fbpx
Wikipedia

Polytope

A polyhedron is a 3-dimensional polytope

In elementary geometry, a polytope is a geometric object with flat sides (faces). Polytopes are the generalization of three-dimensional polyhedra to any number of dimensions. Polytopes may exist in any general number of dimensions n as an n-dimensional polytope or n-polytope. For example, a two-dimensional polygon is a 2-polytope and a three-dimensional polyhedron is a 3-polytope. In this context, "flat sides" means that the sides of a (k + 1)-polytope consist of k-polytopes that may have (k – 1)-polytopes in common.

A polygon is a 2-dimensional polytope. Polygons can be characterised according to various criteria. Some examples are: open (excluding its boundary), bounding circuit only (ignoring its interior), closed (including both its boundary and its interior), and self-intersecting with varying densities of different regions.

Some theories further generalize the idea to include such objects as unbounded apeirotopes and tessellations, decompositions or tilings of curved manifolds including spherical polyhedra, and set-theoretic abstract polytopes.

Polytopes of more than three dimensions were first discovered by Ludwig Schläfli before 1853, who called such a figure a polyschem.[1] The German term polytop was coined by the mathematician Reinhold Hoppe, and was introduced to English mathematicians as polytope by Alicia Boole Stott.

Approaches to definition

Nowadays, the term polytope is a broad term that covers a wide class of objects, and various definitions appear in the mathematical literature. Many of these definitions are not equivalent to each other, resulting in different overlapping sets of objects being called polytopes. They represent different approaches to generalizing the convex polytopes to include other objects with similar properties.

The original approach broadly followed by Ludwig Schläfli, Thorold Gosset and others begins with the extension by analogy into four or more dimensions, of the idea of a polygon and polyhedron respectively in two and three dimensions.[2]

Attempts to generalise the Euler characteristic of polyhedra to higher-dimensional polytopes led to the development of topology and the treatment of a decomposition or CW-complex as analogous to a polytope.[3] In this approach, a polytope may be regarded as a tessellation or decomposition of some given manifold. An example of this approach defines a polytope as a set of points that admits a simplicial decomposition. In this definition, a polytope is the union of finitely many simplices, with the additional property that, for any two simplices that have a nonempty intersection, their intersection is a vertex, edge, or higher dimensional face of the two.[4] However this definition does not allow star polytopes with interior structures, and so is restricted to certain areas of mathematics.

The discovery of star polyhedra and other unusual constructions led to the idea of a polyhedron as a bounding surface, ignoring its interior.[5] In this light convex polytopes in p-space are equivalent to tilings of the (p−1)-sphere, while others may be tilings of other elliptic, flat or toroidal (p−1)-surfaces – see elliptic tiling and toroidal polyhedron. A polyhedron is understood as a surface whose faces are polygons, a 4-polytope as a hypersurface whose facets (cells) are polyhedra, and so forth.

The idea of constructing a higher polytope from those of lower dimension is also sometimes extended downwards in dimension, with an (edge) seen as a 1-polytope bounded by a point pair, and a point or vertex as a 0-polytope. This approach is used for example in the theory of abstract polytopes.

In certain fields of mathematics, the terms "polytope" and "polyhedron" are used in a different sense: a polyhedron is the generic object in any dimension (referred to as polytope in this article) and polytope means a bounded polyhedron.[6] This terminology is typically confined to polytopes and polyhedra that are convex. With this terminology, a convex polyhedron is the intersection of a finite number of halfspaces and is defined by its sides while a convex polytope is the convex hull of a finite number of points and is defined by its vertices.

Polytopes in lower numbers of dimensions have standard names:

Dimension
of polytope
Description[7]
−1 Nullitope
0 Monon
1 Dion
2 Polygon
3 Polyhedron
4 Polychoron[7]

Elements

A polytope comprises elements of different dimensionality such as vertices, edges, faces, cells and so on. Terminology for these is not fully consistent across different authors. For example, some authors use face to refer to an (n − 1)-dimensional element while others use face to denote a 2-face specifically. Authors may use j-face or j-facet to indicate an element of j dimensions. Some use edge to refer to a ridge, while H. S. M. Coxeter uses cell to denote an (n − 1)-dimensional element.[8][citation needed]

The terms adopted in this article are given in the table below:

Dimension
of element
Term
(in an n-polytope)
−1 Nullity (necessary in abstract theory)[7]
0 Vertex
1 Edge
2 Face
3 Cell
    
j j-face – element of rank j = −1, 0, 1, 2, 3, ..., n
    
n − 3 Peak – (n − 3)-face
n − 2 Ridge or subfacet – (n − 2)-face
n − 1 Facet – (n − 1)-face
n The polytope itself

An n-dimensional polytope is bounded by a number of (n − 1)-dimensional facets. These facets are themselves polytopes, whose facets are (n − 2)-dimensional ridges of the original polytope. Every ridge arises as the intersection of two facets (but the intersection of two facets need not be a ridge). Ridges are once again polytopes whose facets give rise to (n − 3)-dimensional boundaries of the original polytope, and so on. These bounding sub-polytopes may be referred to as faces, or specifically j-dimensional faces or j-faces. A 0-dimensional face is called a vertex, and consists of a single point. A 1-dimensional face is called an edge, and consists of a line segment. A 2-dimensional face consists of a polygon, and a 3-dimensional face, sometimes called a cell, consists of a polyhedron.

