fbpx
Wikipedia

Uranate

A uranate is a ternary oxide involving the element uranium in one of the oxidation states 4, 5 or 6. A typical chemical formula is MxUyOz, where M represents a cation. The uranium atom in uranates(VI) has two short collinear U–O bonds and either four or six more next nearest oxygen atoms.[1] The structures are infinite lattice structures with the uranium atoms linked by bridging oxygen atoms.

Uranates of calcium, strontium, barium and lead

Uranium oxides are the foundation of the nuclear fuel cycle ("ammonium diuranate" and "sodium diuranate" are intermediates in the production of uranium oxide nuclear fuels) and their long-term geological disposal requires a thorough understanding of their chemical reactivity, phase transitions, and physical and chemical properties.[2]

Synthesis edit

A method of general applicability involves combining two oxides in a high temperature reaction.[3] For example,

Na2O + UO3 → Na2UO4

Another method is the thermal decomposition of a complex, such as an acetate complex. For example, microcrystalline barium diuranate, BaU2O7, was made by thermal decomposition of barium uranyl acetate at 900 °C.[4]

Ba[UO2(ac)3]2 → BaU2O7 ... (ac=CH3CO2)

Uranates can be prepared by adding alkali to an aqueous solution of a uranyl salt. However, the composition of the precipitate that forms is variable and depends on the chemical and physical conditions used.

Uranates are insoluble in water and other solvents, so pure samples can only be obtained by careful control of reaction conditions.[3]

Formula U-ox. state Space group Symmetry Formula U-ox. state Space group Symmetry Formula U-ox. state Space group Symmetry
Li2UO4 VI α: Fmmm, Pnma

β:

orthorhombic

hexagonal

BaU2O7 VI I41/amd tetragonal Sr2UO5 VI P21/c monoclinic
Na2UO4 VI α: Cmmm

β: Pnma

orthorhombic

orthorhombic

SrU2O7 VI Li6UO6 VI hexagonal
K2UO4 VI α: I4/mmm

β:

tetragonal

orthorhombic

CaU2O7 VI Ca3UO6 VI P21 monoclinic
Cs2UO4 VI I4/mmm tetragonal MgU3O10 VI hexagonal Sr3UO6 VI P21 monoclinic
MgUO4 VI Imma orthorhombic Li2U3O10 VI α: P21/c

β: P2

monoclinic

monoclinic

Ba3UO6 VI Fm-3m cubic
CaUO4 VI R-3m rhombohedral SrU4O13 VI monoclinic NaUO3 V Pbnm orthorhombic
SrUO4 VI α: R-3m

β: Pbcm

rhombohedral

orthorhombic

Li2U6O19 VI orthorhombic KUO3 V Pm3m cubic
BaUO4 VI Pbcm orthorhombic K2U7O22 VI Pbam orthorhombic RbUO3 V Pm3m cubic
Li2U2O7 VI orthorhombic Rb2U7O22 VI Pbam orthorhombic CaUO3 IV cubic
Na2U2O7 VI C2/m monoclinic Cs2U7O22 VI Pbam orthorhombic SrUO3 IV orthorhombic
K2U2O7 VI R-3m hexagonal Li4UO5 VI I4/m tetragonal BaUO3 IV Pm3m cubic
Rb2U2O7 VI R-3m hexagonal Na4UO5 VI I4/m tetragonal Li3UO4 V tetragonal
Cs2U2O7 VI α: C2/m

β: C2/m

γ: P6/mmc

monoclinic

monoclinic

hexagonal

Ca2UO5 VI P21/c monoclinic Na3UO4 V Fm-3m cubic

Uranium(VI) edit

Structures edit

 
CaUO4 structure[5]
 
BaUO4 structure[5]

