fbpx
Wikipedia

Aluminium-ion battery

Aluminium-ion batteries are a class of rechargeable battery in which aluminium ions serve as charge carriers. Aluminium can exchange three electrons per ion. This means that insertion of one Al3+ is equivalent to three Li+ ions. Thus, since the ionic radii of Al3+ (0.54 Å) and Li+ (0.76 Å) are similar, significantly higher numbers of electrons and Al3+ ions can be accepted by cathodes with little damage.[1][2] Al has 50 times (23.5 megawatt-hours m-3) the energy density of Li and is even higher than coal.[3]

The trivalent charge carrier, Al3+ is both the advantage and disadvantage of this battery.[4] While transferring 3 units of charge by one ion significantly increases the energy storage capacity, the electrostatic intercalation of the electrodes with a trivalent cation is too strong for well-defined electrochemical behaviour.

Rechargeable aluminium-based batteries offer the possibilities of low cost and low flammability, together with high capacity.[5] Aluminum's inertness and ease of handling in an ambient environment potentially offer significant safety improvements. Hence, aluminum-batteries have the potential to be smaller in size. Al-ion batteries may also have more charge-discharge cycles. Thus, Al-ion batteries have the potential to replace Li-ion batteries.[2]

Design

Like all other batteries, aluminium-ion batteries include two electrodes connected by an electrolyte. Unlike lithium-ion batteries, where the mobile ion is Li+, aluminum forms a complex with chloride in most electrolytes and generates an anionic mobile charge carrier, usually AlCl4 or Al2Cl7.[6]

The amount of energy or power that a battery can release is dependent on factors including the battery cell's voltage, capacity and chemical composition. A battery can maximize its energy output levels by:

  • Increasing chemical potential difference between the two electrodes[7]
  • Reducing the mass of reactants[7]
  • Preventing the electrolyte from being modified by the chemical reactions[7]

Electrochemistry

Anode half reaction:

 

Cathode half reaction:

 

Combining the two half reactions yields the following reaction:

 

Lithium-ion comparison

Aluminium-ion batteries are conceptually similar to lithium-ion batteries, but possess an aluminum charge carrier instead of lithium. While the theoretical voltage for aluminium-ion batteries is lower than lithium-ion batteries, 2.65 V and 4 V respectively, the theoretical energy density potential for aluminium-ion batteries is 1060 Wh/kg in comparison to lithium-ion's 406 Wh/kg limit.[8]

Today's lithium ion batteries have high power density (fast charge/discharge) and high energy density (hold a lot of charge). They can also develop dendrites that can short-circuit and catch fire. Aluminum also transfers energy more efficiently because of its 3 electrons.[9] Aluminium is more abundant/costs less than lithium, lowering material costs.[10]

Challenges

Aluminium-ion batteries to date have a relatively short shelf life. The combination of heat, rate of charge, and cycling can dramatically affect energy capacity. One of the reasons is the fracture of the graphite anode. Al atoms are far larger than Li atoms.[11]

Ionic electrolytes, while improving safety and the long term stability of the devices by minimizing corrosion, are expensive and may therefore be unsuitable.[12]

Research

Various research teams are experimenting with aluminium to produce better batteries. Requirements include cost, durability, capacity, charging speed, and safety.

Anode

Cornell University

In 2021, researchers announced a cell that used a 3D structured anode in which layers of aluminum accumulate evenly on an interwoven carbon fiber structure via covalent bonding as the battery is charged. The thicker anode features faster kinetics, and the prototype operated for 10k cycles without signs of failure.[13]

Electrolyte

Oak Ridge National Laboratory

Around 2010,[8] Oak Ridge National Laboratory (ORNL) developed and patented a high energy density device, producing 1,060 watt-hours per kilogram (Wh/kg).[10] ORNL used an ionic electrolyte, instead of the typical aqueous electrolyte which can produce hydrogen gas and corrode the anode. The electrolyte was made of 3-ethyl-1-methylimidazolium chloride with excess aluminium trichloride.[14] However, ionic electrolytes are less conductive, reducing power density. Reducing anode/cathode separation can offset the limited conductivity, but causes heating. ORNL devised a cathode made up of spinel manganese oxide that further reduced corrosion.[8]

Cathode

Cornell University

In 2011 a research team used the same electrolyte as ORNL, but used vanadium oxide nanowires for the cathode.[15] Vanadium oxide has an open crystal structure with greater surface area and reduced path between cathode and anode. The device produced a large output voltage. However, the battery had a low coulombic efficiency.[14]

