fbpx
Wikipedia

Tit for tat

Tit for tat is an English saying meaning "equivalent retaliation". It developed from "tip for tap", first recorded in 1558.[1]

In Western business cultures, a handshake when meeting someone is a signal of initial cooperation.

It is also a highly effective strategy in game theory. An agent using this strategy will first cooperate, then subsequently replicate an opponent's previous action. If the opponent previously was cooperative, the agent is cooperative. If not, the agent is not.

Game theory

Tit-for-tat has been very successfully used as a strategy for the iterated prisoner's dilemma. The strategy was first introduced by Anatol Rapoport in Robert Axelrod's two tournaments,[2] held around 1980. Notably, it was (on both occasions) both the simplest strategy and the most successful in direct competition.

An agent using this strategy will first cooperate, then subsequently replicate an opponent's previous action. If the opponent previously was cooperative, the agent is cooperative. If not, the agent is not. This is similar to reciprocal altruism in biology.

History

The term developed most concretely in Northern Ireland, to describe increasing eye for an eye mentality, amongst the Irish Republicans and Ulster Unionists.[3] This can be seen with the Red Lion Pub bombing by the IRA being followed by the McGurk's Bar bombing, both targeting civilians. Specifically the attacks of massacres would be structured around the mutual killings of Protestant and Catholic communities, both communities being generally uninterested in the violence.[4] This sectarian mentality led to the term "Tit for tat bombings" to enter the common lexicon of Northern Irish society.[5][6]

Implications

The success of the tit-for-tat strategy, which is largely cooperative despite that its name emphasizes an adversarial nature, took many by surprise. Arrayed against strategies produced by various teams it won in two competitions. After the first competition, new strategies formulated specifically to combat tit-for-tat failed due to their negative interactions with each other; a successful strategy other than tit-for-tat would have had to be formulated with both tit-for-tat and itself in mind.

This result may give insight into how groups of animals (and particularly human societies) have come to live in largely (or entirely) cooperative societies, rather than the individualistic "red in tooth and claw" way that might be expected from individuals engaged in a Hobbesian state of nature. This, and particularly its application to human society and politics, is the subject of Robert Axelrod's book The Evolution of Cooperation.

Moreover, the tit-for-tat strategy has been of beneficial use to social psychologists and sociologists in studying effective techniques to reduce conflict. Research has indicated that when individuals who have been in competition for a period of time no longer trust one another, the most effective competition reverser is the use of the tit-for-tat strategy. Individuals commonly engage in behavioral assimilation, a process in which they tend to match their own behaviors to those displayed by cooperating or competing group members. Therefore, if the tit-for-tat strategy begins with cooperation, then cooperation ensues. On the other hand, if the other party competes, then the tit-for-tat strategy will lead the alternate party to compete as well. Ultimately, each action by the other member is countered with a matching response, competition with competition and cooperation with cooperation.

In the case of conflict resolution, the tit-for-tat strategy is effective for several reasons: the technique is recognized as clear, nice, provocable, and forgiving. Firstly, it is a clear and recognizable strategy. Those using it quickly recognize its contingencies and adjust their behavior accordingly. Moreover, it is considered to be nice as it begins with cooperation and only defects in response to competition. The strategy is also provocable because it provides immediate retaliation for those who compete. Finally, it is forgiving as it immediately produces cooperation should the competitor make a cooperative move.

The implications of the tit-for-tat strategy have been of relevance to conflict research, resolution and many aspects of applied social science.[7]

Mathematics

Take for example the following infinitely repeated prisoners dilemma game:

C D
C 6, 6 2, 9
D 9, 2 3, 3

The Tit for Tat strategy copies what the other player previously chose. If players cooperate by playing strategy (C,C) they cooperate forever.

1 2 3 4 ...
p1 C C C C ...
p2 C C C C ...

Cooperation gives the following payoff (where   is the discount factor):

 

a geometric series summing to

 

If a player deviates to defecting (D), then the next round they get punished. Alternate between outcomes where p1 cooperates and p2 deviates, and vice versa.