All uranates(VI) are mixed oxides, that is, compounds made up of metal(s), uranium and oxygen atoms. No uranium oxyanion, such as [UO4]2− or [U2O7]2−, is known. Instead, all uranate structures are based on UOn polyhedra sharing oxygen atoms in an infinite lattice.[1] The structures of uranates(VI) are unlike the structure of any mixed oxide of elements other than actinide elements. A particular feature is the presence of linear O-U-O moieties, which resemble the uranyl ion, UO22+. However, the U-O bond length varies from 167 pm, which is similar to the bond length of the uranyl ion, up to about 208 pm in the related compound α-UO3, so it is debatable as to whether these compounds all contain the uranyl ion. There are two principal types of uranate which are defined by the number of nearest-neighbour oxygen atoms in addition to the "uranyl" oxygens.[1]

In one group, including M2UO4 (M=Li, Na, K) and MUO4 (M=Ca, Sr) there are six additional oxygen atoms. Taking calcium uranate, CaUO4, as an example, the six oxygen atoms are arranged as a flattened octahedron, flattened along the 3-fold symmetry axis of the octahedron which also runs through the O-U-O axis (local point group D3d at the uranium atom). Each of these oxygen atoms is shared between three uranium atoms, which accounts for the stoichiometry, U 2×O 6×1/3 O = UO4. The structure has been described as a hexagonal layer structure. It can also viewed as a distorted fluorite structure in which two U-O distances have decreased and the other six have increased.[1]

In the other group, exemplified by barium uranate, BaUO4, there are four additional oxygen atoms. These four oxygens lie in a plane and each is shared between two uranium atoms, which accounts for the stoichiometry, U 2×O 4×1/2 O = UO4. The structure may called a tetragonal layer structure.[1]

 
MgUO4 structure.[6]

Magnesium uranate, MgUO4, has a quite different structure. Distorted UO6 octahedra are linked into infinite chains; the "uranyl" U-O bond length is 192 pm, not much shorter than the other U-O bond length of 218 pm.[1]

A number of so-called diuranates are known. They fall into two categories, compounds of exact composition, synthesized by combination of metal oxides or thermal decomposition of salts of uranyl complexes and substances of approximate composition, found in yellowcake. The name refers only to the empirical formula, MxU2O7; the structures are completely different from ions such as the dichromate ion. For example, in barium diuranate, BaU2O7, UO6 octahedral units are joined by sharing edges, forming infinite chains in the directions of the crystallographic a and b directions.[4]

Uranates with more complicated empirical formulas are known. Essentially these arise when the cation:uranium ratio is different from 2:1 (monovalent cations) or 1:1 (divalent cations). Charge-balance constrains the number of oxygen atoms to be equal to half the sum of charges of the cations and uranyl groups. For example, with the cation K+, compounds with K:U ratios of 2, 1 and 0.5 were found, corresponding to empirical formulas K2UO4, K2U2O7 and K2U4O13.[7] The uranate structures in these compounds differ in the way the UOx structural units are linked together.

Properties and uses edit

 
A drum of yellowcake

Yellowcake is produced in the separation of uranium from other elements, by adding alkali to a solution containing uranyl salts.[8]

When the alkali used is ammonia, so-called ammonium diuranate, known in the industry as ADU, is the main constituent of yellowcake. The exact composition of the precipitate depends to some extent on the conditions and anions that are present and the formula (NH4)2U2O7, is only an approximation. The precipitates obtained on addition of ammonia to uranyl nitrate solution under different conditions of temperature and final pH, when dried, were considered as loosely bound compounds with an ammonia/uranium ratio of 0.37 containing varying amounts of water and ammonium nitrate.[9] In other studies it was found to approximate to the gross formulas 3UO3·NH3·5H2O,[10] The asymmetric stretching frequency of the uranyl ion was found to decrease with increasing NH4+ content. This decrease is continuous and no band splitting was observed, indicating that the ammonium uranate system is homogeneous and continuous.[11]

 
A collection of uranium glassware

ADU is an intermediate in the production of uranium oxides to be used as nuclear fuel; it is converted directly into an oxide by heating. β-UO3 is produced at about 350 °C and U3O8 is obtained at higher temperatures. When the alkali used is sodium hydroxide, so-called sodium diuranate, SDU, is produced. This can also be converted into an oxide. Another choice of alkali is magnesium oxide, making magnesium diuranate, known as MDU.