Stanford University

In April 2015 researchers at Stanford University claimed to have developed an aluminum-ion battery with a recharge time of about one minute (for an unspecified battery capacity).[5] Their cell provides about 2 volts, 4 volts if connected in a series of two cells.[5][16] The prototype lasted over 7,500 charge-discharge cycles with no loss of capacity.[17][18]

The battery was made of an aluminum anode, liquid electrolyte, isolation foam, and a graphite cathode. During the charging process, AlCl4 ions intercalate among the graphene stacked layers. While discharging, AlCl4 ions rapidly de-intercalate through the graphite. The cell displayed high durability, withstanding more than 10,000 cycles without a capacity decay. The cell was stable, nontoxic, bendable and nonflammable.[19]

In 2016, the lab tested these cells through collaborating with Taiwan's Industrial Technology Research Institute (ITRI) to power a motorbike using an expensive electrolyte. In 2017, a urea-based electrolyte was tested that was about 1% of the cost of the 2015 model.[20] The battery exhibits ~99.7% Coulombic efficiency and a rate capability of   at a cathode capacity of   (1.4 C).[21]

ALION Project

In June 2015, the High Specific Energy Aluminium-Ion Rechargeable Batteries for Decentralized Electricity Generation Sources (ALION) project was launched by a consortium of materials and component manufacturers and battery assemblers as a European Horizon 2020 project led by the LEITAT research institute.[22][23] The project objective is to develop a prototype Al-ion battery that could be used for large-scale storage from decentralized sources. The project sought to achieve an energy density of 400 Wh/kg, a voltage of 48 volts and a charge-discharge life of 3000 cycles. 3D printing of the battery packs allowed for large Al-ion cells developed, with voltages ranging from 6 to 72 volts.[24]

University Of Maryland

In 2016, a University of Maryland team reported an aluminium/sulfur battery that utilizes a sulfur/carbon composite as the cathode. The chemistry provides a theoretical energy density of 1340 Wh/kg. The prototype cell demonstrated energy density of 800 Wh/kg for over 20 cycles.[25]

MIT

In 2022, MIT researches reported a design that used cheap and nonflammable ingredients, including an aluminum anode and a sulfur cathode, separated by a molten chloro-aluminate salt electrolyte. The prototype withstood hundreds of charge cycles, and charged quickly. They can operate at temperatures of up to 200 °C (392 °F). At 110 °C (230 °F), the batteries charged 25 times faster than at 25 °C (77 °F). This temperature can be maintained by the charge/discharge cycle. The salt has a low melting point and prevents dendrite formation.[26] One potential application is at charging stations, where a pre-charged battery could allow the station to charge more vehicles simultaneously without a costly upgrade to the power line.[27] Spinoff company Avanti, co-founded by one of the researchers, is attempting to commercialize the work.[26]

Chalmers University of Technology and the National Institute of Chemistry in Slovenia

In 2019 researchers proposed using anthraquinone for the cathode in an aluminum ion battery.[28]

Queensland University of Technology

In 2019 researchers from Queensland University of Technology developed cryptomelane based electrodes as cathode for Aluminum ion battery with an aqueous electrolyte.[29]

Clemson University

In 2017, researchers at Clemson Nanomaterials Institute used a graphene electrode to intercalate tetrachloroaluminate (AlCl
4
).[6] The team constructed batteries with aluminum anodes, pristine or modified few-layer graphene cathodes, and an ionic liquid with AlCl3 salt as the electrolyte.[6] They claimed that the battery can operate over 10,000 cycles with an energy density of 200 Wh/kg.[30]

Zhejiang University

In December 2017 a Zhejiang University team announced a battery using graphene films as cathode and metallic aluminium as anode.

The 3H3C (Trihigh Tricontinuous) design results in a graphene film cathode with excellent electrochemical properties. Liquid crystal graphene formed a highly oriented structure. High temperature annealing under pressure produced a high quality and high channelling graphene structure. Claimed properties:[31][32]

  • Retained 91.7 percent of original capacity after 250k cycles.
  • 1.1 second charge time.
  • Temperature range: -40 to 120 C.
  • Current capacity: 111 mAh/g, 400 A/g
  • Bendable and non-flammable.
  • Low energy density

Redox battery

Another approach to an aluminum battery is to use redox reactions to charge and discharge. The charging process converts aluminum oxide or aluminum hydroxide, into ionic aluminum, using electrolysis, typically at an aluminum smelter. This requires temperatures of 800 °C (1,470 °F). One report estimated possible efficiency at around 65%. Although ionic aluminum oxidizes in the presence of air, this costs less than 1% of the energy storage capacity.[3]

Discharging the battery involves oxidizing the aluminum, typically with water at temperatures less than 100 °C. This yields aluminum hydroxide and ionic hydrogen. The latter can produce electricity via a fuel cell. The oxidation in the fuel cell generates heat, which can support space or water heating.[3]

A higher-temperature process could support industrial applications. It operates at over 200 °C, reacting aluminum with steam to generate aluminum oxide, hydrogen and additional heat.[3]

The ionic aluminum could be stored at the smelter One approach charges the battery at a smelter, and discharges it wherever power and heat are needed.[3] Alternatively, electricity could be fed into the grid at the smelter, without the need for transport, although for maximum round-trip efficiency, the heat would have to be used at the smelter site.