Important classes of polytopes

Convex polytopes

A polytope may be convex. The convex polytopes are the simplest kind of polytopes, and form the basis for several different generalizations of the concept of polytopes. A convex polytope is sometimes defined as the intersection of a set of half-spaces. This definition allows a polytope to be neither bounded nor finite. Polytopes are defined in this way, e.g., in linear programming. A polytope is bounded if there is a ball of finite radius that contains it. A polytope is said to be pointed if it contains at least one vertex. Every bounded nonempty polytope is pointed. An example of a non-pointed polytope is the set  . A polytope is finite if it is defined in terms of a finite number of objects, e.g., as an intersection of a finite number of half-planes. It is an integral polytope if all of its vertices have integer coordinates.

A certain class of convex polytopes are reflexive polytopes. An integral  -polytope   is reflexive if for some integral matrix  ,  , where   denotes a vector of all ones, and the inequality is component-wise. It follows from this definition that   is reflexive if and only if   for all  . In other words, a  -dilate of   differs, in terms of integer lattice points, from a  -dilate of   only by lattice points gained on the boundary. Equivalently,   is reflexive if and only if its dual polytope   is an integral polytope.[9]

Regular polytopes

Regular polytopes have the highest degree of symmetry of all polytopes. The symmetry group of a regular polytope acts transitively on its flags; hence, the dual polytope of a regular polytope is also regular.

There are three main classes of regular polytope which occur in any number of dimensions:

Dimensions two, three and four include regular figures which have fivefold symmetries and some of which are non-convex stars, and in two dimensions there are infinitely many regular polygons of n-fold symmetry, both convex and (for n ≥ 5) star. But in higher dimensions there are no other regular polytopes.[2]

In three dimensions the convex Platonic solids include the fivefold-symmetric dodecahedron and icosahedron, and there are also four star Kepler-Poinsot polyhedra with fivefold symmetry, bringing the total to nine regular polyhedra.

In four dimensions the regular 4-polytopes include one additional convex solid with fourfold symmetry and two with fivefold symmetry. There are ten star Schläfli-Hess 4-polytopes, all with fivefold symmetry, giving in all sixteen regular 4-polytopes.

Star polytopes

A non-convex polytope may be self-intersecting; this class of polytopes include the star polytopes. Some regular polytopes are stars.[2]

Properties

Euler characteristic

Since a (filled) convex polytope P in   dimensions is contractible to a point, the Euler characteristic   of its boundary ∂P is given by the alternating sum:

 , where   is the number of  -dimensional faces.

This generalizes Euler's formula for polyhedra.[10]

Internal angles

The Gram–Euler theorem similarly generalizes the alternating sum of internal angles   for convex polyhedra to higher-dimensional polytopes:[10]

 

Generalisations of a polytope

Infinite polytopes

Not all manifolds are finite. Where a polytope is understood as a tiling or decomposition of a manifold, this idea may be extended to infinite manifolds. plane tilings, space-filling (honeycombs) and hyperbolic tilings are in this sense polytopes, and are sometimes called apeirotopes because they have infinitely many cells.

Among these, there are regular forms including the regular skew polyhedra and the infinite series of tilings represented by the regular apeirogon, square tiling, cubic honeycomb, and so on.

Abstract polytopes

The theory of abstract polytopes attempts to detach polytopes from the space containing them, considering their purely combinatorial properties. This allows the definition of the term to be extended to include objects for which it is difficult to define an intuitive underlying space, such as the 11-cell.

An abstract polytope is a partially ordered set of elements or members, which obeys certain rules. It is a purely algebraic structure, and the theory was developed in order to avoid some of the issues which make it difficult to reconcile the various geometric classes within a consistent mathematical framework. A geometric polytope is said to be a realization in some real space of the associated abstract polytope.[11]

Complex polytopes

Structures analogous to polytopes exist in complex Hilbert spaces   where n real dimensions are accompanied by n imaginary ones. Regular complex polytopes are more appropriately treated as configurations.[12]

Duality

Every n-polytope has a dual structure, obtained by interchanging its vertices for facets, edges for ridges, and so on generally interchanging its (j − 1)-dimensional elements for (n − j)-dimensional elements (for j = 1 to n − 1), while retaining the connectivity or incidence between elements.