Oxides and uranates of uranium(VI) have been used in the past as yellow ceramic glazes as in Fiesta and to make yellow-green uranium glass.[12] Both of these applications are abandoned due to concern regarding radioactivity of the uranium. Uranates are important in radioactive waste management.[13]

Uranium(V) edit

Several series of uranates(V) have been characterized. Compounds with the formula MIUO3 have a perovskite structure. Compounds MI3UO4 have a defect rock-salt structure. MI7UO6 structures are based on a hexagonally close-packed array of oxygen atoms. In all cases the uranium is at the centre of an octahedron of oxygen atoms. Also MIIIUO4 have been recently synthesized and characterized (MIII=Bi, Fe, Cr etc.).[14][15] Few other compounds of uranium(V) are stable.[3]

Uranium(IV) edit

Barium uranate, BaUO3, is made from barium oxide and uranium dioxide in an atmosphere that contains absolutely no oxygen. It has a cubic crystal structure (space group Pm3m).[16]

References edit

  1. ^ a b c d e f Wells, A. F. (1962). Structural Inorganic Chemistry (3rd ed.). Oxford: Clarendon Press. pp. 966–969. ISBN 978-0-19-855125-6.
  2. ^ T. Vogt, D.J. Butterey, Complex Oxides. An Introduction. World Scientific, 2019, https://www.worldscientific.com/doi/pdf/10.1142/9789813278585_fmatter
  3. ^ a b c Greenwood, Norman N.; Earnshaw, Alan (1997). Chemistry of the Elements (2nd ed.). Butterworth-Heinemann. p. 1269. ISBN 978-0-08-037941-8.
  4. ^ a b Allpress, J.G. (1965). "The Crystal Structure of Barium Diuranate". Journal of Inorganic and Nuclear Chemistry. 27 (7): 1521–1527. doi:10.1016/0022-1902(65)80013-6.
  5. ^ a b Loopstra, B. O.; Rietveld, H. M. (1969). "The structure of some alkaline-earth metal uranates". Acta Crystallographica Section B. 25 (4): 787–791. doi:10.1107/S0567740869002974.
  6. ^ Zachariasen, W. H. (1 December 1954). "Crystal chemical studies of the 5f-series of elements. XXI. The crystal structure of magnesium orthouranate". Acta Crystallographica. 7 (12): 788–791. doi:10.1107/S0365110X54002459.
  7. ^ Van Egmond, A. B.; Cordfunke, E. H. P. (1976). "Investigations on potassium and rubidium uranates". Journal of Inorganic and Nuclear Chemistry. 38 (12): 2245–2247. doi:10.1016/0022-1902(76)80203-5.