1 2 3 4 ...
p1 C D C D ...
p2 D C D C ...

Deviation gives the following payoff:

 

a sum of two geometric series that comes to

 

Expect collaboration if payoff of deviation is no better than cooperation.

 

Continue cooperating if,  

Continue defecting if,  

Problems

While Axelrod has empirically shown that the strategy is optimal in some cases of direct competition, two agents playing tit for tat remain vulnerable. A one-time, single-bit error in either player's interpretation of events can lead to an unending "death spiral": if one agent defects and the opponent cooperates, then both agents will end up alternating cooperate and defect, yielding a lower payoff than if both agents were to continually cooperate. This situation frequently arises in real world conflicts, ranging from schoolyard fights to civil and regional wars. The reason for these issues is that tit for tat is not a subgame perfect equilibrium, except under knife-edge conditions on the discount rate.[8] While this sub-game is not directly reachable by two agents playing tit for tat strategies, a strategy must be a Nash equilibrium in all sub-games to be sub-game perfect. Further, this sub-game may be reached if any noise is allowed in the agents' signaling. A sub-game perfect variant of tit for tat known as "contrite tit for tat" may be created by employing a basic reputation mechanism.[9]

Knife-edge is "equilibrium that exists only for exact values of the exogenous variables. If you vary the variables in even the slightest way, knife-edge equilibrium disappear."[10]

Can be both Nash equilibrium and knife-edge equilibrium. Known as knife-edge equilibrium because the equilibrium "rests precariously on" the exact value.

Example:

Left Right
Up (X, X) (0, 0)
Down (0, 0) (−X, −X)

Suppose X = 0. There is no profitable deviation from (Down, Left) or from (Up, Right). However, if the value of X deviates by any amount, no matter how small, then the equilibrium no longer stands. It becomes profitable to deviate to up, for example, if X has a value of 0.000001 instead of 0. Thus, the equilibrium is very precarious. In its usage in the Wikipedia article, knife-edge conditions is referring to the fact that very rarely, only when a specific condition is met and, for instance, X, equals a specific value is there an equilibrium.

Tit for two tats could be used to mitigate this problem; see the description below.[11] "Tit for tat with forgiveness" is a similar attempt to escape the death spiral. When the opponent defects, a player employing this strategy will occasionally cooperate on the next move anyway. The exact probability that a player will respond with cooperation depends on the line-up of opponents.

Furthermore, the tit-for-tat strategy is not proved optimal in situations short of total competition. For example, when the parties are friends it may be best for the friendship when a player cooperates at every step despite occasional deviations by the other player. Most situations in the real world are less competitive than the total competition in which the tit-for-tat strategy won its competition.

Tit for tat is very different from grim trigger, in that it is forgiving in nature, as it immediately produces cooperation, should the competitor chooses to cooperate. Grim trigger on the other hand is the most unforgiving strategy, in the sense even a single defect would the make the player playing using grim trigger defect for the remainder of the game.[12]

Tit for two tats

Tit for two tats is similar to tit for tat, but allows the opponent to defect from the agreed upon strategy twice before the player retaliates.  This aspect makes the player using the tit for tat strategy appear more “forgiving” to the opponent.

In a tit for tat strategy, once an opponent defects, the tit for tat player immediately responds by defecting on the next move. This has the unfortunate consequence of causing two retaliatory strategies to continuously defect against each other resulting in a poor outcome for both players. A tit for two tats player will let the first defection go unchallenged as a means to avoid the "death spiral" of the previous example. If the opponent defects twice in a row, the tit for two tats player will respond by defecting.

