplete hepatic glutathione;[23] N-acetylcysteine serves as a glutathione precursor and may therefore prevent reduced glutathione levels and subsequent liver damage.[24] None of the antidotes used have undergone prospective, randomized clinical trials, and only anecdotal support is available. Silibinin and N-acetylcysteine appear to be the therapies with the most potential benefit.[15] Repeated doses of activated carbon may be helpful by absorbing any toxins that are returned to the gastrointestinal tract following enterohepatic circulation.[25] Other methods of enhancing the elimination of the toxins have been trialed; techniques such as hemodialysis,[26] hemoperfusion,[27] plasmapheresis,[28] and peritoneal dialysis[29] have occasionally yielded success but overall do not appear to improve outcome.[12]

In patients developing liver failure, a liver transplant is often the only option to prevent death. Liver transplants have become a well-established option in amatoxin poisoning.[30][31][32] This is a complicated issue, however, as transplants themselves may have significant complications and mortality; patients require long-term immunosuppression to maintain the transplant.[15] That being the case, there has been a reassessment of criteria such as onset of symptoms, prothrombin time (PTT), serum bilirubin, and presence of encephalopathy for determining at what point a transplant becomes necessary for survival.[33][34][35] Evidence suggests that, although survival rates have improved with modern medical treatment, in patients with moderate to severe poisoning up to half of those who did recover suffered permanent liver damage.[2] However, a follow-up study has shown that most survivors recover completely without any sequelae if treated within 36 hours of mushroom ingestion.[36]

Potential uses edit

Amanita virosa extract has antibacterial efficacy against Pseudomonas aeruginosa and Staphylococcus aureus in vitro.[37] It also has shown inhibitory activity on thrombin.[38]

See also edit

References edit

  1. ^ "Standardized Common Names for Wild Species in Canada". National General Status Working Group. 2020.
  2. ^ a b c d e Benjamin, Denis R (1995). Mushrooms: Poisons and Panaceas : a Handbook for Naturalists, Mycologists, and Physicians. New York: W.H. Freeman. pp. 198–241. ISBN 978-0716726494.
  3. ^ Simpson, D.P. (1979). Cassell's Latin Dictionary (5 ed.). London: Cassell Ltd. p. 883. ISBN 978-0-304-52257-6.
  4. ^ Nilson, Sven; Olle Persson (1977). Fungi of Northern Europe 2: Gill-Fungi. Penguin. p. 54. ISBN 978-0-14-063006-0.
  5. ^ a b Zeitlmayr, Linus (1976). Wild Mushrooms:An Illustrated Handbook. Hertfordshire: Garden City Press. pp. 62–63. ISBN 978-0-584-10324-3.
  6. ^ Ramsbottom J (1953). Mushrooms & Toadstools. Collins. p. 39. ISBN 978-1-870630-09-2.
  7. ^ Jordan, Peter; Wheeler, Steven (2001). The Ultimate Mushroom Book. London: Hermes House. p. 99. ISBN 978-1-85967-092-7.
  8. ^ Carluccio A (2003). The Complete Mushroom Book. London: Quadrille. p. 224. ISBN 978-1-84400-040-1.
  9. ^ a b Litten, W. (March 1975). "The most poisonous mushrooms". Scientific American. 232 (3): 90–101. Bibcode:1975SciAm.232c..90L. doi:10.1038/scientificamerican0375-90. PMID 1114308.
  10. ^ Köppel C (1993). "Clinical symptomatology and management of mushroom poisoning". Toxicon. 31 (12): 1513–40. doi:10.1016/0041-0101(93)90337-I. PMID 8146866.
  11. ^ Dart, RC (2004). "Mushrooms". Medical toxicology. Philadelphia: Williams & Wilkins. pp. 1719–35. ISBN 978-0-7817-2845-4.