See also

References

  1. ^ Zafar, Zahid Ali; Imtiaz, Sumair; Razaq, Rameez; Ji, Shengnan; Huang, Taizhong; Zhang, Zhaoliang; Huang, Yunhui; Anderson, James A. (21 March 2017). "Cathode materials for rechargeable aluminum batteries: current status and progress". Journal of Materials Chemistry A. 5 (12): 5646–5660. doi:10.1039/C7TA00282C. hdl:2164/9972. ISSN 2050-7496.
  2. ^ a b Das, Shyamal K.; Mahapatra, Sadhan; Lahan, Homen (2017). "Aluminum-ion batteries: developments and challenges". Journal of Materials Chemistry A. 5 (14): 6347–6367. doi:10.1039/c7ta00228a.
  3. ^ a b c d e Blain, Loz (24 August 2022). "Rechargeable aluminum: The cheap solution to seasonal energy storage?". New Atlas. Retrieved 31 August 2022.
  4. ^ Eftekhari, Ali; Corrochano, Pablo (2017). "Electrochemical Energy Storage by Aluminum As a Lightweight and Cheap Anode/Charge Carrier". Sustainable Energy & Fuels. 1 (6): 1246–1264. doi:10.1039/C7SE00050B.
  5. ^ a b c Lin, Meng- Chang; Gong, Ming; Lu, Bingan; Wu, Yingpeng; Wang, Di-Yan; Guan, Mingyun; Angell, Michael; Chen, Changxin; Yang, Jiang; Hwang, Bing-Joe; Dai, Hongjie (6 April 2015). "An ultrafast rechargeable aluminium-ion battery". Nature. 520 (7547): 324–328. Bibcode:2015Natur.520..324L. doi:10.1038/nature14340. PMID 25849777. S2CID 4469370.
  6. ^ a b c "Team designs aluminum-ion batteries with graphene electrode". Graphene-info. Retrieved 1 March 2018.
  7. ^ a b c Armand, M.; Tarascon, J.-M (2008). "Building better batteries". Nature. 451 (7179): 652–657. Bibcode:2008Natur.451..652A. doi:10.1038/451652a. PMID 18256660. S2CID 205035786.
  8. ^ a b c National Laboratory, Oak Ridge. (PDF). web.ornl.gov. Oak Ridge National Laboratory. Archived from the original (PDF) on 19 November 2015. Retrieved 30 October 2014.
  9. ^ Colmenares, Clinton. . the Newsstand. Archived from the original on 18 October 2017. Retrieved 1 March 2018.
  10. ^ a b Paranthaman, brown, M. Parans, Gilbert. (PDF). web.ornl.gov. Oak Ridge National Laboratory. Archived from the original (PDF) on 12 April 2015. Retrieved 12 November 2014.{{cite web}}: CS1 maint: multiple names: authors list (link)
  11. ^ Dai, Hongjie; Hwang, Bing-Joe; Yang, Jiang; Chen, Changxin; Angell, Michael; Guan, Mingyun; Wang, Di-Yan; Wu, Yingpeng; Lu, Bingan (April 2015). "An ultrafast rechargeable aluminium-ion battery". Nature. 520 (7547): 324–328. Bibcode:2015Natur.520..324L. doi:10.1038/nature14340. ISSN 1476-4687. PMID 25849777. S2CID 4469370.
  12. ^ Passerini, S.; Loeffler, N.; Kim, G.-T.; Montanino, M.; Carewska, M.; Appetecchi, G. B.; Simonetti, E.; Moreno, M. (1 January 2017). "Ionic Liquid Electrolytes for Safer Lithium Batteries I. Investigation around Optimal Formulation". Journal of the Electrochemical Society. 164 (1): A6026–A6031. doi:10.1149/2.0051701jes. ISSN 0013-4651.
  13. ^ Lavars, Nick (6 April 2021). "3D aluminum electrode enables low-cost battery to go the distance". New Atlas. from the original on 6 April 2021. Retrieved 11 April 2021.
  14. ^ a b Teschler, Leland (23 March 2012). "Goodbye to lithium-ion batteries". machinedesign.com. machine design. Retrieved 12 November 2014.