This strategy was put forward by Robert Axelrod during his second round of computer simulations at RAND. After analyzing the results of the first experiment, he determined that had a participant entered the tit for two tats strategy it would have emerged with a higher cumulative score than any other program. As a result, he himself entered it with high expectations in the second tournament. Unfortunately, owing to the more aggressive nature of the programs entered in the second round, which were able to take advantage of its highly forgiving nature, tit for two tats did significantly worse (in the game-theory sense) than tit for tat.[13]

Real-world use

Peer-to-peer file sharing

BitTorrent peers use tit-for-tat strategy to optimize their download speed.[14] More specifically, most BitTorrent peers use a variant of tit for two tats which is called regular unchoking in BitTorrent terminology. BitTorrent peers have a limited number of upload slots to allocate to other peers. Consequently, when a peer's upload bandwidth is saturated, it will use a tit-for-tat strategy. Cooperation is achieved when upload bandwidth is exchanged for download bandwidth. Therefore, when a peer is not uploading in return to our own peer uploading, the BitTorrent program will choke the connection with the uncooperative peer and allocate this upload slot to a hopefully more cooperating peer. Regular unchoking correlates to always cooperating on the first move in prisoner's dilemma. Periodically, a peer will allocate an upload slot to a randomly chosen uncooperative peer (unchoke). This is called optimistic unchoking. This behavior allows searching for more cooperating peers and gives a second chance to previously non-cooperating peers. The optimal threshold values of this strategy are still the subject of research.

Explaining reciprocal altruism in animal communities

Studies in the prosocial behaviour of animals have led many ethologists and evolutionary psychologists to apply tit-for-tat strategies to explain why altruism evolves in many animal communities. Evolutionary game theory, derived from the mathematical theories formalised by von Neumann and Morgenstern (1953), was first devised by Maynard Smith (1972) and explored further in bird behaviour by Robert Hinde. Their application of game theory to the evolution of animal strategies launched an entirely new way of analysing animal behaviour.

Reciprocal altruism works in animal communities where the cost to the benefactor in any transaction of food, mating rights, nesting or territory is less than the gains to the beneficiary. The theory also holds that the act of altruism should be reciprocated if the balance of needs reverse. Mechanisms to identify and punish "cheaters" who fail to reciprocate, in effect a form of tit for tat, are important to regulate reciprocal altruism. For example, tit-for-tat is suggested to be the mechanism of cooperative predator inspection behavior in guppies.

War

The tit-for-tat inability of either side to back away from conflict, for fear of being perceived as weak or as cooperating with the enemy, has been the cause of many prolonged conflicts throughout history.

However, the tit for tat strategy has also been detected by analysts in the spontaneous non-violent behaviour, called "live and let live" that arose during trench warfare in the First World War. Troops dug in only a few hundred feet from each other would evolve an unspoken understanding. If a sniper killed a soldier on one side, the other expected an equal retaliation. Conversely, if no one was killed for a time, the other side would acknowledge this implied "truce" and act accordingly. This created a "separate peace" between the trenches.[15]

See also

References

  1. ^ Shaun Hargreaves Heap, Yanis Varoufakis (2004). Game theory: a critical text. Routledge. p. 191. ISBN 978-0-415-25094-8.
  2. ^ "The Axelrod Tournaments". September 5, 2011.
  3. ^ Hume, John (1986). "A New Ireland: The Acceptance of Diversity". Studies: An Irish Quarterly Review. 75 (300): 378–383. JSTOR 30090790 – via JSTOR.
  4. ^ Savaric, Michel (October 11, 2014). Garbaye, Romain; Schnapper, Pauline (eds.). The Politics of Ethnic Diversity in the British Isles. Palgrave Macmillan UK. pp. 174–188. doi:10.1057/9781137351548_10 – via Springer Link.
  5. ^ Counterterrorism Killings and Provisional IRA Bombings, 1970-1998 Paul Gill, University College London James Piazza, Pennsylvania State University John Horgan, Georgia State University
  6. ^ Maney, Gregory, Michael McCarthy, and Grace Yukich. "Explaining political violence against civilians in Northern Ireland: A contention-oriented approach." Mobilization: An International Quarterly 17, no. 1 (2012): 27-48.
  7. ^ Forsyth, D.R. (2010) Group Dynamics
  8. ^ Gintis, Herbert (2000). Game Theory Evolving. Princeton University Press. ISBN 978-0-691-00943-8.
  9. ^ Boyd, Robert (1989). "Mistakes Allow Evolutionary Stability in the Repeated Prisoner's Dilemma Game". Journal of Theoretical Biology. 136 (1): 47–56. Bibcode:1989JThBi.136...47B. CiteSeerX 10.1.1.405.507. doi:10.1016/S0022-5193(89)80188-2. PMID 2779259.
  10. ^ "Knife-Edge Equilibria – Game Theory 101". Retrieved 2018-12-10.
  11. ^ Dawkins, Richard (1989). The Selfish Gene. Oxford University Press. ISBN 978-0-19-929115-1.
  12. ^ Axelrod, Robert (2000-01-01). "On Six Advances in Cooperation Theory". Analyse & Kritik. 22 (1): 130–151. CiteSeerX 10.1.1.5.6149. doi:10.1515/auk-2000-0107. ISSN 2365-9858. S2CID 17399009.
  13. ^ Axelrod, Robert (1984). The Evolution of Cooperation. Basic Books. ISBN 978-0-465-02121-5.
  14. ^ Cohen, Bram (2003-05-22). "Incentives Build Robustness in BitTorrent" (PDF). BitTorrent.org. Retrieved 2011-02-05.
  15. ^ Nice Guys Finish First. Richard Dawkins. BBC. 1986.