  12. ^ a b c d Karlson-Stiber C, Persson H (2003). "Cytotoxic fungi - an overview". Toxicon. 42 (4): 339–49. doi:10.1016/S0041-0101(03)00238-1. PMID 14505933.
  13. ^ Wieland T, Govindan VM (1974). "Phallotoxins bind to actins". FEBS Lett. 46 (1): 351–53. doi:10.1016/0014-5793(74)80404-7. PMID 4429639. S2CID 39255487.
  14. ^ Vetter, János (January 1998). "Toxins of Amanita phalloides". Toxicon. 36 (1): 13–24. doi:10.1016/S0041-0101(97)00074-3. PMID 9604278.
  15. ^ a b c d e Enjalbert F, Rapior S, Nouguier-Soulé J, Guillon S, Amouroux N, Cabot C (2002). "Treatment of amatoxin poisoning: 20-year retrospective analysis". Journal of Toxicology: Clinical Toxicology. 40 (6): 715–57. doi:10.1081/CLT-120014646. PMID 12475187. S2CID 22919515.
  16. ^ Vesconi S, Langer M, Iapichino G, Costantino D, Busi C, Fiume L (1985). "Therapy of cytotoxic mushroom intoxication". Critical Care Medicine. 13 (5): 402–6. doi:10.1097/00003246-198505000-00007. PMID 3987318. S2CID 23016936.
  17. ^ Floerscheim, G.L.; Weber, O.; Tschumi, P.; Ulbrich, M. (August 1982). "Die klinische knollenblatterpilzvergiftung (Amanita Phalloides): prognostische faktoren und therapeutische massnahmen (Clinical death-cap (Amanita phalloides) poisoning: prognostic factors and therapeutic measures.)". Schweizerische Medizinische Wochenschrift (in German). 112 (34): 1164–77. PMID 6291147.
  18. ^ Neftel, K.; et al. (January 1988). "(Are cephalosporins more active than penicillin G in poisoning with the deadly Amanita?)". Schweizerische Medizinische Wochenschrift (in German). 118 (2): 49–51. PMID 3278370.
  19. ^ Hruby K, Csomos G, Fuhrmann M, Thaler H (1983). "Chemotherapy of Amanita phalloides poisoning with intravenous silibinin". Human Toxicology. 2 (2): 183–95. doi:10.1177/096032718300200203. PMID 6862461. S2CID 19805371.
  20. ^ Carducci, R.; et al. (May 1996). "Amanita_phalloides (cmd-click)">Silibinin and acute poisoning with Amanita phalloides". Minerva Anestesiologica (in Italian). 62 (5): 187–93. PMID 8937042.
  21. ^ Jahn, W. (1980). "Pharmacokinetics of {3H}-methyl-dehydroxymethyl-Amanitin in the isolated perfused rat liver, and the influence of several drugs". In Helmuth Faulstich, B. Kommerell & Theodore Wieland (ed.). Amanita toxins and poisoning. Baden-Baden: Witzstrock. pp. 80–85. ISBN 978-3-87921-132-6.
  22. ^ Montanini S, Sinardi D, Praticò C, Sinardi A, Trimarchi G (1999). "Use of acetylcysteine as the life-saving antidote in Amanita phalloides (death cap) poisoning. Case report on 11 patients". Arzneimittel-Forschung. 49 (12): 1044–7. doi:10.1055/s-0031-1300549. PMID 10635453. S2CID 40666108.
  23. ^ Kawaji A, Sone T, Natsuki R, Isobe M, Takabatake E, Yamaura Y (1990). "In vitro toxicity test of poisonous mushroom extracts with isolated rat hepatocytes". The Journal of Toxicological Sciences. 15 (3): 145–56. doi:10.2131/jts.15.145. PMID 2243367.
  24. ^ Chyka P, Butler A, Holliman B, Herman M (2000). "Utility of acetylcysteine in treating poisonings and adverse drug reactions". Drug Safety. 22 (2): 123–48. doi:10.2165/00002018-200022020-00005. PMID 10672895. S2CID 25061940.