For an abstract polytope, this simply reverses the ordering of the set. This reversal is seen in the Schläfli symbols for regular polytopes, where the symbol for the dual polytope is simply the reverse of the original. For example, {4, 3, 3} is dual to {3, 3, 4}.

In the case of a geometric polytope, some geometric rule for dualising is necessary, see for example the rules described for dual polyhedra. Depending on circumstance, the dual figure may or may not be another geometric polytope.[13]

If the dual is reversed, then the original polytope is recovered. Thus, polytopes exist in dual pairs.

Self-dual polytopes

 
The 5-cell (4-simplex) is self-dual with 5 vertices and 5 tetrahedral cells.

If a polytope has the same number of vertices as facets, of edges as ridges, and so forth, and the same connectivities, then the dual figure will be similar to the original and the polytope is self-dual.

Some common self-dual polytopes include:

History

Polygons and polyhedra have been known since ancient times.

An early hint of higher dimensions came in 1827 when August Ferdinand Möbius discovered that two mirror-image solids can be superimposed by rotating one of them through a fourth mathematical dimension. By the 1850s, a handful of other mathematicians such as Arthur Cayley and Hermann Grassmann had also considered higher dimensions.

Ludwig Schläfli was the first to consider analogues of polygons and polyhedra in these higher spaces. He described the six convex regular 4-polytopes in 1852 but his work was not published until 1901, six years after his death. By 1854, Bernhard Riemann's Habilitationsschrift had firmly established the geometry of higher dimensions, and thus the concept of n-dimensional polytopes was made acceptable. Schläfli's polytopes were rediscovered many times in the following decades, even during his lifetime.

In 1882 Reinhold Hoppe, writing in German, coined the word polytop to refer to this more general concept of polygons and polyhedra. In due course Alicia Boole Stott, daughter of logician George Boole, introduced the anglicised polytope into the English language.[2]: vi 

In 1895, Thorold Gosset not only rediscovered Schläfli's regular polytopes but also investigated the ideas of semiregular polytopes and space-filling tessellations in higher dimensions. Polytopes also began to be studied in non-Euclidean spaces such as hyperbolic space.

An important milestone was reached in 1948 with H. S. M. Coxeter's book Regular Polytopes, summarizing work to date and adding new findings of his own.

Meanwhile, the French mathematician Henri Poincaré had developed the topological idea of a polytope as the piecewise decomposition (e.g. CW-complex) of a manifold. Branko Grünbaum published his influential work on Convex Polytopes in 1967.

In 1952 Geoffrey Colin Shephard generalised the idea as complex polytopes in complex space, where each real dimension has an imaginary one associated with it. Coxeter developed the theory further.

The conceptual issues raised by complex polytopes, non-convexity, duality and other phenomena led Grünbaum and others to the more general study of abstract combinatorial properties relating vertices, edges, faces and so on. A related idea was that of incidence complexes, which studied the incidence or connection of the various elements with one another. These developments led eventually to the theory of abstract polytopes as partially ordered sets, or posets, of such elements. Peter McMullen and Egon Schulte published their book Abstract Regular Polytopes in 2002.

Enumerating the uniform polytopes, convex and nonconvex, in four or more dimensions remains an outstanding problem. The convex uniform 4-polytopes were fully enumerated by John Conway and Michael Guy using a computer in 1965;[14][15] in higher dimensions this problem was still open as of 1997.[16] The full enumeration for nonconvex uniform polytopes is not known in dimensions four and higher as of 2008.[17]

In modern times, polytopes and related concepts have found many important applications in fields as diverse as computer graphics, optimization, search engines, cosmology, quantum mechanics and numerous other fields. In 2013 the amplituhedron was discovered as a simplifying construct in certain calculations of theoretical physics.

Applications

In the field of optimization, linear programming studies the maxima and minima of linear functions; these maxima and minima occur on the boundary of an n-dimensional polytope. In linear programming, polytopes occur in the use of generalized barycentric coordinates and slack variables.

