fbpx
Wikipedia

Ti-6Al-7Nb

Ti-6Al-7Nb (UNS designation R56700) is an alpha-beta titanium alloy first synthesized in 1977 containing 6% aluminum and 7% niobium. It features high strength and has similar properties as the cytotoxic vanadium containing alloy Ti-6Al-4V. Ti-6Al-7Nb is used as a material for hip prostheses.[1]

Ti―6Al―7Nb is one of the titanium alloys that built of hexagonal α phase (stabilised with aluminium) and regular body-centred phase β (stabilised with niobium). The alloy is characterized by added advantageous mechanical properties, it has higher corrosion resistance and biotolerance in relation to Ti-6Al-4V alloys.[2][3][4]

Physical properties edit

Physical properties of the alloy are mostly dependent on the morphology and the fractions volume of the phases presence from the parameters obtained from the manufacturing process.[5][6]

Property Minimum Value Maximum Value Unit
Density 4.51 4.53 g/cm3
Hardness 2700 2900 Mpa
Melting point 1800 1860 K
Specific heat 540 560 J/kg*K
Elastic limit 895 905 MPa
Energy content 750 1250 MJ/kg
Latent heat of fusion 360 370 kJ/kg

[7]

As shown in the above table, alloying is one of the effective methods to improve the mechanical properties and since Niobium belongs to the same group of Vanadium in the periodic table it is of course acts as α –β stabilizing elements (similar to Ti-6Al-4V alloy), however the strength of Nb alloy is little less than that of Ti-6Al-4V .The main difference between Ti-6Al-4V and Ti-6Al-7Nb is related to different factors such as solid-solution strengthening, the structure-refining strengthening provided by the refined two-phase structure and the difference in the microstructure between the two alloys.[8]

Production edit

Ti-6Al-7Nb is produced by powder metallurgy methods. The most common methods are hot pressing, metal injection mouldering and blending and pressing. In the production of Ti-6Al-7Nb, usually a sintering temperature between 900-1400o C is used. Altering the sintering temperature gives the Ti-6Al-7Nb different properties such as different porosity and microstructure. It also gives a different composition between alpha, beta and alpha+beta phases. In the recent years Ti-6Al-7Nb alloys could also be made by different 3D-printer technique such as SLM and EBM.[9][10]

Heat treatment edit

Heat treatment of titanium is demonstrated to have significant influences on reducing the residual stresses, improving the mechanical properties (i.e. tensile strength or fatigue strength by solution treatment and ageing). Moreover, heat treatment provides an ideal combination of ductility, machinability and structural stability due to the differences in microstructure and cooling rates between α and β phases.[11]

The cooling rate have an impact of the morphology . When the cooling rate is reduced for example from air cool to slow cooling, the morphology of the transformed α increases in thickness and length and is contained within fewer, larger α colonies.[12] The α colony size is the most important microstructural properties due to its influences the fatigue properties and deformation mechanics of β processed α+ β alloys.[13]

Applications edit

  • Implant devices replacing such as : failed hard tissue, artificial hip joints, artificial knee joints, bone plates, screws for fracture fixation, cardiac valve prostheses, pacemakers, and artificial hearts.[14]
  • Dental application[15]


Biocompatibility edit

Ti-6Al-7Nb has a high biocompatibility. The oxides from Ti-6Al-7Nb is saturated in the body and are not transported in vivo or are a bioburden. The alloy will not create adverse tissue tolerance reactions and creates fewer giant cell nuclei. Ti-6Al-7Nb also shows a high compatibility to ingrowth to the human body.[16]

Specification edit

Designations for Ti-6Al-7Nb in other naming conventions include:[17]