  8. ^ Hausen, D. M. (1961). "Characterizing and classifying uranium yellow cakes: A background". JOM. 50 (12): 45–47. Bibcode:1998JOM....50l..45H. doi:10.1007/s11837-998-0307-5. S2CID 97023067.
  9. ^ Ainscough, J. B.; Oldfield, B. W. (1962). "Effect of ammonium diuranate precipitation conditions on the characteristics and sintering behaviour of uranium dioxide". Journal of Applied Chemistry. 12 (9): 418–424. doi:10.1002/jctb.5010120907.
  10. ^ Cordfunke, E. H. P. (1962). "On the uranates of ammonium—I: The ternary system NH3---UO3---H2O". Journal of Inorganic and Nuclear Chemistry. 24 (3): 303–307. doi:10.1016/0022-1902(62)80184-5.
  11. ^ Stuart, W. I.; Whateley, T. L. (1969). "Composition and structure of ammonium uranates". Journal of Inorganic and Nuclear Chemistry. 1 (6): 1639–1647. doi:10.1016/0022-1902(69)80378-7. hdl:10238/379.
  12. ^ Skelcher, Barrie (2002). The Big Book of Vaseline Glass. Atglen, PA: Schiffer Publishing. ISBN 978-0-7643-1474-2.
  13. ^ Saling, James H.; Fentiman, Audeen W. (2002). Radioactive Waste Management (2 ed.). New York: Taylor & Francis. p. 2. ISBN 978-1-56032-842-1. Retrieved 2011-02-12.
  14. ^ Popa, Karin; Prieur, Damien; Manara, Dario; Naji, Mohamed; Vigier, Jean-François; Martin, Philippe M.; Dieste Blanco, Oliver; Scheinost, Andreas C.; Prüβmann, Tim; Vitova, Tonya; Raison, Philippe E.; Somers, Joseph; Konings, Rudy J. M. (2016). "Further insights into the chemistry of the Bi–U–O system". Dalton Transactions. 45 (18): 7847–7855. doi:10.1039/C6DT00735J. PMID 27063438.
  15. ^ Guo, Xiaofeng; Tiferet, Eitan; Qi, Liang; Solomon, Jonathan M.; Lanzirotti, Antonio; Newville, Matthew; Engelhard, Mark H.; Kukkadapu, Ravi K.; Wu, Di; Ilton, Eugene S.; Asta, Mark; Sutton, Stephen R.; Xu, Hongwu; Navrotsky, Alexandra (2016). "U(v) in metal uranates: A combined experimental and theoretical study of MgUO4, CrUO4, and FeUO4". Dalton Transactions. 45 (11): 4622–4632. doi:10.1039/C6DT00066E. OSTI 1256103. PMID 26854913.
  16. ^ Barrett, S. A.; Jacobson, A. J.; Tofield, B. C.; Fender, B. E. F. (1982). "The preparation and structure of barium uranium oxide BaUO3+x". Acta Crystallographica Section B. 38 (11): 2775–2781. doi:10.1107/S0567740882009935.

