fbpx
Wikipedia

Young's convolution inequality

In mathematics, Young's convolution inequality is a mathematical inequality about the convolution of two functions,[1] named after William Henry Young.

Statement edit

Euclidean space edit

In real analysis, the following result is called Young's convolution inequality:[2]

Suppose   is in the Lebesgue space   and   is in   and

 
with   Then
 

Here the star denotes convolution,   is Lebesgue space, and

 
denotes the usual   norm.

Equivalently, if   and   then

 

Generalizations edit

Young's convolution inequality has a natural generalization in which we replace   by a unimodular group   If we let   be a bi-invariant Haar measure on   and we let   or   be integrable functions, then we define   by

 
Then in this case, Young's inequality states that for   and   and   such that
 
we have a bound
 
Equivalently, if   and   then
 
Since   is in fact a locally compact abelian group (and therefore unimodular) with the Lebesgue measure the desired Haar measure, this is in fact a generalization.

This generalization may be refined. Let   and   be as before and assume   satisfy   Then there exists a constant   such that for any   and any measurable function   on   that belongs to the weak   space   which by definition means that the following supremum

 
is finite, we have   and[3]
 

Applications edit

An example application is that Young's inequality can be used to show that the heat semigroup is a contracting semigroup using the   norm (that is, the Weierstrass transform does not enlarge the   norm).

Proof edit

Proof by Hölder's inequality edit

Young's inequality has an elementary proof with the non-optimal constant 1.[4]

We assume that the functions   are nonnegative and integrable, where   is a unimodular group endowed with a bi-invariant Haar measure   We use the fact that   for any measurable   Since  

 
By the Hölder inequality for three functions we deduce that
 
The conclusion follows then by left-invariance of the Haar measure, the fact that integrals are preserved by inversion of the domain, and by Fubini's theorem.

Proof by interpolation edit

Young's inequality can also be proved by interpolation; see the article on Riesz–Thorin interpolation for a proof.

Sharp constant edit

In case   Young's inequality can be strengthened to a sharp form, via

 
where the constant  [5][6][7] When this optimal constant is achieved, the function   and   are multidimensional Gaussian functions.

See also edit

Notes edit

  1. ^ Young, W. H. (1912), "On the multiplication of successions of Fourier constants", Proceedings of the Royal Society A, 87 (596): 331–339, doi:10.1098/rspa.1912.0086, JFM 44.0298.02, JSTOR 93120
  2. ^ Bogachev, Vladimir I. (2007), Measure Theory, vol. I, Berlin, Heidelberg, New York: Springer-Verlag, ISBN 978-3-540-34513-8, MR 2267655, Zbl 1120.28001, Theorem 3.9.4
  3. ^ Bahouri, Chemin & Danchin 2011, pp. 5–6.
  4. ^ Lieb, Elliott H.; Loss, Michael (2001). Analysis. Graduate Studies in Mathematics (2nd ed.). Providence, R.I.: American Mathematical Society. p. 100. ISBN 978-0-8218-2783-3. OCLC 45799429.
  5. ^ Beckner, William (1975). "Inequalities in Fourier Analysis". Annals of Mathematics. 102 (1): 159–182. doi:10.2307/1970980. JSTOR 1970980.
  6. ^ Brascamp, Herm Jan; Lieb, Elliott H (1976-05-01). "Best constants in Young's inequality, its converse, and its generalization to more than three functions". Advances in Mathematics. 20 (2): 151–173. doi:10.1016/0001-8708(76)90184-5.
  7. ^ Fournier, John J. F. (1977), "Sharpness in Young's inequality for convolution", Pacific Journal of Mathematics, 72 (2): 383–397, doi:10.2140/pjm.1977.72.383, MR 0461034, Zbl 0357.43002