In twistor theory, a branch of theoretical physics, a polytope called the amplituhedron is used in to calculate the scattering amplitudes of subatomic particles when they collide. The construct is purely theoretical with no known physical manifestation, but is said to greatly simplify certain calculations.[18]

See also

References

Citations

  1. ^ Coxeter 1973, pp. 141–144, §7-x. Historical remarks.
  2. ^ a b c d Coxeter (1973)
  3. ^ Richeson, D. (2008). Euler's Gem: The Polyhedron Formula and the Birth of Topology. Princeton University Press.
  4. ^ Grünbaum (2003)
  5. ^ Cromwell, P.; Polyhedra, CUP (ppbk 1999) pp 205 ff.
  6. ^ Nemhauser and Wolsey, "Integer and Combinatorial Optimization," 1999, ISBN 978-0471359432, Definition 2.2.
  7. ^ a b c Johnson, Norman W.; Geometries and Transformations, Cambridge University Press, 2018, p.224.
  8. ^ Regular polytopes, p. 127 The part of the polytope that lies in one of the hyperplanes is called a cell
  9. ^ Beck, Matthias; Robins, Sinai (2007), Computing the Continuous Discretely: Integer-point enumeration in polyhedra, Undergraduate Texts in Mathematics, New York: Springer-Verlag, ISBN 978-0-387-29139-0, MR 2271992
  10. ^ a b M. A. Perles and G. C. Shephard. 1967. "Angle sums of convex polytopes". Math. Scandinavica, Vol 21, No 2. March 1967. pp. 199–218.
  11. ^ McMullen, Peter; Schulte, Egon (December 2002), Abstract Regular Polytopes (1st ed.), Cambridge University Press, ISBN 0-521-81496-0
  12. ^ Coxeter, H.S.M.; Regular Complex Polytopes, 1974
  13. ^ Wenninger, M.; Dual Models, CUP (1983).
  14. ^ John Horton Conway: Mathematical Magus - Richard K. Guy
  15. ^ Curtis, Robert Turner (June 2022). "John Horton Conway. 26 December 1937—11 April 2020". Biographical Memoirs of Fellows of the Royal Society. 72: 117–138. doi:10.1098/rsbm.2021.0034.
  16. ^ Symmetry of Polytopes and Polyhedra, Egon Schulte. p. 12: "However, there are many more uniform polytopes but a complete list is known only for d = 4 [Joh]."
  17. ^ John Horton Conway, Heidi Burgiel, and Chaim Goodman-Strauss: The Symmetries of Things, p. 408. "There are also starry analogs of the Archimedean polyhedra...So far as we know, nobody has yet enumerated the analogs in four or higher dimensions."
  18. ^ Arkani-Hamed, Nima; Trnka, Jaroslav (2013). "The Amplituhedron". Journal of High Energy Physics. 2014. arXiv:1312.2007. Bibcode:2014JHEP...10..030A. doi:10.1007/JHEP10(2014)030.

Bibliography

External links

  • Weisstein, Eric W. "Polytope". MathWorld.
  • – application of polytopes to a database of articles used to support custom news feeds via the Internet – (Business Week Online)
Family An Bn I2(p) / Dn E6 / E7 / E8 / F4 / G2 Hn
Regular polygon Triangle Square p-gon Hexagon Pentagon
Uniform polyhedron Tetrahedron OctahedronCube Demicube DodecahedronIcosahedron
Uniform polychoron Pentachoron 16-cellTesseract Demitesseract 24-cell 120-cell600-cell
Uniform 5-polytope 5-simplex 5-orthoplex5-cube 5-demicube
Uniform 6-polytope 6-simplex 6-orthoplex6-cube 6-demicube 122221
Uniform 7-polytope 7-simplex 7-orthoplex7-cube 7-demicube 132231321
Uniform 8-polytope 8-simplex 8-orthoplex8-cube 8-demicube 142241421
Uniform 9-polytope 9-simplex 9-orthoplex9-cube 9-demicube
Uniform 10-polytope 10-simplex 10-orthoplex10-cube 10-demicube
Uniform n-polytope n-simplex n-orthoplexn-cube n-demicube 1k22k1k21 n-pentagonal polytope
Topics: Polytope familiesRegular polytopeList of regular polytopes and compounds