  25. ^ Busi C, Fiume L, Costantino D, Langer M, Vesconi F (1979). "Amanita toxins in gastroduodenal fluid of patients poisoned by the mushroom, Amanita phalloides". New England Journal of Medicine. 300 (14): 800. doi:10.1056/NEJM197904053001418. PMID 423916.
  26. ^ Sabeel AI, Kurkus J, Lindholm T (1995). "Intensive hemodialysis and hemoperfusion treatment of Amanita mushroom poisoning". Mycopathologia. 131 (2): 107–14. doi:10.1007/BF01102888. PMID 8532053. S2CID 23001126.
  27. ^ Wauters JP, Rossel C, Farquet JJ (1978). "Amanita phalloides poisoning treated by early charcoal haemoperfusion". British Medical Journal. 2 (6150): 1465. doi:10.1136/bmj.2.6150.1465. PMC 1608737. PMID 719466.
  28. ^ Jander S, Bischoff J, Woodcock BG (2000). "Plasmapheresis in the treatment of Amanita phalloides poisoning: II. A review and recommendations". Therapeutic Apheresis. 4 (4): 308–12. doi:10.1046/j.1526-0968.2000.004004303.x. PMID 10975479.
  29. ^ Langer M, Vesconi S, Iapichino G, Costantino D, Radrizzani D (1980). "The early removal of amatoxins in the treatment of Amanita phalloides poisoning". Klinische Wochenschrift (in German). 58 (3): 117–23. doi:10.1007/BF01477268. PMID 7366125. S2CID 39522161.
  30. ^ Klein AS, Hart J, Brems JJ, Goldstein L, Lewin K, Busuttil RW (February 1989). "Amanita poisoning: treatment and the role of liver transplantation". American Journal of Medicine. 86 (2): 187–93. doi:10.1016/0002-9343(89)90267-2. PMID 2643869.
  31. ^ Pinson CW, Daya MR, Benner KG, Norton RL, Deveney KE, Ascher NL, Roberts JP, Lake JR, Kurkchubasche AG, Ragsdale JW (May 1990). "Liver transplantation for severe Amanita phalloides mushroom poisoning". American Journal of Surgery. 159 (5): 493–9. doi:10.1016/S0002-9610(05)81254-1. PMID 2334013.
  32. ^ Ganzert M, Felgenhauer N, Zilker T (2005). "Indication of liver transplantation following amatoxin intoxication". Journal of Hepatology. 42 (2): 202–9. doi:10.1016/j.jhep.2004.10.023. PMID 15664245.
  33. ^ O'grady, John G.; Alexander, Graeme J.M.; Hayllar, Karen M.; Williams, Roger (August 1989). "Early indicators of prognosis in fulminant hepatic failure". Gastroenterology. 97 (2): 439–445. doi:10.1016/0016-5085(89)90081-4. PMID 2490426.
  34. ^ Panaro, Fabrizio; Andorno, Enzo; Morelli, Nicola; Casaccia, Marco; Bottino, Giuliano; Ravazzoni, Ferruccio; Centanaro, Monica; Ornis, Sara; Valente, Umberto (April 2006). "Letter to the editor: Liver transplantation represents the optimal treatment for fulminant hepatic failure from Amanita phalloides poisoning". Transplant International. 19 (4): 344–45. doi:10.1111/j.1432-2277.2006.00275.x. PMID 16573553. S2CID 39474194.
  35. ^ Escudié L, Francoz C, Vinel JP, Moucari R, Cournot M, Paradis V, Sauvanet A, Belghiti J, Valla D, Bernuau J, Durand F (2007). "Amanita phalloides poisoning: reassessment of prognostic factors and indications for emergency liver transplantation". J. Hepatol. 46 (3): 466–73. doi:10.1016/j.jhep.2006.10.013. PMID 17188393.