References edit

External links edit

  • Young's Inequality for Convolutions at ProofWiki

young, convolution, inequality, mathematics, mathematical, inequality, about, convolution, functions, named, after, william, henry, young, contents, statement, euclidean, space, generalizations, applications, proof, proof, hölder, inequality, proof, interpolat. In mathematics Young s convolution inequality is a mathematical inequality about the convolution of two functions 1 named after William Henry Young Contents 1 Statement 1 1 Euclidean space 1 2 Generalizations 2 Applications 3 Proof 3 1 Proof by Holder s inequality 3 2 Proof by interpolation 4 Sharp constant 5 See also 6 Notes 7 References 8 External linksStatement editEuclidean space edit In real analysis the following result is called Young s convolution inequality 2 Suppose f displaystyle f nbsp is in the Lebesgue space Lp Rd displaystyle L p mathbb R d nbsp and g displaystyle g nbsp is in Lq Rd displaystyle L q mathbb R d nbsp and1p 1q 1r 1 displaystyle frac 1 p frac 1 q frac 1 r 1 nbsp with 1 p q r displaystyle 1 leq p q r leq infty nbsp Then f g r f p g q displaystyle f g r leq f p g q nbsp Here the star denotes convolution Lp displaystyle L p nbsp is Lebesgue space and f p Rd f x pdx 1 p displaystyle f p Bigl int mathbb R d f x p dx Bigr 1 p nbsp denotes the usual Lp displaystyle L p nbsp norm Equivalently if p q r 1 displaystyle p q r geq 1 nbsp and 1p 1q 1r 2 textstyle frac 1 p frac 1 q frac 1 r 2 nbsp then Rd Rdf x g x y h y dxdy Rd f p 1p Rd g q 1q Rd h r 1r displaystyle left int mathbb R d int mathbb R d f x g x y h y mathrm d x mathrm d y right leq left int mathbb R d vert f vert p right frac 1 p left int mathbb R d vert g vert q right frac 1 q left int mathbb R d vert h vert r right frac 1 r nbsp Generalizations edit Young s convolution inequality has a natural generalization in which we replace Rd displaystyle mathbb R d nbsp by a unimodular group G displaystyle G nbsp If we let m displaystyle mu nbsp be a bi invariant Haar measure on G displaystyle G nbsp and we let f g G R displaystyle f g G to mathbb R nbsp or C displaystyle mathbb C nbsp be integrable functions then we define f g displaystyle f g nbsp byf g x Gf y g y 1x dm y displaystyle f g x int G f y g y 1 x mathrm d mu y nbsp Then in this case Young s inequality states that for f Lp G m displaystyle f in L p G mu nbsp and g Lq G m displaystyle g in L q G mu nbsp and p q r 1 displaystyle p q r in 1 infty nbsp such that 1p 1q 1r 1 displaystyle frac 1 p frac 1 q frac 1 r 1 nbsp we have a bound f g r f p g q displaystyle lVert f g rVert r leq lVert f rVert p lVert g rVert q nbsp Equivalently if p q r 1 displaystyle p q r geq 1 nbsp and 1p 1q 1r 2 textstyle frac 1 p frac 1 q frac 1 r 2 nbsp then G Gf x g y 1x h y dm x dm y G f p 1p G g q 1q G h r 1r displaystyle left int G int G f x g y 1 x h y mathrm d mu x mathrm d mu y right leq left int G vert f vert p right frac 1 p left int G vert g vert q right frac 1 q left int G vert h vert r right frac 1 r nbsp Since Rd displaystyle mathbb R d nbsp is in fact a locally compact abelian group and therefore unimodular with the Lebesgue measure the desired Haar measure this is in fact a generalization This generalization may be refined Let G displaystyle G nbsp and m displaystyle mu nbsp be as before and assume 1 lt p q r lt displaystyle 1 lt p q r lt infty nbsp satisfy 1p 1q 1r 1 textstyle tfrac 1 p tfrac 1 q tfrac 1 r 1 nbsp Then there exists a constant C displaystyle C nbsp such that for any f Lp G m displaystyle f in L p G mu nbsp and any measurable function g displaystyle g nbsp on G displaystyle G nbsp that belongs to the weak Lq displaystyle L q nbsp space Lq w G m displaystyle L q w G mu nbsp which by definition means that the following supremum g q wq supt gt 0tqm g gt t displaystyle g q w q sup t gt 0 t q mu g gt t nbsp is finite we have f g Lr G m displaystyle f g in L r G mu nbsp and 3 f g r C f p g q w displaystyle f g r leq C f p g q w nbsp Applications editAn example application is