fbpx
Wikipedia

Twistor theory

In theoretical physics, twistor theory was proposed by Roger Penrose in 1967[1] as a possible path[2] to quantum gravity and has evolved into a widely studied branch of theoretical and mathematical physics. Penrose's idea was that twistor space should be the basic arena for physics from which space-time itself should emerge. It has led to powerful mathematical tools that have applications to differential and integral geometry, nonlinear differential equations and representation theory, and in physics to general relativity, quantum field theory, and the theory of scattering amplitudes. Twistor theory arose in the context of the rapidly expanding mathematical developments in Einstein's theory of general relativity in the late 1950s and in the 1960s and carries a number of influences from that period. In particular, Roger Penrose has credited Ivor Robinson as an important early influence in the development of twistor theory, through his construction of so-called Robinson congruences.[3]

Overview

Mathematically, projective twistor space   is a 3-dimensional complex manifold, complex projective 3-space  . It has the physical interpretation of the space of massless particles with spin. It is the projectivisation of a 4-dimensional complex vector space, non-projective twistor space   with a Hermitian form of signature (2,2) and a holomorphic volume form. This can be most naturally understood as the space of chiral (Weyl) spinors for the conformal group   of Minkowski space; it is the fundamental representation of the spin group   of the conformal group. This definition can be extended to arbitrary dimensions except that beyond dimension four, one defines projective twistor space to be the space of projective pure spinors for the conformal group.[4][5]

In its original form, twistor theory encodes physical fields on Minkowski space into complex analytic objects on twistor space via the Penrose transform. This is especially natural for massless fields of arbitrary spin. In the first instance these are obtained via contour integral formulae in terms of free holomorphic functions on regions in twistor space. The holomorphic twistor functions that give rise to solutions to the massless field equations can be more deeply understood as Čech representatives of analytic cohomology classes on regions in  . These correspondences have been extended to certain nonlinear fields, including self-dual gravity in Penrose's nonlinear graviton construction[6] and self-dual Yang–Mills fields in the so-called Ward construction;[7] the former gives rise to deformations of the underlying complex structure of regions in  , and the latter to certain holomorphic vector bundles over regions in  . These constructions have had wide applications, including inter alia the theory of integrable systems.[8][9][10]

The self-duality condition is a major limitation for incorporating the full nonlinearities of physical theories, although it does suffice for Yang–Mills–Higgs monopoles and instantons (see ADHM construction).[11] An early attempt to overcome this restriction was the introduction of ambitwistors by Edward Witten[12] and by Isenberg, Yasskin & Green.[13] Ambitwistor space is the space of complexified light rays or massless particles and can be regarded as a complexification or cotangent bundle of the original twistor description. These apply to general fields but the field equations are no longer so simply expressed.

Twistorial formulae for interactions beyond the self-dual sector first arose from Witten's twistor string theory.[14] This is a quantum theory of holomorphic maps of a Riemann surface into twistor space. It gave rise to the remarkably compact RSV (Roiban, Spradlin & Volovich) formulae for tree-level S-matrices of Yang–Mills theories,[15] but its gravity degrees of freedom gave rise to a version of conformal supergravity limiting its applicability; conformal gravity is an unphysical theory containing ghosts, but its interactions are combined with those of Yang–Mills theory in loop amplitudes calculated via twistor string theory.[16]

Despite its shortcomings, twistor string theory led to rapid developments in the study of scattering amplitudes. One was the so-called MHV formalism[17] loosely based on disconnected strings, but was given a more basic foundation in terms of a twistor action for full Yang–Mills theory in twistor space.[18] Another key development was the introduction of BCFW recursion.[19] This has a natural formulation in twistor space[20][21] that in turn led to remarkable formulations of scattering amplitudes in terms of Grassmann integral formulae[22][23] and polytopes.[24] These ideas have evolved more recently into the positive Grassmannian[25] and amplituhedron.

Twistor string theory was extended first by generalising the RSV Yang–Mills amplitude formula, and then by finding the underlying string theory. The extension to gravity was given by Cachazo & Skinner,[26] and formulated as a twistor string theory for maximal supergravity by David Skinner.[27] Analogous formulae were then found in all dimensions by Cachazo, He & Yuan for Yang–Mills theory and gravity[28] and subsequently for a variety of other theories.[29] They were then understood as string theories in ambitwistor space by Mason & Skinner[30] in a general framework that includes the original twistor string and extends to give a number of new models and formulae.[31][32][33] As string theories they have the same critical dimensions as conventional string theory; for example the type II supersymmetric versions are critical in ten dimensions and are equivalent to the full field theory of type II supergravities in ten dimensions (this is distinct from conventional string theories that also have a further infinite hierarchy of massive higher spin states that provide an ultraviolet completion). They extend to give formulae for loop amplitudes[34][35] and can be defined on curved backgrounds.[36]

The twistor correspondence

Denote Minkowski space by  , with coordinates   and Lorentzian metric   signature  . Introduce 2-component spinor indices   and set

 

Non-projective twistor space   is a four-dimensional complex vector space with coordinates denoted by   where   and   are two constant Weyl spinors. The hermitian form can be expressed by defining a complex conjugation from   to its dual   by   so that the Hermitian form can be expressed as

 

This together with the holomorphic volume form,   is invariant under the group SU(2,2), a quadruple cover of the conformal group C(1,3) of compactified Minkowski spacetime.

Points in Minkowski space are related to subspaces of twistor space through the incidence relation

 

The incidence relation is preserved under an overall re-scaling of the twistor, so usually one works in projective twistor space   which is isomorphic as a complex manifold to  . A point   thereby determines a line   in   parametrised by   A twistor   is easiest understood in space-time for complex values of the coordinates where it defines a totally null two-plane that is self-dual. Take   to be real, then if   vanishes, then   lies on a light ray, whereas if   is non-vanishing, there are no solutions, and indeed then   corresponds to a massless particle with spin that are not localised in real space-time.

Variations

Supertwistors

Supertwistors are a supersymmetric extension of twistors introduced by Alan Ferber in 1978.[37] Non-projective twistor space is extended by fermionic coordinates where   is the number of supersymmetries so that a twistor is now given by   with   anticommuting. The super conformal group   naturally acts on this space and a supersymmetric version of the Penrose transform takes cohomology classes on supertwistor space to massless supersymmetric multiplets on super Minkowski space. The   case provides the target for Penrose's original twistor string and the   case is that for Skinner's supergravity generalisation.