  36. ^ Giannini L, Vannacci A, Missanelli A, Mastroianni R, Mannaioni PF, Moroni F, Masini E (2007). "Amatoxin poisoning: A 15-year retrospective analysis and follow-up evaluation of 105 patients". Clinical Toxicology. 45 (5): 539–42. doi:10.1080/15563650701365834. PMID 17503263. S2CID 37788880.
  37. ^ Janeš, Damjan; Kreft, Samo; Jurc, Maja; Seme, Katja; Štrukelj, Borut (2008). "Antibacterial Activity in Higher Fungi (Mushrooms) and Endophytic Fungi from Slovenia". Pharmaceutical Biology. 45 (9): 700. doi:10.1080/13880200701575189. S2CID 84940020.
  38. ^ Doljak, B.; Stegnar, M.; Urleb, U.; Kreft, S.; Umek, A.; Ciglarič, M.; Štrukelj, B.; Popovič, T. (2001). "Screening for selective thrombin inhibitors in mushrooms". Blood Coagulation and Fibrinolysis. 12 (2): 123–8. doi:10.1097/00001721-200103000-00006. PMID 11302474. S2CID 28411589.

Sources edit

  • Benjamin, Denis R. (1995). Mushrooms: poisons and panaceas — a handbook for naturalists, mycologists and physicians. New York: WH Freeman and Company. ISBN 978-0-7167-2600-5.
  • Jordan Peter; Wheeler Steven. (2001). The Ultimate Mushroom Book. London: Hermes House. ISBN 978-1-85967-092-7.

amanita, virosa, commonly, known, europe, destroying, angel, european, destroying, angel, amanita, deadly, poisonous, basidiomycete, fungus, many, genus, amanita, occurring, europe, virosa, associates, with, various, deciduous, coniferous, trees, large, fruiti. Amanita virosa commonly known in Europe as the destroying angel or the European destroying angel amanita 1 is a deadly poisonous basidiomycete fungus one of many in the genus Amanita Occurring in Europe A virosa associates with various deciduous and coniferous trees The large fruiting bodies i e the mushrooms appear in summer and autumn the caps stipes and gills are all white in colour Destroying angelScientific classificationDomain EukaryotaKingdom FungiDivision BasidiomycotaClass AgaricomycetesOrder AgaricalesFamily AmanitaceaeGenus AmanitaSpecies A virosaBinomial nameAmanita virosa Fr Bertillon Amanita virosaMycological characteristicsGills on hymeniumCap is convex or flatHymenium is freeStipe has a ring and volvaSpore print is whiteEcology is mycorrhizalEdibility is deadlyImmature specimens of A virosa resemble several edible species commonly consumed by humans increasing the risk of accidental poisoning Small specimens may resemble the common Portobello mushroom to non experts but just one cap of A virosa is enough to kill an adult human 2 The symptoms of poisoning generally come several hours afterwards a fact which makes this fungus even more problematic Along with its geographical namesakes A virosa is one of the most poisonous of all known poisonous mushrooms its principal toxic constituent a Amanitin damages the liver and kidneys usually fatally Contents 1 Taxonomy 2 Description 3 Distribution and habitat 4 Toxicity 4 1 Treatment 5 Potential uses 6 See also 7 References 8 SourcesTaxonomy editThe common name of destroying angel is applied to several all white species of poisonous Amanita to this species in Europe and to Amanita bisporigera in eastern North America and A ocreata in the west A virosa was first collected and described by Elias Magnus Fries in Sweden Its specific epithet virosa derived from the Latin adjective virōsus toxic 3 4 compare virus Amanita virosa is very similar to several other species of all white amanitas known as destroying angels which has led to confusion over which occurs where This specific name has been applied to all white destroying angels occurring in North America though others propose these all belong to Amanita bisporigera and other rarer species instead There has been some question over whether Amanita verna is a valid species Description edit