  15. ^ Jayaprakash, N.; Das, S.K.; Archer, L.A (2011). "The rechargeable aluminum-ion battery" (PDF). Chemical Communications. rsc. 47 (47): 12610–2. doi:10.1039/C1CC15779E. hdl:1813/33734. PMID 22051794.
  16. ^ Aluminum-Ion Battery Cell Is Durable, Fast-Charging, Bendable: Stanford Inventors (Video), John Voelcker, 8 April 2015, Green Car Reports
  17. ^ "Stanford Researchers Unveil New Ultrafast Charging Aluminum-Ion Battery". scientificamerican.com.
  18. ^ Lin, Meng-Chang; Gong, Ming; Lu, Bingan; Wu, Yingpeng; Wang, Di-Yan; Guan, Mingyun; Angell, Michael; Chen, Changxin; Yang, Jiang; Hwang, Bing-Joe; Dai, Hongjie (9 April 2015). "An ultrafast rechargeable aluminium-ion battery". Nature. 520 (7547): 324–328. Bibcode:2015Natur.520..324L. doi:10.1038/nature14340. PMID 25849777. S2CID 4469370 – via www.nature.com.
  19. ^ . Industrial Technology Research Institute. Archived from the original on 15 November 2018. Retrieved 2 March 2018.
  20. ^ Flynn, Jackie (7 February 2017). "Stanford engineers create a low-cost battery for storing renewable energy". Stanford News Service. Retrieved 1 March 2018.
  21. ^ Angell, Michael; Pan, Chun-Jern; Rong, Youmin; Yuan, Chunze; Lin, Meng-Chang; Hwang, Bing-Joe; Dai, Hongjie (2017). "High Coulombic efficiency aluminum-ion battery using an AlCl3-urea ionic liquid analog electrolyte". PNAS. 114 (5): 834–839. arXiv:1611.09951. Bibcode:2017PNAS..114..834A. doi:10.1073/pnas.1619795114. PMC 5293044. PMID 28096353.
  22. ^ HIGH SPECIFIC ENERGY ALUMINIUM-ION RECHARGEABLE DECENTRALIZED ELECTRICITY GENERATION SOURCES on cordis.europa.eu
  23. ^ "ALION: Aluminium-Ion batteries".
  24. ^ "Aluminium-Ion Batteries: A Promising Technology for Stationary Applications". Leitat Projects Blog. Retrieved 11 July 2019.
  25. ^ Gao, Tao; Li, Xiaogang; Wang, Xiwen; Hu, Junkai; Han, Fudong; Fan, Xiulin; Suo, Liumin; Pearse, Alex J; Lee, Sang Bok (16 August 2016). "A Rechargeable Al/S Battery with an Ionic-Liquid Electrolyte". Angewandte Chemie International Edition. 55 (34): 9898–9901. doi:10.1002/anie.201603531. ISSN 1521-3773. PMID 27417442. S2CID 19124928.
  26. ^ a b Irving, Michael (25 August 2022). "Battery made of aluminum, sulfur and salt proves fast, safe and low-cost". New Atlas. Retrieved 26 August 2022.
  27. ^ Brahambhatt, Rupendra (26 August 2022). "New aluminum batteries could be the dirt cheap alternative to lithium-ion that we've all been waiting for". ZME Science. Retrieved 26 August 2022.
  28. ^ Paraskova, Tsvetana (1 October 2019). "Is This The End Of The Lithium-Ion Battery?". OilPrice.com. from the original on 2 October 2019. Retrieved 6 October 2019.
  29. ^ Joseph, Jickson; Nerkar, Jawahar; Tang, Cheng; Du, Aijun; O'Mullane, Anthony P.; Ostrikov, Kostya (Ken) (2019). "Reversible Intercalation of Multivalent Al3+ Ions into Potassium-Rich Cryptomelane Nanowires for Aqueous Rechargeable Al-Ion Batteries". ChemSusChem. 12 (16): 3753–3760. doi:10.1002/cssc.201901182. ISSN 1864-564X. PMID 31102343. S2CID 157066901.
  30. ^ Flaherty, Nick (2017). "Aluminium graphene battery outperforms lithium". eeNews.
  31. ^ "Al-ion battery retains 92% capacity after 250,000 charge cycles". Elektor.
  32. ^ . www.xinhuanet.com. Archived from the original on 12 January 2018. Retrieved 12 January 2018.