Hyperkähler manifolds

Hyperkähler manifolds of dimension   also admit a twistor correspondence with a twistor space of complex dimension  .[38]

Palatial twistor theory

The nonlinear graviton construction encodes only anti-self-dual, i.e., left-handed fields.[6] A first step towards the problem of modifying twistor space so as to encode a general gravitational field is the encoding of right-handed fields. Infinitesimally, these are encoded in twistor functions or cohomology classes of homogeneity −6. The task of using such twistor functions in a fully nonlinear way so as to obtain a right-handed nonlinear graviton has been referred to as the (gravitational) googly problem (the word "googly" is a term used in the game of cricket for a ball bowled with right-handed helicity using the apparent action that would normally give rise to left-handed helicity).[39] The most recent proposal in this direction by Penrose in 2015 was based on noncommutative geometry on twistor space and referred to as palatial twistor theory.[40] The theory is named after Buckingham Palace, where Michael Atiyah suggested to Penrose the use of a type of "noncommutative algebra", an important component of the theory (the underlying twistor structure in palatial twistor theory was modeled not on the twistor space but on the non-commutative holomorphic twistor quantum algebra).[41]

See also

Notes

  1. ^ Penrose, R. (1967). "Twistor Algebra". Journal of Mathematical Physics. 8 (2): 345–366. Bibcode:1967JMP.....8..345P. doi:10.1063/1.1705200.
  2. ^ Penrose, R.; MacCallum, M.A.H. (1973). "Twistor theory: An approach to the quantisation of fields and space-time". Physics Reports. 6 (4): 241–315. Bibcode:1973PhR.....6..241P. doi:10.1016/0370-1573(73)90008-2.
  3. ^ Roger Penrose, "On the Origins of Twistor Theory", in Gravitation and Geometry, a Volume in Honour of Ivor Robinson, edited by Wolfgang Rindler and Andrzej Trautman, Bibliopolis (1987).
  4. ^ Penrose, Roger; Rindler, Wolfgang (1986). Spinors and Space-Time. Cambridge University Press. pp. Appendix. doi:10.1017/cbo9780511524486. ISBN 9780521252676.
  5. ^ Hughston, L. P.; Mason, L. J. (1988). "A generalised Kerr-Robinson theorem". Classical and Quantum Gravity. 5 (2): 275. Bibcode:1988CQGra...5..275H. doi:10.1088/0264-9381/5/2/007. ISSN 0264-9381. S2CID 250783071.
  6. ^ a b Penrose, R (1976). "Non-linear gravitons and curved twistor theory". Gen. Rel. Grav. 7 (1): 31–52. Bibcode:1976GReGr...7...31P. doi:10.1007/BF00762011. S2CID 123258136.
  7. ^ Ward, R. S. (1977). "On self-dual gauge fields". Physics Letters A. 61 (2): 81–82. Bibcode:1977PhLA...61...81W. doi:10.1016/0375-9601(77)90842-8.
  8. ^ Ward, R. S. (1990). Twistor geometry and field theory. Wells, R. O. (Raymond O'Neil), 1940-. Cambridge [England]: Cambridge University Press. ISBN 978-0521422680. OCLC 17260289.
  9. ^ Mason, Lionel J; Woodhouse, Nicholas M J (1996). Integrability, self-duality, and twistor theory. Oxford: Clarendon Press. ISBN 9780198534983. OCLC 34545252.
  10. ^ Dunajski, Maciej (2010). Solitons, instantons, and twistors. Oxford: Oxford University Press. ISBN 9780198570622. OCLC 507435856.
  11. ^ Atiyah, M.F.; Hitchin, N.J.; Drinfeld, V.G.; Manin, Yu.I. (1978). "Construction of instantons". Physics Letters A. 65 (3): 185–187. Bibcode:1978PhLA...65..185A. doi:10.1016/0375-9601(78)90141-x.
  12. ^ Witten, Edward (1978). "An interpretation of classical Yang–Mills theory". Physics Letters B. 77 (4–5): 394–398. Bibcode:1978PhLB...77..394W. doi:10.1016/0370-2693(78)90585-3.
  13. ^ Isenberg, James; Yasskin, Philip B.; Green, Paul S. (1978). "Non-self-dual gauge fields". Physics Letters B. 78 (4): 462–464. Bibcode:1978PhLB...78..462I. doi:10.1016/0370-2693(78)90486-0.
  14. ^ Witten, Edward (6 October 2004). "Perturbative Gauge Theory as a String Theory in Twistor Space". Communications in Mathematical Physics. 252 (1–3): 189–258. arXiv:hep-th/0312171. Bibcode:2004CMaPh.252..189W. doi:10.1007/s00220-004-1187-3. S2CID 14300396.
  15. ^ Roiban, Radu; Spradlin, Marcus; Volovich, Anastasia (2004-07-30). "Tree-level S matrix of Yang–Mills theory". Physical Review D. 70 (2): 026009. arXiv:hep-th/0403190. Bibcode:2004PhRvD..70b6009R. doi:10.1103/PhysRevD.70.026009. S2CID 10561912.
  16. ^ Berkovits, Nathan; Witten, Edward (2004). "Conformal supergravity in twistor-string theory". Journal of High Energy Physics. 2004 (8): 009. arXiv:hep-th/0406051. Bibcode:2004JHEP...08..009B. doi:10.1088/1126-6708/2004/08/009. ISSN 1126-6708. S2CID 119073647.
  17. ^ Cachazo, Freddy; Svrcek, Peter; Witten, Edward (2004). "MHV vertices and tree amplitudes in gauge theory". Journal of High Energy Physics. 2004 (9): 006. arXiv:hep-th/0403047. Bibcode:2004JHEP...09..006C. doi:10.1088/1126-6708/2004/09/006. ISSN 1126-6708. S2CID 16328643.
  18. ^ Adamo, Tim; Bullimore, Mathew; Mason, Lionel; Skinner, David (2011). "Scattering amplitudes and Wilson loops in twistor space". Journal of Physics A: Mathematical and Theoretical. 44 (45): 454008. arXiv:1104.2890. Bibcode:2011JPhA...44S4008A. doi:10.1088/1751-8113/44/45/454008. S2CID 59150535.
  19. ^ Britto, Ruth; Cachazo, Freddy; Feng, Bo; Witten, Edward (2005-05-10). "Direct Proof of the Tree-Level Scattering Amplitude Recursion Relation in Yang–Mills Theory". Physical Review Letters. 94 (18): 181602. arXiv:hep-th/0501052. Bibcode:2005PhRvL..94r1602B. doi:10.1103/PhysRevLett.94.181602. PMID 15904356. S2CID 10180346.