nbsp Mature specimen of Amanita virosa showing veil ring on stipeAmanita virosa first appears as a white egg shaped object covered with a universal veil As it grows the mushroom breaks free though there may be ragged patches of veil at the cap edges The cap is initially conical with inturned edges before becoming hemispherical and flattening with a diameter up to 12 cm 4 3 4 in The cap often has a distinctive boss it is able to be peeled and white though the centre may be ivory in colour The crowded free gills are white as is the stipe and volva The thin stipe is up to 15 cm 5 9 in tall with a hanging grooved ring The spore print is white and the spores egg shaped conical and 7 10 mm long They stain blue with iodine The flesh is white with a taste reminiscent of radishes and turns bright yellow with sodium hydroxide 5 This fungus highlights the danger of picking immature fungi as it resembles the edible mushrooms Agaricus arvensis and A campestris and the puffballs Lycoperdon spp before the caps have opened and the gills have become visible The ability to be peeled has been taken as a sign of edibility in mushrooming which is a potentially lethal mistake in this species It is unclear why this fungus which more closely resembles edible species has been implicated in fewer deaths than the death cap though its rarity may contribute to this 6 Distribution and habitat editAmanita virosa is found in mixed woodland especially in association with beech on mossy ground in summer and autumn 5 Most Amanita species form ectomycorrhizal relationships with the roots of certain trees Toxicity edit nbsp Young fruiting bodies showing conical capsAmanita virosa is highly toxic and has been responsible for severe mushroom poisonings 2 Like the closely related death cap A phalloides it contains the highly toxic amatoxins as well as phallotoxins Some authorities strongly advise against putting these fungi in the same basket with those collected for the table and to avoid touching them 7 8 Amatoxins consist of at least eight compounds with a similar structure that of eight amino acid rings they were isolated in 1941 by Heinrich O Wieland and Rudolf Hallermayer of the University of Munich 9 Of the amatoxins a Amanitin is the chief component and along with b Amanitin is likely responsible for the toxic effects 10 11 Their major toxic mechanism is the inhibition of RNA polymerase II a vital enzyme in the synthesis of messenger RNA mRNA microRNA and small nuclear RNA snRNA Without mRNA essential protein synthesis and hence cell metabolism grind to a halt and the cell dies 12 The liver is the principal organ affected as it is the organ which is first encountered after absorption in the gastrointestinal tract though other organs especially the kidneys are susceptible 2 The phallotoxins consist of at least seven compounds all of which have seven similar peptide rings Phalloidin was isolated in 1937 by Feodor Lynen Heinrich Wieland s student and son in law and Ulrich Wieland of the University of Munich Though phallotoxins are highly toxic to liver cells 13 they have since been found to have little input into the destroying angel s toxicity as they are not absorbed through the gut 12 Furthermore phalloidin is also found in the edible and sought after Blusher Amanita rubescens 9 Another group of minor active peptides are the virotoxins which consist of six similar monocyclic heptapeptides 14 Like the phallotoxins they do not exert any acute toxicity after ingestion in humans 12 Treatment edit Consumption of Amanita virosa is a medical emergency requiring hospitalization There are four main categories of therapy for poisoning preliminary medical care supportive measures specific treatments and liver transplantation 15 