that Young s inequality can be used to show that the heat semigroup is a contracting semigroup using the L2 displaystyle L 2 nbsp norm that is the Weierstrass transform does not enlarge the L2 displaystyle L 2 nbsp norm Proof editProof by Holder s inequality edit Young s inequality has an elementary proof with the non optimal constant 1 4 We assume that the functions f g h G R displaystyle f g h G to mathbb R nbsp are nonnegative and integrable where G displaystyle G nbsp is a unimodular group endowed with a bi invariant Haar measure m displaystyle mu nbsp We use the fact that m S m S 1 displaystyle mu S mu S 1 nbsp for any measurable S G displaystyle S subseteq G nbsp Since p 2 1q 1r q 2 1p 1r r 2 1p 1q 1 textstyle p 2 tfrac 1 q tfrac 1 r q 2 tfrac 1 p tfrac 1 r r 2 tfrac 1 p tfrac 1 q 1 nbsp G Gf x g y 1x h y dm x dm y G G f x pg y 1x q 1 1r f x ph y r 1 1q g y 1x qh y r 1 1pdm x dm y displaystyle begin aligned amp int G int G f x g y 1 x h y mathrm d mu x mathrm d mu y amp int G int G left f x p g y 1 x q right 1 frac 1 r left f x p h y r right 1 frac 1 q left g y 1 x q h y r right 1 frac 1 p mathrm d mu x mathrm d mu y end aligned nbsp By the Holder inequality for three functions we deduce that G Gf x g y 1x h y dm x dm y G Gf x pg y 1x qdm x dm y 1 1r G Gf x ph y rdm x dm y 1 1q G Gg y 1x qh y rdm x dm y 1 1p displaystyle begin aligned amp int G int G f x g y 1 x h y mathrm d mu x mathrm d mu y amp leq left int G int G f x p g y 1 x q mathrm d mu x mathrm d mu y right 1 frac 1 r left int G int G f x p h y r mathrm d mu x mathrm d mu y right 1 frac 1 q left int G int G g y 1 x q h y r mathrm d mu x mathrm d mu y right 1 frac 1 p end aligned nbsp The conclusion follows then by left invariance of the Haar measure the fact that integrals are preserved by inversion of the domain and by Fubini s theorem Proof by interpolation edit Young s inequality can also be proved by interpolation see the article on Riesz Thorin interpolation for a proof Sharp constant editIn case p q gt 1 displaystyle p q gt 1 nbsp Young s inequality can be strengthened to a sharp form via f g r cp q f p g q displaystyle f g r leq c p q f p g q nbsp where the constant cp q lt 1 displaystyle c p q lt 1 nbsp 5 6 7 When this optimal constant is achieved the function f displaystyle f nbsp and g displaystyle g nbsp are multidimensional Gaussian functions See also editMinkowski inequality Inequality that established Lp spaces are normed vector spacesNotes edit Young W H 1912 On the multiplication of successions of Fourier constants Proceedings of the Royal Society A 87 596 331 339 doi 10 1098 rspa 1912 0086 JFM 44 0298 02 JSTOR 93120 Bogachev Vladimir I 2007 Measure Theory vol I Berlin Heidelberg New York Springer Verlag ISBN 978 3 540 34513 8 MR 2267655 Zbl 1120 28001 Theorem 3 9 4 Bahouri Chemin amp Danchin 2011 pp 5 6 Lieb Elliott H Loss Michael 2001 Analysis Graduate Studies in Mathematics 2nd ed Providence R I American Mathematical Society p 100 ISBN 978 0 8218 2783 3 OCLC 45799429 Beckner William 1975 Inequalities in Fourier Analysis Annals of Mathematics 102 1 159 182 doi 10 2307 1970980 JSTOR 1970980 Brascamp Herm Jan Lieb Elliott H 1976 05 01 Best constants in Young s inequality its converse and its generalization to more than three functions Advances in Mathematics 20 2 151 173 doi 10 1016 0001 8708 76 90184 5 Fournier John J F 1977 Sharpness in Young s inequality for convolution Pacific Journal of Mathematics 72 2 383 397 doi 10 2140 pjm 1977 72 383 MR 0461034 Zbl 0357 43002References editBahouri Hajer Chemin Jean Yves Danchin Raphael 2011 Fourier Analysis and Nonlinear Partial Differential Equations Grundlehren der mathematischen Wissenschaften Vol 343 Berlin Heidelberg Springer ISBN 978 3 642 16830 7 OCLC 704397128 External links editYoung s Inequality for Convolutions at ProofWiki Retrieved from https en wikipedia org w index php title Young 27s convolution inequality amp oldid 1203059257 Young s inequality for convolutions, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.