  20. ^ Mason, Lionel; Skinner, David (2010-01-01). "Scattering amplitudes and BCFW recursion in twistor space". Journal of High Energy Physics. 2010 (1): 64. arXiv:0903.2083. Bibcode:2010JHEP...01..064M. doi:10.1007/JHEP01(2010)064. ISSN 1029-8479. S2CID 8543696.
  21. ^ Arkani-Hamed, N.; Cachazo, F.; Cheung, C.; Kaplan, J. (2010-03-01). "The S-matrix in twistor space". Journal of High Energy Physics. 2010 (3): 110. arXiv:0903.2110. Bibcode:2010JHEP...03..110A. doi:10.1007/JHEP03(2010)110. ISSN 1029-8479. S2CID 15898218.
  22. ^ Arkani-Hamed, N.; Cachazo, F.; Cheung, C.; Kaplan, J. (2010-03-01). "A duality for the S matrix". Journal of High Energy Physics. 2010 (3): 20. arXiv:0907.5418. Bibcode:2010JHEP...03..020A. doi:10.1007/JHEP03(2010)020. ISSN 1029-8479. S2CID 5771375.
  23. ^ Mason, Lionel; Skinner, David (2009). "Dual superconformal invariance, momentum twistors and Grassmannians". Journal of High Energy Physics. 2009 (11): 045. arXiv:0909.0250. Bibcode:2009JHEP...11..045M. doi:10.1088/1126-6708/2009/11/045. ISSN 1126-6708. S2CID 8375814.
  24. ^ Hodges, Andrew (2013-05-01). "Eliminating spurious poles from gauge-theoretic amplitudes". Journal of High Energy Physics. 2013 (5): 135. arXiv:0905.1473. Bibcode:2013JHEP...05..135H. doi:10.1007/JHEP05(2013)135. ISSN 1029-8479. S2CID 18360641.
  25. ^ Arkani-Hamed, Nima; Bourjaily, Jacob L.; Cachazo, Freddy; Goncharov, Alexander B.; Postnikov, Alexander; Trnka, Jaroslav (2012-12-21). "Scattering Amplitudes and the Positive Grassmannian". arXiv:1212.5605 [hep-th].
  26. ^ Cachazo, Freddy; Skinner, David (2013-04-16). "Gravity from Rational Curves in Twistor Space". Physical Review Letters. 110 (16): 161301. arXiv:1207.0741. Bibcode:2013PhRvL.110p1301C. doi:10.1103/PhysRevLett.110.161301. PMID 23679592. S2CID 7452729.
  27. ^ Skinner, David (2013-01-04). "Twistor Strings for N=8 Supergravity". arXiv:1301.0868 [hep-th].
  28. ^ Cachazo, Freddy; He, Song; Yuan, Ellis Ye (2014-07-01). "Scattering of massless particles: scalars, gluons and gravitons". Journal of High Energy Physics. 2014 (7): 33. arXiv:1309.0885. Bibcode:2014JHEP...07..033C. doi:10.1007/JHEP07(2014)033. ISSN 1029-8479. S2CID 53685436.
  29. ^ Cachazo, Freddy; He, Song; Yuan, Ellis Ye (2015-07-01). "Scattering equations and matrices: from Einstein to Yang–Mills, DBI and NLSM". Journal of High Energy Physics. 2015 (7): 149. arXiv:1412.3479. Bibcode:2015JHEP...07..149C. doi:10.1007/JHEP07(2015)149. ISSN 1029-8479. S2CID 54062406.
  30. ^ Mason, Lionel; Skinner, David (2014-07-01). "Ambitwistor strings and the scattering equations". Journal of High Energy Physics. 2014 (7): 48. arXiv:1311.2564. Bibcode:2014JHEP...07..048M. doi:10.1007/JHEP07(2014)048. ISSN 1029-8479. S2CID 53666173.
  31. ^ Berkovits, Nathan (2014-03-01). "Infinite tension limit of the pure spinor superstring". Journal of High Energy Physics. 2014 (3): 17. arXiv:1311.4156. Bibcode:2014JHEP...03..017B. doi:10.1007/JHEP03(2014)017. ISSN 1029-8479. S2CID 28346354.
  32. ^ Geyer, Yvonne; Lipstein, Arthur E.; Mason, Lionel (2014-08-19). "Ambitwistor Strings in Four Dimensions". Physical Review Letters. 113 (8): 081602. arXiv:1404.6219. Bibcode:2014PhRvL.113h1602G. doi:10.1103/PhysRevLett.113.081602. PMID 25192087. S2CID 40855791.
  33. ^ Casali, Eduardo; Geyer, Yvonne; Mason, Lionel; Monteiro, Ricardo; Roehrig, Kai A. (2015-11-01). "New ambitwistor string theories". Journal of High Energy Physics. 2015 (11): 38. arXiv:1506.08771. Bibcode:2015JHEP...11..038C. doi:10.1007/JHEP11(2015)038. ISSN 1029-8479. S2CID 118801547.
  34. ^ Adamo, Tim; Casali, Eduardo; Skinner, David (2014-04-01). "Ambitwistor strings and the scattering equations at one loop". Journal of High Energy Physics. 2014 (4): 104. arXiv:1312.3828. Bibcode:2014JHEP...04..104A. doi:10.1007/JHEP04(2014)104. ISSN 1029-8479. S2CID 119194796.
  35. ^ Geyer, Yvonne; Mason, Lionel; Monteiro, Ricardo; Tourkine, Piotr (2015-09-16). "Loop Integrands for Scattering Amplitudes from the Riemann Sphere". Physical Review Letters. 115 (12): 121603. arXiv:1507.00321. Bibcode:2015PhRvL.115l1603G. doi:10.1103/PhysRevLett.115.121603. PMID 26430983. S2CID 36625491.
  36. ^ Adamo, Tim; Casali, Eduardo; Skinner, David (2015-02-01). "A worldsheet theory for supergravity". Journal of High Energy Physics. 2015 (2): 116. arXiv:1409.5656. Bibcode:2015JHEP...02..116A. doi:10.1007/JHEP02(2015)116. ISSN 1029-8479. S2CID 119234027.
  37. ^ Ferber, A. (1978), "Supertwistors and conformal supersymmetry", Nuclear Physics B, 132 (1): 55–64, Bibcode:1978NuPhB.132...55F, doi:10.1016/0550-3213(78)90257-2.
  38. ^ Hitchin, N. J.; Karlhede, A.; Lindström, U.; Roček, M. (1987). "Hyper-Kähler metrics and supersymmetry". Communications in Mathematical Physics. 108 (4): 535–589. Bibcode:1987CMaPh.108..535H. doi:10.1007/BF01214418. ISSN 0010-3616. MR 0877637. S2CID 120041594.
  39. ^ Penrose 2004, p. 1000.
  40. ^ Penrose, Roger (2015). "Palatial twistor theory and the twistor googly problem". Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences. 373 (2047): 20140237. Bibcode:2015RSPTA.37340237P. doi:10.1098/rsta.2014.0237. PMID 26124255. S2CID 13038470.
  41. ^ "Michael Atiyah's Imaginative State of Mind" – Quanta Magazine.