External links

  • Wired magazine story about tit for tat being 'defeated' by a group of collaborating programs
  • Explanation of Tit for tat on Australian Broadcasting Corporation

other, uses, disambiguation, this, article, needs, additional, citations, verification, please, help, improve, this, article, adding, citations, reliable, sources, unsourced, material, challenged, removed, find, sources, news, newspapers, books, scholar, jstor. For other uses see Tit for Tat disambiguation This article needs additional citations for verification Please help improve this article by adding citations to reliable sources Unsourced material may be challenged and removed Find sources Tit for tat news newspapers books scholar JSTOR December 2007 Learn how and when to remove this template message Tit for tat is an English saying meaning equivalent retaliation It developed from tip for tap first recorded in 1558 1 In Western business cultures a handshake when meeting someone is a signal of initial cooperation It is also a highly effective strategy in game theory An agent using this strategy will first cooperate then subsequently replicate an opponent s previous action If the opponent previously was cooperative the agent is cooperative If not the agent is not Contents 1 Game theory 2 History 3 Implications 4 Mathematics 5 Problems 6 Tit for two tats 7 Real world use 7 1 Peer to peer file sharing 7 2 Explaining reciprocal altruism in animal communities 7 3 War 8 See also 9 References 10 External linksGame theory EditTit for tat has been very successfully used as a strategy for the iterated prisoner s dilemma The strategy was first introduced by Anatol Rapoport in Robert Axelrod s two tournaments 2 held around 1980 Notably it was on both occasions both the simplest strategy and the most successful in direct competition An agent using this strategy will first cooperate then subsequently replicate an opponent s previous action If the opponent previously was cooperative the agent is cooperative If not the agent is not This is similar to reciprocal altruism in biology History EditThe term developed most concretely in Northern Ireland to describe increasing eye for an eye mentality amongst the Irish Republicans and Ulster Unionists 3 This can be seen with the Red Lion Pub bombing by the IRA being followed by the McGurk s Bar bombing both targeting civilians Specifically the attacks of massacres would be structured around the mutual killings of Protestant and Catholic communities both communities being generally uninterested in the violence 4 This sectarian mentality led to the term Tit for tat bombings to enter the common lexicon of Northern Irish society 5 6 Implications EditThe success of the tit for tat strategy which is largely cooperative despite that its name emphasizes an adversarial nature took many by surprise Arrayed against strategies produced by various teams it won in two competitions After the first competition new strategies formulated specifically to combat tit for tat failed due to their negative interactions with each other a successful strategy other than tit for tat would have had to be formulated with both tit for tat and itself in mind This result may give insight into how groups of animals and particularly human societies have come to live in largely or entirely cooperative societies rather than the individualistic red in tooth and claw way that might be expected from individuals engaged in a Hobbesian state of nature This and particularly its application to human society and politics is the subject of Robert Axelrod s book The Evolution of Cooperation Moreover the tit for tat strategy has been of beneficial use to social psychologists and sociologists in studying effective techniques to reduce conflict Research has indicated that when individuals who have been in competition for a period of time no longer trust one another the most effective competition reverser is the use of the tit for tat strategy Individuals commonly engage in behavioral assimilation a process in which they tend to match their own behaviors to those displayed by cooperating or competing group members Therefore if the tit for tat strategy begins with cooperation then cooperation ensues On the other hand if the other