Preliminary care consists of gastric decontamination with either activated carbon or gastric lavage However due to the delay between ingestion and the first symptoms of poisoning it is commonplace for patients to arrive for treatment many hours after ingestion potentially reducing the efficacy of these interventions 15 16 Supportive measures are directed towards treating the dehydration which results from fluid loss during the gastrointestinal phase of intoxication and correction of metabolic acidosis hypoglycemia electrolyte imbalances and impaired coagulation 15 No definitive antidote for amatoxin poisoning is available but some specific treatments have been shown to improve survivability High dose continuous intravenous penicillin G has been reported to be of benefit though the exact mechanism is unknown 17 and trials with cephalosporins show promise 2 18 There is some evidence that intravenous silibinin an extract from the blessed milk thistle Silybum marianum may be beneficial in reducing the effects of death cap poisoning Silibinin prevents the uptake of amatoxins by hepatocytes thereby protecting undamaged hepatic tissue it also stimulates DNA dependent RNA polymerases leading to an increase in RNA synthesis 19 20 21 N acetylcysteine has shown promise in combination with other therapies 22 Animal studies indicate the amatoxins deplete hepatic glutathione 23 N acetylcysteine serves as a glutathione precursor and may therefore prevent reduced glutathione levels and subsequent liver damage 24 None of the antidotes used have undergone prospective randomized clinical trials and only anecdotal support is available Silibinin and N acetylcysteine appear to be the therapies with the most potential benefit 15 Repeated doses of activated carbon may be helpful by absorbing any toxins that are returned to the gastrointestinal tract following enterohepatic circulation 25 Other methods of enhancing the elimination of the toxins have been trialed techniques such as hemodialysis 26 hemoperfusion 27 plasmapheresis 28 and peritoneal dialysis 29 have occasionally yielded success but overall do not appear to improve outcome 12 In patients developing liver failure a liver transplant is often the only option to prevent death Liver transplants have become a well established option in amatoxin poisoning 30 31 32 This is a complicated issue however as transplants themselves may have significant complications and mortality patients require long term immunosuppression to maintain the transplant 15 That being the case there has been a reassessment of criteria such as onset of symptoms prothrombin time PTT serum bilirubin and presence of encephalopathy for determining at what point a transplant becomes necessary for survival 33 34 35 Evidence suggests that although survival rates have improved with modern medical treatment in patients with moderate to severe poisoning up to half of those who did recover suffered permanent liver damage 2 However a follow up study has shown that most survivors recover completely without any sequelae if treated within 36 hours of mushroom ingestion 36 Potential uses editAmanita virosa extract has antibacterial efficacy against Pseudomonas aeruginosa and Staphylococcus aureus in vitro 37 It also has shown inhibitory activity on thrombin 38 See also edit nbsp Fungi portalList of Amanita species List of deadly fungiReferences edit Standardized Common Names for Wild Species in Canada National General Status Working Group 2020 a b c d e Benjamin Denis R 1995 Mushrooms Poisons and Panaceas a Handbook for Naturalists Mycologists and Physicians New York W H Freeman pp 198 241 ISBN 978 0716726494 Simpson D P 1979 Cassell s Latin Dictionary 5 ed London Cassell Ltd p 883 ISBN 978 0 304 52257 