References

  • Roger Penrose (2004), The Road to Reality, Alfred A. Knopf, ch. 33, pp. 958–1009.
  • Roger Penrose and Wolfgang Rindler (1984), Spinors and Space-Time; vol. 1, Two-Spinor Calculus and Relativitic Fields, Cambridge University Press, Cambridge.
  • Roger Penrose and Wolfgang Rindler (1986), Spinors and Space-Time; vol. 2, Spinor and Twistor Methods in Space-Time Geometry, Cambridge University Press, Cambridge.

Further reading

  • Atiyah, Michael; Dunajski, Maciej; Mason, Lionel J. (2017). "Twistor theory at fifty: from contour integrals to twistor strings". Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences. 473 (2206): 20170530. arXiv:1704.07464. Bibcode:2017RSPSA.47370530A. doi:10.1098/rspa.2017.0530. PMC 5666237. PMID 29118667. S2CID 5735524.
  • Baird, P., "An Introduction to Twistors."
  • Huggett, S. and Tod, K. P. (1994). An Introduction to Twistor Theory, second edition. Cambridge University Press. ISBN 9780521456890OCLC 831625586.
  • Hughston, L. P. (1979) Twistors and Particles. Springer Lecture Notes in Physics 97, Springer-Verlag. ISBN 978-3-540-09244-5.
  • Hughston, L. P. and Ward, R. S., eds (1979) Advances in Twistor Theory. Pitman. ISBN 0-273-08448-8.
  • Mason, L. J. and Hughston, L. P., eds (1990) Further Advances in Twistor Theory, Volume I: The Penrose Transform and its Applications. Pitman Research Notes in Mathematics Series 231, Longman Scientific and Technical. ISBN 0-582-00466-7.
  • Mason, L. J., Hughston, L. P., and Kobak, P. K., eds (1995) Further Advances in Twistor Theory, Volume II: Integrable Systems, Conformal Geometry, and Gravitation. Pitman Research Notes in Mathematics Series 232, Longman Scientific and Technical. ISBN 0-582-00465-9.
  • Mason, L. J., Hughston, L. P., Kobak, P. K., and Pulverer, K., eds (2001) Further Advances in Twistor Theory, Volume III: Curved Twistor Spaces. Research Notes in Mathematics 424, Chapman and Hall/CRC. ISBN 1-58488-047-3.
  • Penrose, Roger (1967), "Twistor Algebra", Journal of Mathematical Physics, 8 (2): 345–366, Bibcode:1967JMP.....8..345P, doi:10.1063/1.1705200, MR 0216828, archived from the original on 2013-01-12
  • Penrose, Roger (1968), "Twistor Quantisation and Curved Space-time", International Journal of Theoretical Physics, 1 (1): 61–99, Bibcode:1968IJTP....1...61P, doi:10.1007/BF00668831, S2CID 123628735
  • Penrose, Roger (1969), "Solutions of the Zero‐Rest‐Mass Equations", Journal of Mathematical Physics, 10 (1): 38–39, Bibcode:1969JMP....10...38P, doi:10.1063/1.1664756, archived from the original on 2013-01-12
  • Penrose, Roger (1977), "The Twistor Programme", Reports on Mathematical Physics, 12 (1): 65–76, Bibcode:1977RpMP...12...65P, doi:10.1016/0034-4877(77)90047-7, MR 0465032
  • Penrose, Roger (1999). "The Central Programme of Twistor Theory". Chaos, Solitons and Fractals. 10 (2–3): 581–611. Bibcode:1999CSF....10..581P. doi:10.1016/S0960-0779(98)00333-6.
  • Witten, Edward (2004), "Perturbative Gauge Theory as a String Theory in Twistor Space", Communications in Mathematical Physics, 252 (1–3): 189–258, arXiv:hep-th/0312171, Bibcode:2004CMaPh.252..189W, doi:10.1007/s00220-004-1187-3, S2CID 14300396

External links

  • Penrose, Roger (1999), "Einstein's Equation and Twistor Theory: Recent Developments"
  • Penrose, Roger; Hadrovich, Fedja. "Twistor Theory."
  • Hadrovich, Fedja, "Twistor Primer."
  • Penrose, Roger. "On the Origins of Twistor Theory."
  • Jozsa, Richard (1976), "Applications of Sheaf Cohomology in Twistor Theory."
  • Dunajski, Maciej (2009). "Twistor Theory and Differential Equations". J. Phys. A: Math. Theor. 42 (40): 404004. arXiv:0902.0274. Bibcode:2009JPhA...42N4004D. doi:10.1088/1751-8113/42/40/404004. S2CID 62774126.
  • Andrew Hodges, Summary of recent developments.
  • Huggett, Stephen (2005), "The Elements of Twistor Theory."
  • Mason, L. J., "The twistor programme and twistor strings: From twistor strings to quantum gravity?"
  • Sämann, Christian (2006). Aspects of Twistor Geometry and Supersymmetric Field Theories within Superstring Theory (PhD). Universit ̈at Hannover. arXiv:hep-th/0603098.
  • Sparling, George (1999), "On Time Asymmetry."
  • Spradlin, Marcus (2012). "Progress and Prospects in Twistor String Theory" (PDF). hdl:11299/130081.
  • MathWorld: Twistors.
  • Universe Review: "Twistor Theory."
  • Twistor newsletter archives.