polytope, confused, with, polytrope, polyhedron, dimensional, polytopein, elementary, geometry, polytope, geometric, object, with, flat, sides, faces, generalization, three, dimensional, polyhedra, number, dimensions, exist, general, number, dimensions, dimens. Not to be confused with Polytrope A polyhedron is a 3 dimensional polytopeIn elementary geometry a polytope is a geometric object with flat sides faces Polytopes are the generalization of three dimensional polyhedra to any number of dimensions Polytopes may exist in any general number of dimensions n as an n dimensional polytope or n polytope For example a two dimensional polygon is a 2 polytope and a three dimensional polyhedron is a 3 polytope In this context flat sides means that the sides of a k 1 polytope consist of k polytopes that may have k 1 polytopes in common A polygon is a 2 dimensional polytope Polygons can be characterised according to various criteria Some examples are open excluding its boundary bounding circuit only ignoring its interior closed including both its boundary and its interior and self intersecting with varying densities of different regions Some theories further generalize the idea to include such objects as unbounded apeirotopes and tessellations decompositions or tilings of curved manifolds including spherical polyhedra and set theoretic abstract polytopes Polytopes of more than three dimensions were first discovered by Ludwig Schlafli before 1853 who called such a figure a polyschem 1 The German term polytop was coined by the mathematician Reinhold Hoppe and was introduced to English mathematicians as polytope by Alicia Boole Stott Contents 1 Approaches to definition 2 Elements 3 Important classes of polytopes 3 1 Convex polytopes 3 2 Regular polytopes 3 3 Star polytopes 4 Properties 4 1 Euler characteristic 4 2 Internal angles 5 Generalisations of a polytope 5 1 Infinite polytopes 5 2 Abstract polytopes 5 3 Complex polytopes 6 Duality 6 1 Self dual polytopes 7 History 8 Applications 9 See also 10 References 10 1 Citations 10 2 Bibliography 11 External linksApproaches to definition EditNowadays the term polytope is a broad term that covers a wide class of objects and various definitions appear in the mathematical literature Many of these definitions are not equivalent to each other resulting in different overlapping sets of objects being called polytopes They represent different approaches to generalizing the convex polytopes to include other objects with similar properties The original approach broadly followed by Ludwig Schlafli Thorold Gosset and others begins with the extension by analogy into four or more dimensions of the idea of a polygon and polyhedron respectively in two and three dimensions 2 Attempts to generalise the Euler characteristic of polyhedra to higher dimensional polytopes led to the development of topology and the treatment of a decomposition or CW complex as analogous to a polytope 3 In this approach a polytope may be regarded as a tessellation or decomposition of some given manifold An example of this approach defines a polytope as a set of points that admits a simplicial decomposition In this definition a polytope is the union of finitely many simplices with the additional property that for any two simplices that have a nonempty intersection their intersection is a vertex edge or higher dimensional face of the two 4 However this definition does not allow star polytopes with interior structures and so is restricted to certain areas of mathematics The discovery of star polyhedra and other unusual constructions led to the idea of a polyhedron as a bounding surface ignoring its interior 5 In this light convex polytopes in p space are equivalent to tilings of the p 1 sphere while others may be tilings of other elliptic flat or toroidal p 1 surfaces see elliptic tiling and toroidal polyhedron A polyhedron is understood as a surface whose faces are polygons a 4 polytope as a hypersurface whose facets cells are polyhedra and so forth The idea of constructing a higher polytope from those of lower dimension is also sometimes extended downwards in dimension with an edge seen as a 1 polytope bounded by a point pair and a point or vertex as a 0 polytope This approach is used for example in the theory of abstract polytopes In certain fields of mathematics the terms polytope and polyhedron are used in a different sense a polyhedron is the generic object in any dimension referred to as polytope in this article and polytope means a bounded polyhedron 6 This terminology is typically confined to polytopes and polyhedra that are convex With this terminology a convex polyhedron is the intersection of a finite number of halfspaces and is defined by its sides while a convex polytope is the convex hull of a finite number of points and is defined by its vertices Polytopes in lower numbers of dimensions have standard names Dimensionof polytope Description 7 1 Nullitope0 Monon1 Dion2 Polygon3 Polyhedron4 Polychoron 7 Elements EditA polytope comprises elements of different dimensionality such as vertices edges faces cells and so on Terminology for these is not fully consistent across different authors For example some authors use face to refer to an n 1 dimensional element while others use face to denote a 2 face specifically Authors may use j face or j facet to indicate an element of j dimensions Some use edge to refer to a ridge while H S M Coxeter uses cell to denote an n 1 dimensional element 8 