Further reading edit

  • Burns, C. J.; Neu, M. P.; Boukhalfa, H.; Gutowski, K. E.; Bridges, N. J.; Roger, R. D. (2004). "Chapter 3.3, The Actinides". Comprehensive Coordination Chemistry II. Elsevier. pp. 189–345. doi:10.1016/B0-08-043748-6/02001-6. ISBN 978-0-08-043748-4.

uranate, confused, with, urinate, uranate, ternary, oxide, involving, element, uranium, oxidation, states, typical, chemical, formula, mxuyoz, where, represents, cation, uranium, atom, uranates, short, collinear, bonds, either, four, more, next, nearest, oxyge. Not to be confused with Urinate A uranate is a ternary oxide involving the element uranium in one of the oxidation states 4 5 or 6 A typical chemical formula is MxUyOz where M represents a cation The uranium atom in uranates VI has two short collinear U O bonds and either four or six more next nearest oxygen atoms 1 The structures are infinite lattice structures with the uranium atoms linked by bridging oxygen atoms Uranates of calcium strontium barium and leadUranium oxides are the foundation of the nuclear fuel cycle ammonium diuranate and sodium diuranate are intermediates in the production of uranium oxide nuclear fuels and their long term geological disposal requires a thorough understanding of their chemical reactivity phase transitions and physical and chemical properties 2 Contents 1 Synthesis 2 Uranium VI 2 1 Structures 2 2 Properties and uses 3 Uranium V 4 Uranium IV 5 References 6 Further readingSynthesis editA method of general applicability involves combining two oxides in a high temperature reaction 3 For example Na2O UO3 Na2UO4Another method is the thermal decomposition of a complex such as an acetate complex For example microcrystalline barium diuranate BaU2O7 was made by thermal decomposition of barium uranyl acetate at 900 C 4 Ba UO2 ac 3 2 BaU2O7 ac CH3CO2 Uranates can be prepared by adding alkali to an aqueous solution of a uranyl salt However the composition of the precipitate that forms is variable and depends on the chemical and physical conditions used Uranates are insoluble in water and other solvents so pure samples can only be obtained by careful control of reaction conditions 3 Formula U ox state Space group Symmetry Formula U ox state Space group Symmetry Formula U ox state Space group SymmetryLi2UO4 VI a Fmmm Pnma b orthorhombic hexagonal BaU2O7 VI I41 amd tetragonal Sr2UO5 VI P21 c monoclinicNa2UO4 VI a Cmmm b Pnma orthorhombic orthorhombic SrU2O7 VI Li6UO6 VI hexagonalK2UO4 VI a I4 mmm b tetragonal orthorhombic CaU2O7 VI Ca3UO6 VI P21 monoclinicCs2UO4 VI I4 mmm tetragonal MgU3O10 VI hexagonal Sr3UO6 VI P21 monoclinicMgUO4 VI Imma orthorhombic Li2U3O10 VI a P21 c b P2 monoclinic monoclinic Ba3UO6 VI Fm 3m cubicCaUO4 VI R 3m rhombohedral SrU4O13 VI monoclinic NaUO3 V Pbnm orthorhombicSrUO4 VI a R 3m b Pbcm rhombohedral orthorhombic Li2U6O19 VI orthorhombic KUO3 V Pm3m cubicBaUO4 VI Pbcm orthorhombic K2U7O22 VI Pbam orthorhombic RbUO3 V Pm3m cubicLi2U2O7 VI orthorhombic Rb2U7O22 VI Pbam orthorhombic CaUO3 IV cubicNa2U2O7 VI C2 m monoclinic Cs2U7O22 VI Pbam orthorhombic SrUO3 IV orthorhombicK2U2O7 VI R 3m hexagonal Li4UO5 VI I4 m tetragonal BaUO3 IV Pm3m cubicRb2U2O7 VI R 3m hexagonal Na4UO5 VI I4 m tetragonal Li3UO4 V tetragonalCs2U2O7 VI a C2 m b C2 mg P6 mmc monoclinic monoclinichexagonal Ca2UO5 VI P21 c monoclinic Na3UO4 V Fm 3m cubicUranium VI editStructures edit nbsp CaUO4 structure 5 nbsp BaUO4 structure 5 All uranates VI are mixed oxides that is compounds made up of metal s uranium and oxygen atoms No uranium oxyanion such as UO4 2 or U2O7 2 is known Instead all uranate structures are based on UOn polyhedra sharing oxygen atoms in an infinite lattice 1 The structures of uranates VI are unlike the structure of any mixed oxide of elements other than actinide elements A particular feature is the presence of linear O U O moieties which resemble the uranyl ion UO22 However the U O bond length varies from 167 pm which is similar to the bond length of the uranyl ion up to about 208 pm in the related compound a UO3 so it is debatable as to whether these compounds all contain the uranyl ion There are two principal