twistor, theory, theoretical, physics, twistor, theory, proposed, roger, penrose, 1967, possible, path, quantum, gravity, evolved, into, widely, studied, branch, theoretical, mathematical, physics, penrose, idea, that, twistor, space, should, basic, arena, phy. In theoretical physics twistor theory was proposed by Roger Penrose in 1967 1 as a possible path 2 to quantum gravity and has evolved into a widely studied branch of theoretical and mathematical physics Penrose s idea was that twistor space should be the basic arena for physics from which space time itself should emerge It has led to powerful mathematical tools that have applications to differential and integral geometry nonlinear differential equations and representation theory and in physics to general relativity quantum field theory and the theory of scattering amplitudes Twistor theory arose in the context of the rapidly expanding mathematical developments in Einstein s theory of general relativity in the late 1950s and in the 1960s and carries a number of influences from that period In particular Roger Penrose has credited Ivor Robinson as an important early influence in the development of twistor theory through his construction of so called Robinson congruences 3 Contents 1 Overview 2 The twistor correspondence 3 Variations 3 1 Supertwistors 3 2 Hyperkahler manifolds 3 3 Palatial twistor theory 4 See also 5 Notes 6 References 7 Further reading 8 External linksOverview EditMathematically projective twistor space P T displaystyle mathbb PT is a 3 dimensional complex manifold complex projective 3 space C P 3 displaystyle mathbb CP 3 It has the physical interpretation of the space of massless particles with spin It is the projectivisation of a 4 dimensional complex vector space non projective twistor space T displaystyle mathbb T with a Hermitian form of signature 2 2 and a holomorphic volume form This can be most naturally understood as the space of chiral Weyl spinors for the conformal group S O 4 2 Z 2 displaystyle SO 4 2 mathbb Z 2 of Minkowski space it is the fundamental representation of the spin group S U 2 2 displaystyle SU 2 2 of the conformal group This definition can be extended to arbitrary dimensions except that beyond dimension four one defines projective twistor space to be the space of projective pure spinors for the conformal group 4 5 In its original form twistor theory encodes physical fields on Minkowski space into complex analytic objects on twistor space via the Penrose transform This is especially natural for massless fields of arbitrary spin In the first instance these are obtained via contour integral formulae in terms of free holomorphic functions on regions in twistor space The holomorphic twistor functions that give rise to solutions to the massless field equations can be more deeply understood as Cech representatives of analytic cohomology classes on regions in P T displaystyle mathbb PT These correspondences have been extended to certain nonlinear fields including self dual gravity in Penrose s nonlinear graviton construction 6 and self dual Yang Mills fields in the so called Ward construction 7 the former gives rise to deformations of the underlying complex structure of regions in P T displaystyle mathbb PT and the latter to certain holomorphic vector bundles over regions in P T displaystyle mathbb PT These constructions have had wide applications including inter alia the theory of integrable systems 8 9 10 The self duality condition is a major limitation for incorporating the full nonlinearities of physical theories although it does suffice for Yang Mills Higgs monopoles and instantons see ADHM construction 11 An early attempt to overcome this restriction was the introduction of ambitwistors by Edward Witten 12 and by Isenberg Yasskin amp Green 13 Ambitwistor space is the space of complexified light rays or massless particles and can be regarded as a complexification or cotangent bundle of the original twistor description These apply to general fields but the field equations are no longer so simply expressed Twistorial formulae for interactions beyond the self dual sector first arose from Witten s twistor string theory 14 This is a quantum theory of holomorphic maps of a Riemann surface into twistor space It gave rise to the remarkably compact RSV Roiban Spradlin amp Volovich formulae for tree level S matrices of Yang Mills theories 15 but its gravity degrees of freedom gave rise to a version of conformal supergravity limiting its applicability conformal gravity is an unphysical theory containing ghosts but its interactions are combined with those of Yang Mills theory in loop amplitudes calculated via twistor string theory 16 Despite its shortcomings twistor string theory led to rapid developments in the study of scattering amplitudes One was the so called MHV formalism 17 loosely based on disconnected strings but was given a more basic foundation in terms of a twistor action for full Yang Mills theory in twistor space 18 Another key development was the introduction of BCFW recursion 19 This has a natural formulation in twistor space 20 21 that in turn led to remarkable formulations of scattering amplitudes in terms of Grassmann integral formulae 22 23 and polytopes 24 These ideas have evolved more recently into the positive Grassmannian 25 and amplituhedron Twistor string theory was extended first by generalising the RSV Yang Mills amplitude formula and then by finding the underlying string theory The extension to gravity was given by Cachazo amp Skinner 26 and formulated as a twistor string theory for maximal supergravity by David Skinner 27 Analogous formulae were then found in all dimensions by Cachazo He amp Yuan for Yang Mills theory and gravity 28 and subsequently for a variety of other theories 29 They were then understood as string theories in ambitwistor space