citation needed The terms adopted in this article are given in the table below Dimensionof element Term in an n polytope 1 Nullity necessary in abstract theory 7 0 Vertex1 Edge2 Face3 Cell displaystyle vdots displaystyle vdots j j face element of rank j 1 0 1 2 3 n displaystyle vdots displaystyle vdots n 3 Peak n 3 facen 2 Ridge or subfacet n 2 facen 1 Facet n 1 facen The polytope itselfAn n dimensional polytope is bounded by a number of n 1 dimensional facets These facets are themselves polytopes whose facets are n 2 dimensional ridges of the original polytope Every ridge arises as the intersection of two facets but the intersection of two facets need not be a ridge Ridges are once again polytopes whose facets give rise to n 3 dimensional boundaries of the original polytope and so on These bounding sub polytopes may be referred to as faces or specifically j dimensional faces or j faces A 0 dimensional face is called a vertex and consists of a single point A 1 dimensional face is called an edge and consists of a line segment A 2 dimensional face consists of a polygon and a 3 dimensional face sometimes called a cell consists of a polyhedron Important classes of polytopes EditConvex polytopes Edit Main article Convex polytope A polytope may be convex The convex polytopes are the simplest kind of polytopes and form the basis for several different generalizations of the concept of polytopes A convex polytope is sometimes defined as the intersection of a set of half spaces This definition allows a polytope to be neither bounded nor finite Polytopes are defined in this way e g in linear programming A polytope is bounded if there is a ball of finite radius that contains it A polytope is said to be pointed if it contains at least one vertex Every bounded nonempty polytope is pointed An example of a non pointed polytope is the set x y R 2 x 0 displaystyle x y in mathbb R 2 mid x geq 0 A polytope is finite if it is defined in terms of a finite number of objects e g as an intersection of a finite number of half planes It is an integral polytope if all of its vertices have integer coordinates A certain class of convex polytopes are reflexive polytopes An integral d displaystyle d polytope P displaystyle mathcal P is reflexive if for some integral matrix A displaystyle mathbf A P x R d A x 1 displaystyle mathcal P mathbf x in mathbb R d mathbf Ax leq mathbf 1 where 1 displaystyle mathbf 1 denotes a vector of all ones and the inequality is component wise It follows from this definition that P displaystyle mathcal P is reflexive if and only if t 1 P Z d t P Z d displaystyle t 1 mathcal P circ cap mathbb Z d t mathcal P cap mathbb Z d for all t Z 0 displaystyle t in mathbb Z geq 0 In other words a t 1 displaystyle t 1 dilate of P displaystyle mathcal P differs in terms of integer lattice points from a t displaystyle t dilate of P displaystyle mathcal P only by lattice points gained on the boundary Equivalently P displaystyle mathcal P is reflexive if and only if its dual polytope P displaystyle mathcal P is an integral polytope 9 Regular polytopes Edit Main article Regular polytope Regular polytopes have the highest degree of symmetry of all polytopes The symmetry group of a regular polytope acts transitively on its flags hence the dual polytope of a regular polytope is also regular There are three main classes of regular polytope which occur in any number of dimensions Simplices including the equilateral triangle and the regular tetrahedron Hypercubes or measure polytopes including the square and the cube Orthoplexes or cross polytopes including the square and regular octahedron Dimensions two three and four include regular figures which have fivefold symmetries and some of which are non convex stars and in two dimensions there are infinitely many regular polygons of n fold symmetry both convex and for n 5 star But in higher dimensions there are no other regular polytopes 2 In three dimensions the convex Platonic solids include the fivefold symmetric dodecahedron and icosahedron and there are also four star Kepler Poinsot polyhedra with fivefold symmetry bringing the total to nine regular polyhedra In four dimensions the regular 4 polytopes include one additional convex solid with fourfold symmetry and two with fivefold symmetry There are ten star Schlafli Hess 4 polytopes all with fivefold symmetry giving in all sixteen regular 4 polytopes Star polytopes Edit Main article Star polytope A non convex polytope may be self intersecting this class of polytopes include the star polytopes Some regular polytopes are stars 2 Properties EditEuler characteristic Edit Since a filled convex polytope P in d displaystyle d dimensions is contractible to a point the Euler characteristic x displaystyle chi of its boundary P is given by the alternating sum x n 0 n 1 n 2 n d 1 1 1 d 1 displaystyle chi n 0 n 1 n 2 cdots pm n d 1 1 1 d 1 where n j displaystyle n j is the number of j displaystyle j dimensional faces This generalizes Euler s formula for polyhedra 10 Internal angles Edit The Gram Euler theorem similarly generalizes the alternating sum of internal angles f textstyle sum varphi for convex polyhedra to higher dimensional polytopes 10 f 1 d 1 displaystyle sum varphi 1 d 1 Generalisations of a polytope EditInfinite polytopes Edit Main article Apeirotope Not all manifolds are finite Where a polytope is understood as a tiling or decomposition of a manifold this idea may be extended to infinite manifolds plane tilings