External links

  • Stanford unveils aluminum-ion battery on YouTube
  • Cathode materials for rechargeable aluminum batteries: current status and progress
  • Fuel Cell Thai GEN3 Aluminum-ion battery on YouTube

aluminium, battery, this, article, needs, updated, please, help, update, this, article, reflect, recent, events, newly, available, information, october, 2019, aluminium, batteries, class, rechargeable, battery, which, aluminium, ions, serve, charge, carriers, . This article needs to be updated Please help update this article to reflect recent events or newly available information October 2019 Aluminium ion batteries are a class of rechargeable battery in which aluminium ions serve as charge carriers Aluminium can exchange three electrons per ion This means that insertion of one Al3 is equivalent to three Li ions Thus since the ionic radii of Al3 0 54 A and Li 0 76 A are similar significantly higher numbers of electrons and Al3 ions can be accepted by cathodes with little damage 1 2 Al has 50 times 23 5 megawatt hours m 3 the energy density of Li and is even higher than coal 3 The trivalent charge carrier Al3 is both the advantage and disadvantage of this battery 4 While transferring 3 units of charge by one ion significantly increases the energy storage capacity the electrostatic intercalation of the electrodes with a trivalent cation is too strong for well defined electrochemical behaviour Rechargeable aluminium based batteries offer the possibilities of low cost and low flammability together with high capacity 5 Aluminum s inertness and ease of handling in an ambient environment potentially offer significant safety improvements Hence aluminum batteries have the potential to be smaller in size Al ion batteries may also have more charge discharge cycles Thus Al ion batteries have the potential to replace Li ion batteries 2 Contents 1 Design 2 Electrochemistry 3 Lithium ion comparison 4 Challenges 5 Research 5 1 Anode 5 1 1 Cornell University 5 2 Electrolyte 5 2 1 Oak Ridge National Laboratory 5 3 Cathode 5 3 1 Cornell University 5 3 2 Stanford University 5 3 3 ALION Project 5 3 4 University Of Maryland 5 3 5 MIT 5 3 6 Chalmers University of Technology and the National Institute of Chemistry in Slovenia 5 3 7 Queensland University of Technology 5 3 8 Clemson University 5 3 9 Zhejiang University 5 4 Redox battery 6 See also 7 References 8 External linksDesign EditLike all other batteries aluminium ion batteries include two electrodes connected by an electrolyte Unlike lithium ion batteries where the mobile ion is Li aluminum forms a complex with chloride in most electrolytes and generates an anionic mobile charge carrier usually AlCl4 or Al2Cl7 6 The amount of energy or power that a battery can release is dependent on factors including the battery cell s voltage capacity and chemical composition A battery can maximize its energy output levels by Increasing chemical potential difference between the two electrodes 7 Reducing the mass of reactants 7 Preventing the electrolyte from being modified by the chemical reactions 7 Electrochemistry EditThis section may be confusing or unclear to readers Please help clarify the section There might be a discussion about this on the talk page April 2019 Learn how and when to remove this template message Anode half reaction Al 7 AlCl 4 4 Al 2 Cl 7 3 e displaystyle ce Al 7AlCl4 lt gt 4Al2Cl7 3e Cathode half reaction 2 MnO 2 Li e LiMn 2 O 4 displaystyle ce 2MnO2 Li e lt gt LiMn2O4 Combining the two half reactions yields the following reaction Al 7 AlCl 4 6 MnO 2 3 Li 4 Al 2 Cl 7 3 LiMn 2 O 4 displaystyle ce Al 7AlCl4 6MnO2 3Li lt gt 4Al2Cl7 3LiMn2O4 Lithium ion comparison EditAluminium ion batteries are conceptually similar to lithium ion batteries but possess an aluminum charge carrier instead of lithium While the theoretical voltage for aluminium ion batteries is lower than lithium ion batteries 2 65 V and 4 V respectively the theoretical energy density potential for aluminium ion batteries is 1060 Wh kg in comparison to lithium ion s 406 Wh kg limit 8 Today s lithium ion batteries have high power density fast charge discharge and high energy density hold a lot of charge They can also develop dendrites that can short circuit and catch fire Aluminum also transfers energy more efficiently because of its 3 electrons 9 Aluminium is more abundant costs less than lithium lowering material costs 10 Challenges EditAluminium ion batteries to date have a relatively short shelf life The combination of heat rate of charge and cycling can dramatically affect energy capacity One of the reasons is the fracture of the graphite anode Al atoms are far larger than Li atoms 11 Ionic electrolytes while improving safety and the long