by Mason amp Skinner 30 in a general framework that includes the original twistor string and extends to give a number of new models and formulae 31 32 33 As string theories they have the same critical dimensions as conventional string theory for example the type II supersymmetric versions are critical in ten dimensions and are equivalent to the full field theory of type II supergravities in ten dimensions this is distinct from conventional string theories that also have a further infinite hierarchy of massive higher spin states that provide an ultraviolet completion They extend to give formulae for loop amplitudes 34 35 and can be defined on curved backgrounds 36 The twistor correspondence EditDenote Minkowski space by M displaystyle M with coordinates x a t x y z displaystyle x a t x y z and Lorentzian metric h a b displaystyle eta ab signature 1 3 displaystyle 1 3 Introduce 2 component spinor indices A 0 1 A 0 1 displaystyle A 0 1 A 0 1 and set x A A 1 2 t z x i y x i y t z displaystyle x AA frac 1 sqrt 2 begin pmatrix t z amp x iy x iy amp t z end pmatrix Non projective twistor space T displaystyle mathbb T is a four dimensional complex vector space with coordinates denoted by Z a w A p A displaystyle Z alpha left omega A pi A right where w A displaystyle omega A and p A displaystyle pi A are two constant Weyl spinors The hermitian form can be expressed by defining a complex conjugation from T displaystyle mathbb T to its dual T displaystyle mathbb T by Z a p A w A displaystyle bar Z alpha left bar pi A bar omega A right so that the Hermitian form can be expressed as Z a Z a w A p A w A p A displaystyle Z alpha bar Z alpha omega A bar pi A bar omega A pi A This together with the holomorphic volume form e a b g d Z a d Z b d Z g d Z d displaystyle varepsilon alpha beta gamma delta Z alpha dZ beta wedge dZ gamma wedge dZ delta is invariant under the group SU 2 2 a quadruple cover of the conformal group C 1 3 of compactified Minkowski spacetime Points in Minkowski space are related to subspaces of twistor space through the incidence relation w A i x A A p A displaystyle omega A ix AA pi A The incidence relation is preserved under an overall re scaling of the twistor so usually one works in projective twistor space P T displaystyle mathbb PT which is isomorphic as a complex manifold to C P 3 displaystyle mathbb CP 3 A point x M displaystyle x in M thereby determines a line C P 1 displaystyle mathbb CP 1 in P T displaystyle mathbb PT parametrised by p A displaystyle pi A A twistor Z a displaystyle Z alpha is easiest understood in space time for complex values of the coordinates where it defines a totally null two plane that is self dual Take x displaystyle x to be real then if Z a Z a displaystyle Z alpha bar Z alpha vanishes then x displaystyle x lies on a light ray whereas if Z a Z a displaystyle Z alpha bar Z alpha is non vanishing there are no solutions and indeed then Z a displaystyle Z alpha corresponds to a massless particle with spin that are not localised in real space time Variations EditSupertwistors Edit Supertwistors are a supersymmetric extension of twistors introduced by Alan Ferber in 1978 37 Non projective twistor space is extended by fermionic coordinates where N displaystyle mathcal N is the number of supersymmetries so that a twistor is now given by w A p A h i i 1 N displaystyle left omega A pi A eta i right i 1 ldots mathcal N with h i displaystyle eta i anticommuting The super conformal group S U 2 2 N displaystyle SU 2 2 mathcal N naturally acts on this space and a supersymmetric version of the Penrose transform takes cohomology classes on supertwistor space to massless supersymmetric multiplets on super Minkowski space The N 4 displaystyle mathcal N 4 case provides the target for Penrose s original twistor string and the N 8 displaystyle mathcal N 8 case is that for Skinner s supergravity generalisation Hyperkahler manifolds Edit Hyperkahler manifolds of dimension 4 k displaystyle 4k also admit a twistor correspondence with a twistor space of complex dimension 2 k 1 displaystyle 2k 1 38 Palatial twistor theory Edit The nonlinear graviton construction encodes only anti self dual i e left handed fields 6 A first step towards the problem of modifying twistor space so as to encode a general gravitational field is the encoding of right handed fields Infinitesimally these are encoded in twistor functions or cohomology classes of homogeneity 6 The task of using such twistor functions in a fully nonlinear way so as to obtain a right handed nonlinear graviton has been referred to as the gravitational googly problem the word googly is a term used in the game of cricket for a ball bowled with right handed helicity using the apparent action that would normally give rise to left handed helicity 39 The most recent proposal in this direction by Penrose in 2015 was based on noncommutative geometry on twistor space and referred to as palatial twistor theory 40 The theory is named after Buckingham Palace where Michael Atiyah suggested to Penrose the use of a type of noncommutative algebra an important component of the theory the underlying twistor structure in palatial twistor theory was modeled not on the twistor space but on the non commutative holomorphic twistor quantum algebra 41 See also EditBackground independence Complex spacetime History of loop quantum gravity Robinson congruences Spin networkNotes Edit Penrose R 1967 Twistor Algebra Journal of Mathematical Physics 8 2 345 366 Bibcode 1967JMP 8 345P doi 10 1063 1 1705200 Penrose R MacCallum M A H 1973 Twistor theory An approach to the quantisation of fields and space time Physics Reports 6 4 241 315 Bibcode 1973PhR 6 241P doi 10 1016 0370 1573 73 90008 2 Roger Penrose On the Origins of Twistor Theory in Gravitation and Geometry a Volume in Honour of Ivor Robinson edited by Wolfgang Rindler and