types of uranate which are defined by the number of nearest neighbour oxygen atoms in addition to the uranyl oxygens 1 In one group including M2UO4 M Li Na K and MUO4 M Ca Sr there are six additional oxygen atoms Taking calcium uranate CaUO4 as an example the six oxygen atoms are arranged as a flattened octahedron flattened along the 3 fold symmetry axis of the octahedron which also runs through the O U O axis local point group D3d at the uranium atom Each of these oxygen atoms is shared between three uranium atoms which accounts for the stoichiometry U 2 O 6 1 3 O UO4 The structure has been described as a hexagonal layer structure It can also viewed as a distorted fluorite structure in which two U O distances have decreased and the other six have increased 1 In the other group exemplified by barium uranate BaUO4 there are four additional oxygen atoms These four oxygens lie in a plane and each is shared between two uranium atoms which accounts for the stoichiometry U 2 O 4 1 2 O UO4 The structure may called a tetragonal layer structure 1 nbsp MgUO4 structure 6 Magnesium uranate MgUO4 has a quite different structure Distorted UO6 octahedra are linked into infinite chains the uranyl U O bond length is 192 pm not much shorter than the other U O bond length of 218 pm 1 A number of so called diuranates are known They fall into two categories compounds of exact composition synthesized by combination of metal oxides or thermal decomposition of salts of uranyl complexes and substances of approximate composition found in yellowcake The name refers only to the empirical formula MxU2O7 the structures are completely different from ions such as the dichromate ion For example in barium diuranate BaU2O7 UO6 octahedral units are joined by sharing edges forming infinite chains in the directions of the crystallographic a and b directions 4 Uranates with more complicated empirical formulas are known Essentially these arise when the cation uranium ratio is different from 2 1 monovalent cations or 1 1 divalent cations Charge balance constrains the number of oxygen atoms to be equal to half the sum of charges of the cations and uranyl groups For example with the cation K compounds with K U ratios of 2 1 and 0 5 were found corresponding to empirical formulas K2UO4 K2U2O7 and K2U4O13 7 The uranate structures in these compounds differ in the way the UOx structural units are linked together Properties and uses edit nbsp A drum of yellowcakeYellowcake is produced in the separation of uranium from other elements by adding alkali to a solution containing uranyl salts 8 When the alkali used is ammonia so called ammonium diuranate known in the industry as ADU is the main constituent of yellowcake The exact composition of the precipitate depends to some extent on the conditions and anions that are present and the formula NH4 2U2O7 is only an approximation The precipitates obtained on addition of ammonia to uranyl nitrate solution under different conditions of temperature and final pH when dried were considered as loosely bound compounds with an ammonia uranium ratio of 0 37 containing varying amounts of water and ammonium nitrate 9 In other studies it was found to approximate to the gross formulas 3UO3 NH3 5H2O 10 The asymmetric stretching frequency of the uranyl ion was found to decrease with increasing NH4 content This decrease is continuous and no band splitting was observed indicating that the ammonium uranate system is homogeneous and continuous 11 nbsp A collection of uranium glasswareADU is an intermediate in the production of uranium oxides to be used as nuclear fuel it is converted directly into an oxide by heating b UO3 is produced at about 350 C and U3O8 is obtained at higher temperatures When the alkali used is sodium hydroxide so called sodium diuranate SDU is produced This can also be converted into an oxide Another choice of alkali is magnesium oxide making magnesium diuranate known as MDU Oxides and uranates of uranium VI have been used in the past as yellow ceramic glazes as in Fiesta and to make yellow green uranium glass 12 Both of these applications are abandoned due to concern