term stability of the devices by minimizing corrosion are expensive and may therefore be unsuitable 12 Research EditThis section focuses too much on specific examples without explaining their importance to its main subject Please help improve this section by citing reliable secondary sources that evaluate and synthesize these or similar examples within a broader context July 2019 Various research teams are experimenting with aluminium to produce better batteries Requirements include cost durability capacity charging speed and safety Anode Edit Cornell University Edit In 2021 researchers announced a cell that used a 3D structured anode in which layers of aluminum accumulate evenly on an interwoven carbon fiber structure via covalent bonding as the battery is charged The thicker anode features faster kinetics and the prototype operated for 10k cycles without signs of failure 13 Electrolyte Edit Oak Ridge National Laboratory Edit Around 2010 8 Oak Ridge National Laboratory ORNL developed and patented a high energy density device producing 1 060 watt hours per kilogram Wh kg 10 ORNL used an ionic electrolyte instead of the typical aqueous electrolyte which can produce hydrogen gas and corrode the anode The electrolyte was made of 3 ethyl 1 methylimidazolium chloride with excess aluminium trichloride 14 However ionic electrolytes are less conductive reducing power density Reducing anode cathode separation can offset the limited conductivity but causes heating ORNL devised a cathode made up of spinel manganese oxide that further reduced corrosion 8 Cathode Edit Cornell University Edit In 2011 a research team used the same electrolyte as ORNL but used vanadium oxide nanowires for the cathode 15 Vanadium oxide has an open crystal structure with greater surface area and reduced path between cathode and anode The device produced a large output voltage However the battery had a low coulombic efficiency 14 Stanford University Edit In April 2015 researchers at Stanford University claimed to have developed an aluminum ion battery with a recharge time of about one minute for an unspecified battery capacity 5 Their cell provides about 2 volts 4 volts if connected in a series of two cells 5 16 The prototype lasted over 7 500 charge discharge cycles with no loss of capacity 17 18 The battery was made of an aluminum anode liquid electrolyte isolation foam and a graphite cathode During the charging process AlCl4 ions intercalate among the graphene stacked layers While discharging AlCl4 ions rapidly de intercalate through the graphite The cell displayed high durability withstanding more than 10 000 cycles without a capacity decay The cell was stable nontoxic bendable and nonflammable 19 In 2016 the lab tested these cells through collaborating with Taiwan s Industrial Technology Research Institute ITRI to power a motorbike using an expensive electrolyte In 2017 a urea based electrolyte was tested that was about 1 of the cost of the 2015 model 20 The battery exhibits 99 7 Coulombic efficiency and a rate capability of 100 mA g displaystyle ce 100 mA g at a cathode capacity of 73 mAh g displaystyle ce 73 mAh g 1 4 C 21 ALION Project Edit In June 2015 the High Specific Energy Aluminium Ion Rechargeable Batteries for Decentralized Electricity Generation Sources ALION project was launched by a consortium of materials and component manufacturers and battery assemblers as a European Horizon 2020 project led by the LEITAT research institute 22 23 The project objective is to develop a prototype Al ion battery that could be used for large scale storage from decentralized sources The project sought to achieve an energy density of 400 Wh kg a voltage of 48 volts and a charge discharge life of 3000 cycles 3D printing of the battery packs allowed for large Al ion cells developed with voltages ranging from 6 to 72 volts 24 University Of Maryland Edit In 2016 a University of Maryland team reported an aluminium sulfur battery that utilizes a sulfur carbon composite as the cathode The chemistry provides a theoretical energy density of 1340 Wh kg The prototype cell demonstrated energy density of 800 Wh kg for over 20 cycles 25 MIT Edit In 2022 MIT researches reported a design that used cheap and nonflammable ingredients including an aluminum anode and a sulfur cathode separated by a molten chloro aluminate salt electrolyte The prototype withstood hundreds of charge cycles and charged quickly They can operate at temperatures of up to 200 C 392 F At 110 C 230 F the batteries charged 25 times faster than at 25 C 77 F This temperature can be maintained by the charge discharge cycle The salt has a low melting point and prevents dendrite formation 26 One potential application is at charging stations