Andrzej Trautman Bibliopolis 1987 Penrose Roger Rindler Wolfgang 1986 Spinors and Space Time Cambridge University Press pp Appendix doi 10 1017 cbo9780511524486 ISBN 9780521252676 Hughston L P Mason L J 1988 A generalised Kerr Robinson theorem Classical and Quantum Gravity 5 2 275 Bibcode 1988CQGra 5 275H doi 10 1088 0264 9381 5 2 007 ISSN 0264 9381 S2CID 250783071 a b Penrose R 1976 Non linear gravitons and curved twistor theory Gen Rel Grav 7 1 31 52 Bibcode 1976GReGr 7 31P doi 10 1007 BF00762011 S2CID 123258136 Ward R S 1977 On self dual gauge fields Physics Letters A 61 2 81 82 Bibcode 1977PhLA 61 81W doi 10 1016 0375 9601 77 90842 8 Ward R S 1990 Twistor geometry and field theory Wells R O Raymond O Neil 1940 Cambridge England Cambridge University Press ISBN 978 0521422680 OCLC 17260289 Mason Lionel J Woodhouse Nicholas M J 1996 Integrability self duality and twistor theory Oxford Clarendon Press ISBN 9780198534983 OCLC 34545252 Dunajski Maciej 2010 Solitons instantons and twistors Oxford Oxford University Press ISBN 9780198570622 OCLC 507435856 Atiyah M F Hitchin N J Drinfeld V G Manin Yu I 1978 Construction of instantons Physics Letters A 65 3 185 187 Bibcode 1978PhLA 65 185A doi 10 1016 0375 9601 78 90141 x Witten Edward 1978 An interpretation of classical Yang Mills theory Physics Letters B 77 4 5 394 398 Bibcode 1978PhLB 77 394W doi 10 1016 0370 2693 78 90585 3 Isenberg James Yasskin Philip B Green Paul S 1978 Non self dual gauge fields Physics Letters B 78 4 462 464 Bibcode 1978PhLB 78 462I doi 10 1016 0370 2693 78 90486 0 Witten Edward 6 October 2004 Perturbative Gauge Theory as a String Theory in Twistor Space Communications in Mathematical Physics 252 1 3 189 258 arXiv hep th 0312171 Bibcode 2004CMaPh 252 189W doi 10 1007 s00220 004 1187 3 S2CID 14300396 Roiban Radu Spradlin Marcus Volovich Anastasia 2004 07 30 Tree level S matrix of Yang Mills theory Physical Review D 70 2 026009 arXiv hep th 0403190 Bibcode 2004PhRvD 70b6009R doi 10 1103 PhysRevD 70 026009 S2CID 10561912 Berkovits Nathan Witten Edward 2004 Conformal supergravity in twistor string theory Journal of High Energy Physics 2004 8 009 arXiv hep th 0406051 Bibcode 2004JHEP 08 009B doi 10 1088 1126 6708 2004 08 009 ISSN 1126 6708 S2CID 119073647 Cachazo Freddy Svrcek Peter Witten Edward 2004 MHV vertices and tree amplitudes in gauge theory Journal of High Energy Physics 2004 9 006 arXiv hep th 0403047 Bibcode 2004JHEP 09 006C doi 10 1088 1126 6708 2004 09 006 ISSN 1126 6708 S2CID 16328643 Adamo Tim Bullimore Mathew Mason Lionel Skinner David 2011 Scattering amplitudes and Wilson loops in twistor space Journal of Physics A Mathematical and Theoretical 44 45 454008 arXiv 1104 2890 Bibcode 2011JPhA 44S4008A doi 10 1088 1751 8113 44 45 454008 S2CID 59150535 Britto Ruth Cachazo Freddy Feng Bo Witten Edward 2005 05 10 Direct Proof of the Tree Level Scattering Amplitude Recursion Relation in Yang Mills Theory Physical Review Letters 94 18 181602 arXiv hep th 0501052 Bibcode 2005PhRvL 94r1602B doi 10 1103 PhysRevLett 94 181602 PMID 15904356 S2CID 10180346 Mason Lionel Skinner David 2010 01 01 Scattering amplitudes and BCFW recursion in twistor space Journal of High Energy Physics 2010 1 64 arXiv 0903 2083 Bibcode 2010JHEP 01 064M doi 10 1007 JHEP01 2010 064 ISSN 1029 8479 S2CID 8543696 Arkani Hamed N Cachazo F Cheung C Kaplan J 2010 03 01 The S matrix in twistor space Journal of High Energy Physics 2010 3 110 arXiv 0903 2110 Bibcode 2010JHEP 03 110A doi 10 1007 JHEP03 2010 110 ISSN 1029 8479 S2CID 15898218 Arkani Hamed N Cachazo F Cheung C Kaplan J 2010 03 01 A duality for the S matrix Journal of High Energy Physics 2010 3 20 arXiv 0907 5418 Bibcode 2010JHEP 03 020A doi 10 1007 JHEP03 2010 020 ISSN 1029 8479 S2CID 5771375 Mason Lionel Skinner David 2009 Dual superconformal invariance momentum twistors and Grassmannians Journal of High Energy Physics 2009 11 045 arXiv 0909 0250 Bibcode 2009JHEP 11 045M doi 10 1088 1126 6708 2009 11 045 ISSN 1126 6708 S2CID 8375814 Hodges Andrew 2013 05 01 Eliminating spurious poles from gauge theoretic amplitudes Journal of High Energy Physics 2013 5 135 arXiv 0905 1473 Bibcode 2013JHEP 05 135H doi 10 1007 JHEP05 2013 135 ISSN 1029 8479 S2CID 18360641 Arkani Hamed Nima Bourjaily Jacob L Cachazo Freddy Goncharov Alexander B Postnikov Alexander Trnka Jaroslav 2012 12 21 Scattering Amplitudes and the Positive Grassmannian arXiv 1212 5605 hep th Cachazo Freddy Skinner David 2013 04 16 Gravity from Rational Curves in Twistor Space Physical Review Letters 110 16 161301 arXiv 1207 0741 Bibcode 2013PhRvL 110p1301C doi 10 1103 PhysRevLett 110 161301 PMID 23679592 S2CID 7452729 Skinner David 2013 01 04 Twistor Strings for N 8 Supergravity arXiv 1301 0868 hep th Cachazo Freddy He Song Yuan Ellis Ye 2014 07 01 Scattering of massless particles scalars gluons and gravitons Journal of High Energy Physics 2014 7 33 arXiv 1309 0885 Bibcode 2014JHEP 07 033C doi 10 1007 JHEP07 2014 033 ISSN 1029 8479 S2CID 53685436 Cachazo Freddy He Song Yuan Ellis Ye 2015 07 01 Scattering equations and matrices from Einstein to Yang Mills DBI and NLSM Journal of High Energy Physics 2015 7 149 arXiv 1412 3479 Bibcode 2015JHEP 07 149C doi 10 1007 JHEP07 2015 149 ISSN 1029 8479 S2CID 54062406 Mason Lionel Skinner David 2014 07 01 Ambitwistor strings and the scattering equations Journal of High Energy Physics 2014 7 48 arXiv 1311 2564 Bibcode 2014JHEP 07 048M doi 10 1007 JHEP07 2014 048 ISSN 1029 8479 S2CID 53666173 Berkovits Nathan 2014 03 01 Infinite tension limit of the pure spinor superstring Journal of High Energy Physics 2014 3 17 arXiv 1311 4156 Bibcode 2014JHEP 03 017B doi 10 1007 JHEP03 2014 017 ISSN 1029 8479 S2CID 28346354 Geyer Yvonne Lipstein Arthur E Mason Lionel 2014 08 19 Ambitwistor Strings in Four Dimensions Physical Review Letters 113 8 081602 arXiv 1404 6219 Bibcode 2014PhRvL 