space filling honeycombs and hyperbolic tilings are in this sense polytopes and are sometimes called apeirotopes because they have infinitely many cells Among these there are regular forms including the regular skew polyhedra and the infinite series of tilings represented by the regular apeirogon square tiling cubic honeycomb and so on Abstract polytopes Edit Main article Abstract polytope The theory of abstract polytopes attempts to detach polytopes from the space containing them considering their purely combinatorial properties This allows the definition of the term to be extended to include objects for which it is difficult to define an intuitive underlying space such as the 11 cell An abstract polytope is a partially ordered set of elements or members which obeys certain rules It is a purely algebraic structure and the theory was developed in order to avoid some of the issues which make it difficult to reconcile the various geometric classes within a consistent mathematical framework A geometric polytope is said to be a realization in some real space of the associated abstract polytope 11 Complex polytopes Edit Main article Complex polytope Structures analogous to polytopes exist in complex Hilbert spaces C n displaystyle mathbb C n where n real dimensions are accompanied by n imaginary ones Regular complex polytopes are more appropriately treated as configurations 12 Duality EditEvery n polytope has a dual structure obtained by interchanging its vertices for facets edges for ridges and so on generally interchanging its j 1 dimensional elements for n j dimensional elements for j 1 to n 1 while retaining the connectivity or incidence between elements For an abstract polytope this simply reverses the ordering of the set This reversal is seen in the Schlafli symbols for regular polytopes where the symbol for the dual polytope is simply the reverse of the original For example 4 3 3 is dual to 3 3 4 In the case of a geometric polytope some geometric rule for dualising is necessary see for example the rules described for dual polyhedra Depending on circumstance the dual figure may or may not be another geometric polytope 13 If the dual is reversed then the original polytope is recovered Thus polytopes exist in dual pairs Self dual polytopes Edit The 5 cell 4 simplex is self dual with 5 vertices and 5 tetrahedral cells If a polytope has the same number of vertices as facets of edges as ridges and so forth and the same connectivities then the dual figure will be similar to the original and the polytope is self dual Some common self dual polytopes include Every regular n simplex in any number of dimensions with Schlafli symbol 3n These include the equilateral triangle 3 regular tetrahedron 3 3 and 5 cell 3 3 3 Every hypercubic honeycomb in any number of dimensions These include the apeirogon square tiling 4 4 and cubic honeycomb 4 3 4 Numerous compact paracompact and noncompact hyperbolic tilings such as the icosahedral honeycomb 3 5 3 and order 5 pentagonal tiling 5 5 In 2 dimensions all regular polygons regular 2 polytopes In 3 dimensions the canonical polygonal pyramids and elongated pyramids and tetrahedrally diminished dodecahedron In 4 dimensions the 24 cell with Schlafli symbol 3 4 3 Also the great 120 cell 5 5 2 5 and grand stellated 120 cell 5 2 5 5 2 History EditPolygons and polyhedra have been known since ancient times An early hint of higher dimensions came in 1827 when August Ferdinand Mobius discovered that two mirror image solids can be superimposed by rotating one of them through a fourth mathematical dimension By the 1850s a handful of other mathematicians such as Arthur Cayley and Hermann Grassmann had also considered higher dimensions Ludwig Schlafli was the first to consider analogues of polygons and polyhedra in these higher spaces He described the six convex regular 4 polytopes in 1852 but his work was not published until 1901 six years after his death By 1854 Bernhard Riemann s Habilitationsschrift had firmly established the geometry of higher dimensions and thus the concept of n dimensional polytopes was made acceptable Schlafli s polytopes were rediscovered many times in the following decades even during his lifetime In 1882 Reinhold Hoppe writing in German coined the word polytop to refer to this more general concept of polygons and polyhedra In due course Alicia Boole Stott daughter of logician George Boole introduced the anglicised polytope into the English language 2 vi In 1895 Thorold Gosset not only rediscovered Schlafli s regular polytopes but also investigated the ideas of semiregular polytopes and space filling tessellations in higher dimensions Polytopes also began to be studied in non Euclidean spaces such as hyperbolic space An important milestone was reached in 1948 with H S M Coxeter s book Regular Polytopes summarizing work to date and adding new findings of his own Meanwhile the French mathematician Henri Poincare had developed the topological idea of a polytope as the piecewise decomposition e g CW complex of a manifold Branko Grunbaum published his influential work on Convex Polytopes in 1967 In 1952 Geoffrey Colin Shephard generalised the idea as complex polytopes in complex space where each real dimension has an imaginary one associated with it Coxeter developed the theory further The conceptual issues raised by complex polytopes non convexity duality and other phenomena led Grunbaum and others to the more general study of abstract combinatorial properties