6 Nilson Sven Olle Persson 1977 Fungi of Northern Europe 2 Gill Fungi Penguin p 54 ISBN 978 0 14 063006 0 a b Zeitlmayr Linus 1976 Wild Mushrooms An Illustrated Handbook Hertfordshire Garden City Press pp 62 63 ISBN 978 0 584 10324 3 Ramsbottom J 1953 Mushrooms amp Toadstools Collins p 39 ISBN 978 1 870630 09 2 Jordan Peter Wheeler Steven 2001 The Ultimate Mushroom Book London Hermes House p 99 ISBN 978 1 85967 092 7 Carluccio A 2003 The Complete Mushroom Book London Quadrille p 224 ISBN 978 1 84400 040 1 a b Litten W March 1975 The most poisonous mushrooms Scientific American 232 3 90 101 Bibcode 1975SciAm 232c 90L doi 10 1038 scientificamerican0375 90 PMID 1114308 Koppel C 1993 Clinical symptomatology and management of mushroom poisoning Toxicon 31 12 1513 40 doi 10 1016 0041 0101 93 90337 I PMID 8146866 Dart RC 2004 Mushrooms Medical toxicology Philadelphia Williams amp Wilkins pp 1719 35 ISBN 978 0 7817 2845 4 a b c d Karlson Stiber C Persson H 2003 Cytotoxic fungi an overview Toxicon 42 4 339 49 doi 10 1016 S0041 0101 03 00238 1 PMID 14505933 Wieland T Govindan VM 1974 Phallotoxins bind to actins FEBS Lett 46 1 351 53 doi 10 1016 0014 5793 74 80404 7 PMID 4429639 S2CID 39255487 Vetter Janos January 1998 Toxins of Amanita phalloides Toxicon 36 1 13 24 doi 10 1016 S0041 0101 97 00074 3 PMID 9604278 a b c d e Enjalbert F Rapior S Nouguier Soule J Guillon S Amouroux N Cabot C 2002 Treatment of amatoxin poisoning 20 year retrospective analysis Journal of Toxicology Clinical Toxicology 40 6 715 57 doi 10 1081 CLT 120014646 PMID 12475187 S2CID 22919515 Vesconi S Langer M Iapichino G Costantino D Busi C Fiume L 1985 Therapy of cytotoxic mushroom intoxication Critical Care Medicine 13 5 402 6 doi 10 1097 00003246 198505000 00007 PMID 3987318 S2CID 23016936 Floerscheim G L Weber O Tschumi P Ulbrich M August 1982 Die klinische knollenblatterpilzvergiftung Amanita Phalloides prognostische faktoren und therapeutische massnahmen Clinical death cap Amanita phalloides poisoning prognostic factors and therapeutic measures Schweizerische Medizinische Wochenschrift in German 112 34 1164 77 PMID 6291147 Neftel K et al January 1988 Are cephalosporins more active than penicillin G in poisoning with the deadly Amanita Schweizerische Medizinische Wochenschrift in German 118 2 49 51 PMID 3278370 Hruby K Csomos G Fuhrmann M Thaler H 1983 Chemotherapy of Amanita phalloides poisoning with intravenous silibinin Human Toxicology 2 2 183 95 doi 10 1177 096032718300200203 PMID 6862461 S2CID 19805371 Carducci R et al May 1996 Amanita phalloides cmd click gt Silibinin and acute poisoning with Amanita phalloides Minerva Anestesiologica in Italian 62 5 187 93 PMID 8937042 Jahn W 1980 Pharmacokinetics of 3H methyl dehydroxymethyl Amanitin in the isolated perfused rat liver and the influence of several drugs In Helmuth Faulstich B Kommerell amp Theodore Wieland ed Amanita toxins and poisoning Baden Baden Witzstrock pp 80 85 ISBN 978 3 87921 132 6 Montanini S Sinardi D Pratico C Sinardi A Trimarchi G 1999 Use of acetylcysteine as the life saving antidote in Amanita phalloides death cap poisoning Case report on 11 patients Arzneimittel Forschung 49 12 1044 7 doi 10 1055 s 0031 1300549 PMID 10635453 S2CID 40666108 Kawaji A Sone T Natsuki R Isobe M Takabatake E Yamaura Y 1990 In vitro toxicity test of poisonous mushroom extracts with isolated rat hepatocytes The Journal of Toxicological Sciences 15 3 145 56 doi 10 2131 jts 15 145 PMID 2243367 Chyka P Butler A Holliman B Herman M 2000 Utility of acetylcysteine in treating poisonings and adverse drug reactions Drug Safety 22 2 123 48 doi 10 2165 00002018 200022020 00005 PMID 10672895 S2CID 25061940 Busi C Fiume L Costantino D Langer M Vesconi F 1979 Amanita toxins in gastroduodenal