113h1602G doi 10 1103 PhysRevLett 113 081602 PMID 25192087 S2CID 40855791 Casali Eduardo Geyer Yvonne Mason Lionel Monteiro Ricardo Roehrig Kai A 2015 11 01 New ambitwistor string theories Journal of High Energy Physics 2015 11 38 arXiv 1506 08771 Bibcode 2015JHEP 11 038C doi 10 1007 JHEP11 2015 038 ISSN 1029 8479 S2CID 118801547 Adamo Tim Casali Eduardo Skinner David 2014 04 01 Ambitwistor strings and the scattering equations at one loop Journal of High Energy Physics 2014 4 104 arXiv 1312 3828 Bibcode 2014JHEP 04 104A doi 10 1007 JHEP04 2014 104 ISSN 1029 8479 S2CID 119194796 Geyer Yvonne Mason Lionel Monteiro Ricardo Tourkine Piotr 2015 09 16 Loop Integrands for Scattering Amplitudes from the Riemann Sphere Physical Review Letters 115 12 121603 arXiv 1507 00321 Bibcode 2015PhRvL 115l1603G doi 10 1103 PhysRevLett 115 121603 PMID 26430983 S2CID 36625491 Adamo Tim Casali Eduardo Skinner David 2015 02 01 A worldsheet theory for supergravity Journal of High Energy Physics 2015 2 116 arXiv 1409 5656 Bibcode 2015JHEP 02 116A doi 10 1007 JHEP02 2015 116 ISSN 1029 8479 S2CID 119234027 Ferber A 1978 Supertwistors and conformal supersymmetry Nuclear Physics B 132 1 55 64 Bibcode 1978NuPhB 132 55F doi 10 1016 0550 3213 78 90257 2 Hitchin N J Karlhede A Lindstrom U Rocek M 1987 Hyper Kahler metrics and supersymmetry Communications in Mathematical Physics 108 4 535 589 Bibcode 1987CMaPh 108 535H doi 10 1007 BF01214418 ISSN 0010 3616 MR 0877637 S2CID 120041594 Penrose 2004 p 1000 Penrose Roger 2015 Palatial twistor theory and the twistor googly problem Philosophical Transactions of the Royal Society A Mathematical Physical and Engineering Sciences 373 2047 20140237 Bibcode 2015RSPTA 37340237P doi 10 1098 rsta 2014 0237 PMID 26124255 S2CID 13038470 Michael Atiyah s Imaginative State of Mind Quanta Magazine References EditRoger Penrose 2004 The Road to Reality Alfred A Knopf ch 33 pp 958 1009 Roger Penrose and Wolfgang Rindler 1984 Spinors and Space Time vol 1 Two Spinor Calculus and Relativitic Fields Cambridge University Press Cambridge Roger Penrose and Wolfgang Rindler 1986 Spinors and Space Time vol 2 Spinor and Twistor Methods in Space Time Geometry Cambridge University Press Cambridge Further reading EditAtiyah Michael Dunajski Maciej Mason Lionel J 2017 Twistor theory at fifty from contour integrals to twistor strings Proceedings of the Royal Society A Mathematical Physical and Engineering Sciences 473 2206 20170530 arXiv 1704 07464 Bibcode 2017RSPSA 47370530A doi 10 1098 rspa 2017 0530 PMC 5666237 PMID 29118667 S2CID 5735524 Baird P An Introduction to Twistors Huggett S and Tod K P 1994 An Introduction to Twistor Theory second edition Cambridge University Press ISBN 9780521456890 OCLC 831625586 Hughston L P 1979 Twistors and Particles Springer Lecture Notes in Physics 97 Springer Verlag ISBN 978 3 540 09244 5 Hughston L P and Ward R S eds 1979 Advances in Twistor Theory Pitman ISBN 0 273 08448 8 Mason L J and Hughston L P eds 1990 Further Advances in Twistor Theory Volume I The Penrose Transform and its Applications Pitman Research Notes in Mathematics Series 231 Longman Scientific and Technical ISBN 0 582 00466 7 Mason L J Hughston L P and Kobak P K eds 1995 Further Advances in Twistor Theory Volume II Integrable Systems Conformal Geometry and Gravitation Pitman Research Notes in Mathematics Series 232 Longman Scientific and Technical ISBN 0 582 00465 9 Mason L J Hughston L P Kobak P K and Pulverer K eds 2001 Further Advances in Twistor Theory Volume III Curved Twistor Spaces Research Notes in Mathematics 424 Chapman and Hall CRC ISBN 1 58488 047 3 Penrose Roger 1967 Twistor Algebra Journal of Mathematical Physics 8 2 345 366 Bibcode 1967JMP 8 345P doi 10 1063 1 1705200 MR 0216828 archived from the original on 2013 01 12 Penrose Roger 1968 Twistor Quantisation and Curved Space time International Journal of Theoretical Physics 1 1 61 99 Bibcode 1968IJTP 1 61P doi 10 1007 BF00668831 S2CID 123628735 Penrose Roger 1969 Solutions of the Zero Rest Mass Equations Journal of Mathematical Physics 10 1 38 39 Bibcode 1969JMP 10 38P doi 10 1063 1 1664756 archived from the original on 2013 01 12 Penrose Roger 1977 The Twistor Programme Reports on Mathematical Physics 12 1 65 76 Bibcode 1977RpMP 12 65P doi 10 1016 0034 4877 77 90047 7 MR 0465032 Penrose Roger 1999 The Central Programme of Twistor Theory Chaos Solitons and Fractals 10 2 3 581 611 Bibcode 1999CSF 10 581P doi 10 1016 S0960 0779 98 00333 6 Witten Edward 2004 Perturbative Gauge Theory as a String Theory in Twistor Space Communications in Mathematical Physics 252 1 3 189 258 arXiv hep th 0312171 Bibcode 2004CMaPh 252 189W doi 10 1007 s00220 004 1187 3 S2CID 14300396External links EditPenrose Roger 1999 Einstein s Equation and Twistor Theory Recent Developments Penrose Roger Hadrovich Fedja Twistor Theory Hadrovich Fedja Twistor Primer Penrose Roger On the Origins of Twistor Theory Jozsa Richard 1976 Applications of Sheaf Cohomology in Twistor Theory Dunajski Maciej 2009 Twistor Theory and Differential Equations J Phys A Math Theor 42 40 404004 arXiv 0902 0274 Bibcode 2009JPhA 42N4004D doi 10 1088 1751 8113 42 40 404004 S2CID 62774126 Andrew Hodges Summary of recent developments Huggett Stephen 2005 The Elements of Twistor Theory Mason L J The twistor programme and twistor strings From twistor strings to quantum gravity Samann Christian 2006 Aspects of Twistor Geometry and Supersymmetric Field Theories within Superstring Theory PhD Universit at Hannover arXiv hep th 0603098 Sparling George 1999 On Time Asymmetry Spradlin Marcus 2012 Progress and Prospects in Twistor String Theory PDF hdl 11299 130081 MathWorld Twistors Universe Review Twistor Theory Twistor newsletter archives Retrieved from https en wikipedia org w index php title Twistor theory amp oldid 1160176052, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.