relating vertices edges faces and so on A related idea was that of incidence complexes which studied the incidence or connection of the various elements with one another These developments led eventually to the theory of abstract polytopes as partially ordered sets or posets of such elements Peter McMullen and Egon Schulte published their book Abstract Regular Polytopes in 2002 Enumerating the uniform polytopes convex and nonconvex in four or more dimensions remains an outstanding problem The convex uniform 4 polytopes were fully enumerated by John Conway and Michael Guy using a computer in 1965 14 15 in higher dimensions this problem was still open as of 1997 16 The full enumeration for nonconvex uniform polytopes is not known in dimensions four and higher as of 2008 17 In modern times polytopes and related concepts have found many important applications in fields as diverse as computer graphics optimization search engines cosmology quantum mechanics and numerous other fields In 2013 the amplituhedron was discovered as a simplifying construct in certain calculations of theoretical physics Applications EditIn the field of optimization linear programming studies the maxima and minima of linear functions these maxima and minima occur on the boundary of an n dimensional polytope In linear programming polytopes occur in the use of generalized barycentric coordinates and slack variables In twistor theory a branch of theoretical physics a polytope called the amplituhedron is used in to calculate the scattering amplitudes of subatomic particles when they collide The construct is purely theoretical with no known physical manifestation but is said to greatly simplify certain calculations 18 See also EditList of regular polytopes Bounding volume discrete oriented polytope Intersection of a polyhedron with a line Extension of a polyhedron Polytope de Montreal Honeycomb geometry OpetopeReferences EditCitations Edit Coxeter 1973 pp 141 144 7 x Historical remarks a b c d Coxeter 1973 Richeson D 2008 Euler s Gem The Polyhedron Formula and the Birth of Topology Princeton University Press Grunbaum 2003 Cromwell P Polyhedra CUP ppbk 1999 pp 205 ff Nemhauser and Wolsey Integer and Combinatorial Optimization 1999 ISBN 978 0471359432 Definition 2 2 a b c Johnson Norman W Geometries and Transformations Cambridge University Press 2018 p 224 Regular polytopes p 127 The part of the polytope that lies in one of the hyperplanes is called a cell Beck Matthias Robins Sinai 2007 Computing the Continuous Discretely Integer point enumeration in polyhedra Undergraduate Texts in Mathematics New York Springer Verlag ISBN 978 0 387 29139 0 MR 2271992 a b M A Perles and G C Shephard 1967 Angle sums of convex polytopes Math Scandinavica Vol 21 No 2 March 1967 pp 199 218 McMullen Peter Schulte Egon December 2002 Abstract Regular Polytopes 1st ed Cambridge University Press ISBN 0 521 81496 0 Coxeter H S M Regular Complex Polytopes 1974 Wenninger M Dual Models CUP 1983 John Horton Conway Mathematical Magus Richard K Guy Curtis Robert Turner June 2022 John Horton Conway 26 December 1937 11 April 2020 Biographical Memoirs of Fellows of the Royal Society 72 117 138 doi 10 1098 rsbm 2021 0034 Symmetry of Polytopes and Polyhedra Egon Schulte p 12 However there are many more uniform polytopes but a complete list is known only for d 4 Joh John Horton Conway Heidi Burgiel and Chaim Goodman Strauss The Symmetries of Things p 408 There are also starry analogs of the Archimedean polyhedra So far as we know nobody has yet enumerated the analogs in four or higher dimensions Arkani Hamed Nima Trnka Jaroslav 2013 The Amplituhedron Journal of High Energy Physics 2014 arXiv 1312 2007 Bibcode 2014JHEP 10 030A doi 10 1007 JHEP10 2014 030 Bibliography Edit Coxeter Harold Scott MacDonald 1973 Regular Polytopes New York Dover Publications ISBN 978 0 486 61480 9 Grunbaum Branko 2003 Kaibel Volker Klee Victor Ziegler Gunter M eds Convex polytopes 2nd ed New York amp London Springer Verlag ISBN 0 387 00424 6 Ziegler Gunter M 1995 Lectures on Polytopes Graduate Texts in Mathematics vol 152 Berlin New York Springer Verlag External links Edit Look up polytope in Wiktionary the free dictionary Weisstein Eric W Polytope MathWorld Math will rock your world application of polytopes to a database of articles used to support custom news feeds via the Internet Business Week Online Regular and semi regular convex polytopes a short historical overview vteFundamental convex regular and uniform polytopes in dimensions 2 10Family An Bn I2 p Dn E6 E7 E8 F4 G2 HnRegular polygon Triangle Square p gon Hexagon PentagonUniform polyhedron Tetrahedron Octahedron Cube Demicube Dodecahedron IcosahedronUniform polychoron Pentachoron 16 cell Tesseract Demitesseract 24 cell 120 cell 600 cellUniform 5 polytope 5 simplex 5 orthoplex 5 cube 5 demicubeUniform 6 polytope 6 simplex 6 orthoplex 6 cube 6 demicube 122 221Uniform 7 polytope 7 simplex 7 orthoplex 7 cube 7 demicube 132 231 321Uniform 8 polytope 8 simplex 8 orthoplex 8 cube 8 demicube 142 241 421Uniform 9 polytope 9 simplex 9 orthoplex 9 cube 9 demicubeUniform 10 polytope 10 simplex 10 orthoplex 10 cube 10 demicubeUniform n polytope n simplex n orthoplex n cube n demicube 1k2 2k1 k21 n pentagonal polytopeTopics Polytope families Regular polytope List of regular polytopes and compounds Retrieved from https en wikipedia org w index php title Polytope amp oldid 1147952800, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.