fluid of patients poisoned by the mushroom Amanita phalloides New England Journal of Medicine 300 14 800 doi 10 1056 NEJM197904053001418 PMID 423916 Sabeel AI Kurkus J Lindholm T 1995 Intensive hemodialysis and hemoperfusion treatment of Amanita mushroom poisoning Mycopathologia 131 2 107 14 doi 10 1007 BF01102888 PMID 8532053 S2CID 23001126 Wauters JP Rossel C Farquet JJ 1978 Amanita phalloides poisoning treated by early charcoal haemoperfusion British Medical Journal 2 6150 1465 doi 10 1136 bmj 2 6150 1465 PMC 1608737 PMID 719466 Jander S Bischoff J Woodcock BG 2000 Plasmapheresis in the treatment of Amanita phalloides poisoning II A review and recommendations Therapeutic Apheresis 4 4 308 12 doi 10 1046 j 1526 0968 2000 004004303 x PMID 10975479 Langer M Vesconi S Iapichino G Costantino D Radrizzani D 1980 The early removal of amatoxins in the treatment of Amanita phalloides poisoning Klinische Wochenschrift in German 58 3 117 23 doi 10 1007 BF01477268 PMID 7366125 S2CID 39522161 Klein AS Hart J Brems JJ Goldstein L Lewin K Busuttil RW February 1989 Amanita poisoning treatment and the role of liver transplantation American Journal of Medicine 86 2 187 93 doi 10 1016 0002 9343 89 90267 2 PMID 2643869 Pinson CW Daya MR Benner KG Norton RL Deveney KE Ascher NL Roberts JP Lake JR Kurkchubasche AG Ragsdale JW May 1990 Liver transplantation for severe Amanita phalloides mushroom poisoning American Journal of Surgery 159 5 493 9 doi 10 1016 S0002 9610 05 81254 1 PMID 2334013 Ganzert M Felgenhauer N Zilker T 2005 Indication of liver transplantation following amatoxin intoxication Journal of Hepatology 42 2 202 9 doi 10 1016 j jhep 2004 10 023 PMID 15664245 O grady John G Alexander Graeme J M Hayllar Karen M Williams Roger August 1989 Early indicators of prognosis in fulminant hepatic failure Gastroenterology 97 2 439 445 doi 10 1016 0016 5085 89 90081 4 PMID 2490426 Panaro Fabrizio Andorno Enzo Morelli Nicola Casaccia Marco Bottino Giuliano Ravazzoni Ferruccio Centanaro Monica Ornis Sara Valente Umberto April 2006 Letter to the editor Liver transplantation represents the optimal treatment for fulminant hepatic failure from Amanita phalloides poisoning Transplant International 19 4 344 45 doi 10 1111 j 1432 2277 2006 00275 x PMID 16573553 S2CID 39474194 Escudie L Francoz C Vinel JP Moucari R Cournot M Paradis V Sauvanet A Belghiti J Valla D Bernuau J Durand F 2007 Amanita phalloides poisoning reassessment of prognostic factors and indications for emergency liver transplantation J Hepatol 46 3 466 73 doi 10 1016 j jhep 2006 10 013 PMID 17188393 Giannini L Vannacci A Missanelli A Mastroianni R Mannaioni PF Moroni F Masini E 2007 Amatoxin poisoning A 15 year retrospective analysis and follow up evaluation of 105 patients Clinical Toxicology 45 5 539 42 doi 10 1080 15563650701365834 PMID 17503263 S2CID 37788880 Janes Damjan Kreft Samo Jurc Maja Seme Katja Strukelj Borut 2008 Antibacterial Activity in Higher Fungi Mushrooms and Endophytic Fungi from Slovenia Pharmaceutical Biology 45 9 700 doi 10 1080 13880200701575189 S2CID 84940020 Doljak B Stegnar M Urleb U Kreft S Umek A Ciglaric M Strukelj B Popovic T 2001 Screening for selective thrombin inhibitors in mushrooms Blood Coagulation and Fibrinolysis 12 2 123 8 doi 10 1097 00001721 200103000 00006 PMID 11302474 S2CID 28411589 Sources editBenjamin Denis R 1995 Mushrooms poisons and panaceas a handbook for naturalists mycologists and physicians New York WH Freeman and Company ISBN 978 0 7167 2600 5 Jordan Peter Wheeler Steven 2001 The Ultimate Mushroom Book London Hermes House ISBN 978 1 85967 092 7 Retrieved from https en wikipedia org w index php title Amanita virosa amp oldid 1194352018, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.