party competes then the tit for tat strategy will lead the alternate party to compete as well Ultimately each action by the other member is countered with a matching response competition with competition and cooperation with cooperation In the case of conflict resolution the tit for tat strategy is effective for several reasons the technique is recognized as clear nice provocable and forgiving Firstly it is a clear and recognizable strategy Those using it quickly recognize its contingencies and adjust their behavior accordingly Moreover it is considered to be nice as it begins with cooperation and only defects in response to competition The strategy is also provocable because it provides immediate retaliation for those who compete Finally it is forgiving as it immediately produces cooperation should the competitor make a cooperative move The implications of the tit for tat strategy have been of relevance to conflict research resolution and many aspects of applied social science 7 Mathematics EditTake for example the following infinitely repeated prisoners dilemma game C DC 6 6 2 9D 9 2 3 3The Tit for Tat strategy copies what the other player previously chose If players cooperate by playing strategy C C they cooperate forever 1 2 3 4 p1 C C C C p2 C C C C Cooperation gives the following payoff where d displaystyle delta is the discount factor 6 6 d 6 d 2 6 d 3 displaystyle 6 6 delta 6 delta 2 6 delta 3 a geometric series summing to 6 1 d displaystyle frac 6 1 delta If a player deviates to defecting D then the next round they get punished Alternate between outcomes where p1 cooperates and p2 deviates and vice versa 1 2 3 4 p1 C D C D p2 D C D C Deviation gives the following payoff 9 2 d 9 d 2 2 d 3 9 d 4 2 d 5 displaystyle 9 2 delta 9 delta 2 2 delta 3 9 delta 4 2 delta 5 a sum of two geometric series that comes to 9 1 d 2 2 d 1 d 2 displaystyle frac 9 1 delta 2 frac 2 delta 1 delta 2 Expect collaboration if payoff of deviation is no better than cooperation 6 1 d 9 1 d 2 2 d 1 d 2 6 1 d 9 2 d 1 d 2 1 d 2 1 6 1 d 9 2 d 1 d 2 1 d 2 1 1 d 1 d 1 6 1 d 9 2 d 6 6 d 9 2 d 4 d 3 d 3 4 displaystyle begin aligned frac 6 1 delta amp geq frac 9 1 delta 2 frac 2 delta 1 delta 2 frac 6 1 delta amp geq frac 9 2 delta 1 delta 2 frac 1 delta 2 1 cdot frac 6 1 delta amp geq frac 9 2 delta cancel 1 delta 2 cdot frac cancel 1 delta 2 1 frac 1 delta cancel 1 delta 1 cdot frac 6 cancel 1 delta amp geq 9 2 delta 6 6 delta amp geq 9 2 delta 4 delta amp geq 3 delta amp geq frac 3 4 end aligned Continue cooperating if d 3 4 displaystyle delta geq frac 3 4 Continue defecting if d lt 3 4 displaystyle delta lt frac 3 4 Problems EditWhile Axelrod has empirically shown that the strategy is optimal in some cases of direct competition two agents playing tit for tat remain vulnerable A one time single bit error in either player s interpretation of events can lead to an unending death spiral if one agent defects and the opponent cooperates then both agents will end up alternating cooperate and defect yielding a lower payoff than if both agents were to continually cooperate This situation frequently arises in real world conflicts ranging from schoolyard fights to civil and regional wars The reason for these issues is that tit for tat is not a subgame perfect equilibrium except under knife edge conditions on the discount rate 8 While this sub game is not directly reachable by two agents playing tit for tat strategies a strategy must be a Nash equilibrium in all sub games to be sub game perfect Further this sub game may be reached if any noise is allowed in the agents signaling A sub game perfect variant of tit for tat known as contrite tit for tat may be created by employing a basic reputation mechanism 9 Knife edge is equilibrium that exists only for exact values of the exogenous variables If you vary the variables in even the slightest way knife edge equilibrium disappear 10 Can be both Nash equilibrium and knife edge equilibrium Known as knife edge equilibrium because the equilibrium rests precariously on the exact value Example Left RightUp X X 0 0 Down 0 0 X X Suppose X 0 There is no profitable deviation from Down Left or from Up Right However if the value of X deviates by any amount no matter how small then the equilibrium