regarding radioactivity of the uranium Uranates are important in radioactive waste management 13 Uranium V editSeveral series of uranates V have been characterized Compounds with the formula MIUO3 have a perovskite structure Compounds MI3UO4 have a defect rock salt structure MI7UO6 structures are based on a hexagonally close packed array of oxygen atoms In all cases the uranium is at the centre of an octahedron of oxygen atoms Also MIIIUO4 have been recently synthesized and characterized MIII Bi Fe Cr etc 14 15 Few other compounds of uranium V are stable 3 Uranium IV editBarium uranate BaUO3 is made from barium oxide and uranium dioxide in an atmosphere that contains absolutely no oxygen It has a cubic crystal structure space group Pm3 m 16 References edit a b c d e f Wells A F 1962 Structural Inorganic Chemistry 3rd ed Oxford Clarendon Press pp 966 969 ISBN 978 0 19 855125 6 T Vogt D J Butterey Complex Oxides An Introduction World Scientific 2019 https www worldscientific com doi pdf 10 1142 9789813278585 fmatter a b c Greenwood Norman N Earnshaw Alan 1997 Chemistry of the Elements 2nd ed Butterworth Heinemann p 1269 ISBN 978 0 08 037941 8 a b Allpress J G 1965 The Crystal Structure of Barium Diuranate Journal of Inorganic and Nuclear Chemistry 27 7 1521 1527 doi 10 1016 0022 1902 65 80013 6 a b Loopstra B O Rietveld H M 1969 The structure of some alkaline earth metal uranates Acta Crystallographica Section B 25 4 787 791 doi 10 1107 S0567740869002974 Zachariasen W H 1 December 1954 Crystal chemical studies of the 5f series of elements XXI The crystal structure of magnesium orthouranate Acta Crystallographica 7 12 788 791 doi 10 1107 S0365110X54002459 Van Egmond A B Cordfunke E H P 1976 Investigations on potassium and rubidium uranates Journal of Inorganic and Nuclear Chemistry 38 12 2245 2247 doi 10 1016 0022 1902 76 80203 5 Hausen D M 1961 Characterizing and classifying uranium yellow cakes A background JOM 50 12 45 47 Bibcode 1998JOM 50l 45H doi 10 1007 s11837 998 0307 5 S2CID 97023067 Ainscough J B Oldfield B W 1962 Effect of ammonium diuranate precipitation conditions on the characteristics and sintering behaviour of uranium dioxide Journal of Applied Chemistry 12 9 418 424 doi 10 1002 jctb 5010120907 Cordfunke E H P 1962 On the uranates of ammonium I The ternary system NH3 UO3 H2O Journal of Inorganic and Nuclear Chemistry 24 3 303 307 doi 10 1016 0022 1902 62 80184 5 Stuart W I Whateley T L 1969 Composition and structure of ammonium uranates Journal of Inorganic and Nuclear Chemistry 1 6 1639 1647 doi 10 1016 0022 1902 69 80378 7 hdl 10238 379 Skelcher Barrie 2002 The Big Book of Vaseline Glass Atglen PA Schiffer Publishing ISBN 978 0 7643 1474 2 Saling James H Fentiman Audeen W 2002 Radioactive Waste Management 2 ed New York Taylor amp Francis p 2 ISBN 978 1 56032 842 1 Retrieved 2011 02 12 Popa Karin Prieur Damien Manara Dario Naji Mohamed Vigier Jean Francois Martin Philippe M Dieste Blanco Oliver Scheinost Andreas C Prubmann Tim Vitova Tonya Raison Philippe E Somers Joseph Konings Rudy J M 2016 Further insights into the chemistry of the Bi U O system Dalton Transactions 45 18 7847 7855 doi 10 1039 C6DT00735J PMID 27063438 Guo Xiaofeng Tiferet Eitan Qi Liang Solomon Jonathan M Lanzirotti Antonio Newville Matthew Engelhard Mark H Kukkadapu Ravi K Wu Di Ilton Eugene S Asta Mark Sutton Stephen R Xu Hongwu Navrotsky Alexandra 2016 U v in metal uranates A combined experimental and theoretical study of MgUO4 CrUO4 and FeUO4 Dalton Transactions 45 11 4622 4632 doi 10 1039 C6DT00066E OSTI 1256103 PMID 26854913 Barrett S A Jacobson A J Tofield B C Fender B E F 1982 The preparation and structure of barium uranium oxide BaUO3 x Acta Crystallographica Section B 38 11 2775 2781 doi 10 1107 S0567740882009935 Further reading editBurns C J Neu M P Boukhalfa H Gutowski K E Bridges N J Roger R D 2004 Chapter 3 3 The Actinides Comprehensive Coordination Chemistry II Elsevier pp 189 345 doi 10 1016 B0 08 043748 6 02001 6 ISBN 978 0 08 043748 4 Retrieved from https en wikipedia org w index php title Uranate amp oldid 1169996188, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.