where a pre charged battery could allow the station to charge more vehicles simultaneously without a costly upgrade to the power line 27 Spinoff company Avanti co founded by one of the researchers is attempting to commercialize the work 26 Chalmers University of Technology and the National Institute of Chemistry in Slovenia Edit In 2019 researchers proposed using anthraquinone for the cathode in an aluminum ion battery 28 Queensland University of Technology Edit In 2019 researchers from Queensland University of Technology developed cryptomelane based electrodes as cathode for Aluminum ion battery with an aqueous electrolyte 29 Clemson University Edit In 2017 researchers at Clemson Nanomaterials Institute used a graphene electrode to intercalate tetrachloroaluminate AlCl 4 6 The team constructed batteries with aluminum anodes pristine or modified few layer graphene cathodes and an ionic liquid with AlCl3 salt as the electrolyte 6 They claimed that the battery can operate over 10 000 cycles with an energy density of 200 Wh kg 30 Zhejiang University Edit In December 2017 a Zhejiang University team announced a battery using graphene films as cathode and metallic aluminium as anode The 3H3C Trihigh Tricontinuous design results in a graphene film cathode with excellent electrochemical properties Liquid crystal graphene formed a highly oriented structure High temperature annealing under pressure produced a high quality and high channelling graphene structure Claimed properties 31 32 Retained 91 7 percent of original capacity after 250k cycles 1 1 second charge time Temperature range 40 to 120 C Current capacity 111 mAh g 400 A g Bendable and non flammable Low energy densityRedox battery Edit Another approach to an aluminum battery is to use redox reactions to charge and discharge The charging process converts aluminum oxide or aluminum hydroxide into ionic aluminum using electrolysis typically at an aluminum smelter This requires temperatures of 800 C 1 470 F One report estimated possible efficiency at around 65 Although ionic aluminum oxidizes in the presence of air this costs less than 1 of the energy storage capacity 3 Discharging the battery involves oxidizing the aluminum typically with water at temperatures less than 100 C This yields aluminum hydroxide and ionic hydrogen The latter can produce electricity via a fuel cell The oxidation in the fuel cell generates heat which can support space or water heating 3 A higher temperature process could support industrial applications It operates at over 200 C reacting aluminum with steam to generate aluminum oxide hydrogen and additional heat 3 The ionic aluminum could be stored at the smelter One approach charges the battery at a smelter and discharges it wherever power and heat are needed 3 Alternatively electricity could be fed into the grid at the smelter without the need for transport although for maximum round trip efficiency the heat would have to be used at the smelter site See also EditAluminium air battery Metal air battery Comparison of battery types List of battery types Energy densityReferences Edit Zafar Zahid Ali Imtiaz Sumair Razaq Rameez Ji Shengnan Huang Taizhong Zhang Zhaoliang Huang Yunhui Anderson James A 21 March 2017 Cathode materials for rechargeable aluminum batteries current status and progress Journal of Materials Chemistry A 5 12 5646 5660 doi 10 1039 C7TA00282C hdl 2164 9972 ISSN 2050 7496 a b Das Shyamal K Mahapatra Sadhan Lahan Homen 2017 Aluminum ion batteries developments and challenges Journal of Materials Chemistry A 5 14 6347 6367 doi 10 1039 c7ta00228a a b c d e Blain Loz 24 August 2022 Rechargeable aluminum The cheap solution to seasonal energy storage New Atlas Retrieved 31 August 2022 Eftekhari Ali Corrochano Pablo 2017 Electrochemical Energy Storage by Aluminum As a Lightweight and Cheap Anode Charge Carrier Sustainable Energy amp Fuels 1 6 1246 1264 doi 10 1039 C7SE00050B a b c Lin Meng Chang Gong Ming Lu Bingan Wu Yingpeng Wang Di Yan Guan Mingyun Angell Michael Chen Changxin Yang Jiang Hwang Bing Joe Dai Hongjie 6 April 2015 An ultrafast rechargeable aluminium ion battery Nature 520 7547 324 328 Bibcode 2015Natur 520 324L doi 10 1038 nature14340 PMID 25849777 S2CID 4469370 a b c Team designs aluminum ion batteries with graphene electrode Graphene info Retrieved 1 March 2018 a b c Armand M Tarascon J M 2008 Building better batteries Nature 451 7179 652 657 Bibcode 2008Natur 451 652A doi 10 1038 451652a PMID 18256660 S2CID 205035786 a b c National Laboratory Oak Ridge Aluminum Ion Battery to Transform 21st Century Energy Storage PDF web ornl gov Oak Ridge National Laboratory Archived from the original PDF on 19 November 2015 Retrieved 30 October 2014 Colmenares Clinton