no longer stands It becomes profitable to deviate to up for example if X has a value of 0 000001 instead of 0 Thus the equilibrium is very precarious In its usage in the Wikipedia article knife edge conditions is referring to the fact that very rarely only when a specific condition is met and for instance X equals a specific value is there an equilibrium Tit for two tats could be used to mitigate this problem see the description below 11 Tit for tat with forgiveness is a similar attempt to escape the death spiral When the opponent defects a player employing this strategy will occasionally cooperate on the next move anyway The exact probability that a player will respond with cooperation depends on the line up of opponents Furthermore the tit for tat strategy is not proved optimal in situations short of total competition For example when the parties are friends it may be best for the friendship when a player cooperates at every step despite occasional deviations by the other player Most situations in the real world are less competitive than the total competition in which the tit for tat strategy won its competition Tit for tat is very different from grim trigger in that it is forgiving in nature as it immediately produces cooperation should the competitor chooses to cooperate Grim trigger on the other hand is the most unforgiving strategy in the sense even a single defect would the make the player playing using grim trigger defect for the remainder of the game 12 Tit for two tats EditTit for two tats is similar to tit for tat but allows the opponent to defect from the agreed upon strategy twice before the player retaliates This aspect makes the player using the tit for tat strategy appear more forgiving to the opponent In a tit for tat strategy once an opponent defects the tit for tat player immediately responds by defecting on the next move This has the unfortunate consequence of causing two retaliatory strategies to continuously defect against each other resulting in a poor outcome for both players A tit for two tats player will let the first defection go unchallenged as a means to avoid the death spiral of the previous example If the opponent defects twice in a row the tit for two tats player will respond by defecting This strategy was put forward by Robert Axelrod during his second round of computer simulations at RAND After analyzing the results of the first experiment he determined that had a participant entered the tit for two tats strategy it would have emerged with a higher cumulative score than any other program As a result he himself entered it with high expectations in the second tournament Unfortunately owing to the more aggressive nature of the programs entered in the second round which were able to take advantage of its highly forgiving nature tit for two tats did significantly worse in the game theory sense than tit for tat 13 Real world use EditPeer to peer file sharing Edit See also BitTorrent protocol Downloading torrents and sharing files BitTorrent peers use tit for tat strategy to optimize their download speed 14 More specifically most BitTorrent peers use a variant of tit for two tats which is called regular unchoking in BitTorrent terminology BitTorrent peers have a limited number of upload slots to allocate to other peers Consequently when a peer s upload bandwidth is saturated it will use a tit for tat strategy Cooperation is achieved when upload bandwidth is exchanged for download bandwidth Therefore when a peer is not uploading in return to our own peer uploading the BitTorrent program will choke the connection with the uncooperative peer and allocate this upload slot to a hopefully more cooperating peer Regular unchoking correlates to always cooperating on the first move in prisoner s dilemma Periodically a peer will allocate an upload slot to a randomly chosen uncooperative peer unchoke This is called optimistic unchoking This behavior allows searching for more cooperating peers and gives a second chance to previously non cooperating peers The optimal threshold values of this strategy are still the subject of research Explaining reciprocal altruism in animal communities Edit Studies in the prosocial behaviour of animals have led many ethologists and evolutionary psychologists to apply tit for tat strategies to explain why altruism evolves in many animal communities Evolutionary game theory derived from the mathematical theories formalised by von Neumann and Morgenstern 1953 was first devised by Maynard Smith 1972 and explored further in bird behaviour by Robert Hinde Their application of game theory to the evolution of animal strategies launched an entirely new way of analysing animal behaviour Reciprocal altruism works in animal communities where the cost to the benefactor in any transaction of food mating rights nesting or territory is less than the gains to the beneficiary The theory also holds that the act of altruism should be reciprocated if the balance of needs reverse Mechanisms to identify and punish cheaters who fail to reciprocate in effect a form of tit for tat are important to regulate reciprocal altruism For example tit for tat is suggested to be the mechanism of cooperative predator inspection behavior in guppies War Edit The tit for tat inability of either side to back away from conflict for fear of being perceived as weak or as cooperating with the enemy has been the cause of many prolonged conflicts throughout history However the tit for tat strategy has also been detected by analysts in the spontaneous non violent behaviour called live and let live that arose during trench warfare in the First World War Troops dug in only a few hundred feet from each other would evolve an unspoken understanding If a sniper killed a soldier on one side the other expected an equal retaliation Conversely if no one was killed for a time the other side would acknowledge this implied truce and act accordingly This created a separate peace between the trenches 15 See also EditAttitude polarization Chicken game Christmas truce Deterrence theory Eye for an eye Golden Rule Mutual assured destruction Nice Guys Finish First a documentary by Richard Dawkins that discusses tit for tat Peace war game Quid pro quo Trigger strategy a set of strategies of which tit for tat is a member Virtuous circle and vicious circle Zero sum gameReferences Edit Shaun Hargreaves Heap Yanis Varoufakis 2004 Game theory a critical text Routledge p 191 ISBN 978 0 415 25094 8 The Axelrod Tournaments September 5 2011 Hume John 1986 A New Ireland The Acceptance of Diversity Studies An Irish Quarterly Review 75 300 378 383 JSTOR 30090790 via JSTOR Savaric Michel October 11 2014 Garbaye Romain Schnapper Pauline eds The Politics of Ethnic Diversity in the British Isles Palgrave Macmillan UK pp 174 188 doi 10 1057 9781137351548 10 via Springer Link Counterterrorism Killings and Provisional IRA Bombings 1970 1998 Paul Gill University College London James Piazza Pennsylvania State University John Horgan Georgia State University Maney Gregory Michael McCarthy and Grace Yukich Explaining political violence against civilians in Northern Ireland A contention oriented approach Mobilization An International Quarterly 17 no 1 2012 27 48 Forsyth D R 2010 Group Dynamics Gintis Herbert 2000 Game Theory Evolving Princeton University Press ISBN 978 0 691 00943 8 Boyd Robert 1989 Mistakes Allow Evolutionary Stability in the Repeated Prisoner s Dilemma Game Journal of Theoretical Biology 136 1 47 56 Bibcode 1989JThBi 136 47B CiteSeerX 10 1 1 405 507 doi 10 1016 S0022 5193 89 80188 2 PMID 2779259 Knife Edge Equilibria Game Theory 101 Retrieved 2018 12 10 Dawkins Richard 1989 The Selfish Gene Oxford University Press ISBN 978 0 19 929115 1 Axelrod Robert 2000 01 01 On Six Advances in Cooperation Theory Analyse amp Kritik 22 1 130 151 CiteSeerX 10 1 1 5 6149 doi 10 1515 auk 2000 0107 ISSN 2365 9858 S2CID 17399009 Axelrod Robert 1984 The Evolution of Cooperation Basic Books ISBN 978 0 465 02121 5 Cohen Bram 2003 05 22 Incentives Build Robustness in BitTorrent PDF BitTorrent org Retrieved 2011 02 05 Nice Guys Finish First Richard Dawkins BBC 1986 External links Edit Look up tit for tat in Wiktionary the free dictionary Wired magazine story about tit for tat being defeated by a group of collaborating programs Explanation of Tit for tat on Australian Broadcasting Corporation Retrieved from https en wikipedia org w index php title Tit for tat amp oldid 1117138800, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.