Battery power Aluminum ion competes with lithium in Clemson Nanomaterials Institute study the Newsstand Archived from the original on 18 October 2017 Retrieved 1 March 2018 a b Paranthaman brown M Parans Gilbert Aluminium ION Battery PDF web ornl gov Oak Ridge National Laboratory Archived from the original PDF on 12 April 2015 Retrieved 12 November 2014 a href Template Cite web html title Template Cite web cite web a CS1 maint multiple names authors list link Dai Hongjie Hwang Bing Joe Yang Jiang Chen Changxin Angell Michael Guan Mingyun Wang Di Yan Wu Yingpeng Lu Bingan April 2015 An ultrafast rechargeable aluminium ion battery Nature 520 7547 324 328 Bibcode 2015Natur 520 324L doi 10 1038 nature14340 ISSN 1476 4687 PMID 25849777 S2CID 4469370 Passerini S Loeffler N Kim G T Montanino M Carewska M Appetecchi G B Simonetti E Moreno M 1 January 2017 Ionic Liquid Electrolytes for Safer Lithium Batteries I Investigation around Optimal Formulation Journal of the Electrochemical Society 164 1 A6026 A6031 doi 10 1149 2 0051701jes ISSN 0013 4651 Lavars Nick 6 April 2021 3D aluminum electrode enables low cost battery to go the distance New Atlas Archived from the original on 6 April 2021 Retrieved 11 April 2021 a b Teschler Leland 23 March 2012 Goodbye to lithium ion batteries machinedesign com machine design Retrieved 12 November 2014 Jayaprakash N Das S K Archer L A 2011 The rechargeable aluminum ion battery PDF Chemical Communications rsc 47 47 12610 2 doi 10 1039 C1CC15779E hdl 1813 33734 PMID 22051794 Aluminum Ion Battery Cell Is Durable Fast Charging Bendable Stanford Inventors Video John Voelcker 8 April 2015 Green Car Reports Stanford Researchers Unveil New Ultrafast Charging Aluminum Ion Battery scientificamerican com Lin Meng Chang Gong Ming Lu Bingan Wu Yingpeng Wang Di Yan Guan Mingyun Angell Michael Chen Changxin Yang Jiang Hwang Bing Joe Dai Hongjie 9 April 2015 An ultrafast rechargeable aluminium ion battery Nature 520 7547 324 328 Bibcode 2015Natur 520 324L doi 10 1038 nature14340 PMID 25849777 S2CID 4469370 via www nature com Ultrafast Rechargeable Aluminum ion Battery Industrial Technology Research Institute Archived from the original on 15 November 2018 Retrieved 2 March 2018 Flynn Jackie 7 February 2017 Stanford engineers create a low cost battery for storing renewable energy Stanford News Service Retrieved 1 March 2018 Angell Michael Pan Chun Jern Rong Youmin Yuan Chunze Lin Meng Chang Hwang Bing Joe Dai Hongjie 2017 High Coulombic efficiency aluminum ion battery using an AlCl3 urea ionic liquid analog electrolyte PNAS 114 5 834 839 arXiv 1611 09951 Bibcode 2017PNAS 114 834A doi 10 1073 pnas 1619795114 PMC 5293044 PMID 28096353 HIGH SPECIFIC ENERGY ALUMINIUM ION RECHARGEABLE DECENTRALIZED ELECTRICITY GENERATION SOURCES on cordis europa eu ALION Aluminium Ion batteries Aluminium Ion Batteries A Promising Technology for Stationary Applications Leitat Projects Blog Retrieved 11 July 2019 Gao Tao Li Xiaogang Wang Xiwen Hu Junkai Han Fudong Fan Xiulin Suo Liumin Pearse Alex J Lee Sang Bok 16 August 2016 A Rechargeable Al S Battery with an Ionic Liquid Electrolyte Angewandte Chemie International Edition 55 34 9898 9901 doi 10 1002 anie 201603531 ISSN 1521 3773 PMID 27417442 S2CID 19124928 a b Irving Michael 25 August 2022 Battery made of aluminum sulfur and salt proves fast safe and low cost New Atlas Retrieved 26 August 2022 Brahambhatt Rupendra 26 August 2022 New aluminum batteries could be the dirt cheap alternative to lithium ion that we ve all been waiting for ZME Science Retrieved 26 August 2022 Paraskova Tsvetana 1 October 2019 Is This The End Of The Lithium Ion Battery OilPrice com Archived from the original on 2 October 2019 Retrieved 6 October 2019 Joseph Jickson Nerkar Jawahar Tang Cheng Du Aijun O Mullane Anthony P Ostrikov Kostya Ken 2019 Reversible Intercalation of Multivalent Al3 Ions into Potassium Rich Cryptomelane Nanowires for Aqueous Rechargeable Al Ion Batteries ChemSusChem 12 16 3753 3760 doi 10 1002 cssc 201901182 ISSN 1864 564X PMID 31102343 S2CID 157066901 Flaherty Nick 2017 Aluminium graphene battery outperforms lithium eeNews Al ion battery retains 92 capacity after 250 000 charge cycles Elektor Chinese scientists develop fast charging aluminum graphene battery Xinhua English news cn www xinhuanet com Archived from the original on 12 January 2018 Retrieved 12 January 2018 External links EditStanford unveils aluminum ion battery on YouTube Cathode materials for rechargeable aluminum batteries current status and progress Fuel Cell Thai GEN3 Aluminum ion battery on YouTube Retrieved from https en wikipedia org w index php title Aluminium ion battery amp oldid 1171345757, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.