  • UNS: R56700
  • ASTM Standard: F1295
  • ISO Standard: ISO 5832-11

References edit

  1. ^ Fellah, Mamoun; Labaïz, Mohamed; Assala, Omar; Dekhil, Leila; Taleb, Ahlem; Rezag, Hadda; Iost, Alain (21 July 2014). "Tribological behavior of Ti-6Al-4V and Ti-6Al-7Nb Alloys for Total Hip Prosthesis". Advances in Tribology. 2014: 1–13. doi:10.1155/2014/451387. hdl:10985/9566.
  2. ^ Chlebus, Edward; Kuźnicka, Bogumiła; Kurzynowski, Tomasz; Dybała, Bogdan (1 May 2011). "Microstructure and mechanical behaviour of Ti―6Al―7Nb alloy produced by selective laser melting". Materials Characterization. 62 (5): 488–495. doi:10.1016/j.matchar.2011.03.006.
  3. ^ Liu, Xuanyong; Chu, Paul K.; Ding, Chuanxian (24 December 2004). "Surface modification of titanium, titanium alloys, and related materials for biomedical applications". Materials Science and Engineering: R: Reports. 47 (3): 49–121. CiteSeerX 10.1.1.472.7717. doi:10.1016/j.mser.2004.11.001.
  4. ^ López, M. F; Gutiérrez, A; Jiménez, J. A (15 February 2002). "In vitro corrosion behaviour of titanium alloys without vanadium". Electrochimica Acta. 47 (9): 1359–1364. doi:10.1016/S0013-4686(01)00860-X.
  5. ^ Lütjering, G. (15 March 1998). "Influence of processing on microstructure and mechanical properties of (α+β) titanium alloys". Materials Science and Engineering: A. 243 (1): 32–45. doi:10.1016/S0921-5093(97)00778-8.
  6. ^ Ajeel, Sami Abualnoun; Alzubaydi, Thair L.; Swadi, Abdulsalam K. (2007). "Influence of Heat Treatment Conditions on Microstructure of Ti- 6Al-7Nb Alloy As Used Surgical Implant Materials". Engineering and Technology Journal. 25 (Suppl 3): 431–442. doi:10.30684/etj.25.3.15. S2CID 55885379.
  7. ^ "Properties: Titanium Alloys - Ti6Al7Nb Properties and Applications".
  8. ^ Kobayashi, E.; Wang, T.J.; Doi, H.; Yoneyama, T.; Hamanaka, H. (1998). "Mechanical properties and corrosion resistance of Ti–6Al–7Nb alloy dental castings". Journal of Materials Science: Materials in Medicine. 9 (10): 567–574. doi:10.1023/A:1008909408948. PMID 15348689. S2CID 13241089.
  9. ^ Bolzoni, Leandro; Hari Babu, N.; Ruiz-Navas, Elisa Maria; Gordo, Elena (2013). "Comparison of Microstructure and Properties of Ti-6Al-7Nb Alloy Processed by Different Powder Metallurgy Routes". Key Engineering Materials. 551: 161–179. doi:10.4028/www.scientific.net/KEM.551.161. hdl:10016/20805. S2CID 137360703.
  10. ^ Oliveira, V.; Chaves, R. R.; Bertazzoli, R.; Caram, R. (December 1998). "Preparation and characterization of Ti-Al-Nb alloys for orthopedic implants". Brazilian Journal of Chemical Engineering. 15 (4): 326–333. doi:10.1590/S0104-66321998000400002. S2CID 94310566.
  11. ^ Sercombe, Tim; Jones, Noel; Day, Rob; Kop, Alan (26 September 2008). "Heat treatment of Ti-6Al-7Nb components produced by selective laser melting". Rapid Prototyping Journal. 14 (5): 300–304. doi:10.1108/13552540810907974.
  12. ^ Sercombe, Tim; Jones, Noel; Day, Rob; Kop, Alan (26 September 2008). "Heat treatment of Ti-6Al-7Nb components produced by selective laser melting". Rapid Prototyping Journal. 14 (5): 300–304. doi:10.1108/13552540810907974.
  13. ^ Lütjering, G. (15 March 1998). "Influence of processing on microstructure and mechanical properties of (α+β) titanium alloys". Materials Science and Engineering: A. 243 (1): 32–45. doi:10.1016/S0921-5093(97)00778-8.
  14. ^ Elias, C. N.; Lima, J. H. C.; Valiev, R.; Meyers, M. A. (1 March 2008). "Biomedical applications of titanium and its alloys". JOM. 60 (3): 46–49. Bibcode:2008JOM....60c..46E. doi:10.1007/s11837-008-0031-1. S2CID 12056136.
  15. ^ Kobayashi, E.; Wang, T.J.; Doi, H.; Yoneyama, T.; Hamanaka, H. (1 October 1998). "Mechanical properties and corrosion resistance of Ti–6Al–7Nb alloy dental castings". Journal of Materials Science: Materials in Medicine. 9 (10): 567–574. doi:10.1023/A:1008909408948. PMID 15348689. S2CID 13241089.
  16. ^ Disegi, John (November 2008). (PDF) (2nd ed.). Synthes. Archived from the original (PDF) on 11 December 2015.
  17. ^ Milne, Ian; Ritchie, R. O.; Karihaloo, B. L. (25 July 2003). Standardized titanium and titanium alloys. Elsevier. p. 163. ISBN 9780080490731. in Sumita, M.; Hanawa, T.; Ohnishi, I.; Yoneyama, T. (2003). "Failure Processes in Biometallic Materials". Comprehensive Structural Integrity. pp. 131–167. doi:10.1016/B0-08-043749-4/09143-6. ISBN 978-0-08-043749-1.

Further reading edit

  • Kazek-Kęsik, Alicja; Kalemba-Rec, Izabela; Simka, Wojciech (2019). "Anodization of a Medical-Grade Ti-6Al-7Nb Alloy in a Ca(H2PO2)2-Hydroxyapatite Suspension". Materials. 12 (18): 3002. Bibcode:2019Mate...12.3002K. doi:10.3390/ma12183002. PMC 6766300. PMID 31527501.
  • Iijima, D; Yoneyama, T; Doi, H; Hamanaka, H; Kurosaki, N (April 2003). "Wear properties of Ti and Ti–6Al–7Nb castings for dental prostheses". Biomaterials. 24 (8): 1519–1524. doi:10.1016/s0142-9612(02)00533-1. PMID 12527293.
  • Hamad, Thekra I.; Fatalla, Abdalbseet A.; Waheed, Amer Subhi; Azzawi, Zena G. M.; Cao, Ying-guang; Song, Ke (1 June 2018). "Biomechanical Evaluation of Nano-Zirconia Coatings on Ti-6Al-7Nb Implant Screws in Rabbit Tibias". Current Medical Science. 38 (3): 530–537. doi:10.1007/s11596-018-1911-4. PMID 30074223. S2CID 49365946.
  • Kajzer, Anita; Grzeszczuk, Ola; Kajzer, Wojciech; Nowińska, Katarzyna; Kaczmarek, Marcin; Tarnowski, Michał; Wierzchoń, Tadeusz (2017). "Properties of Ti6Al7Nb titanium alloy nitrocarburized under glow discharge conditions". Acta of Bioengineering and Biomechanics. 19 (4): 181–188. doi:10.5277/ABB-00892-2017-03. PMID 29507440.
  • Osathanon, Thanaphum; Bespinyowong, Kritchai; Arksornnukit, Mansuang; Takahashi, Hidekazu; Pavasant, Prasit (1 July 2006). "Ti-6Al-7Nb promotes cell spreading and fibronectin and osteopontin synthesis in osteoblast-like cells". Journal of Materials Science: Materials in Medicine. 17 (7): 619–625. doi:10.1007/s10856-006-9224-8. PMID 16770546. S2CID 8548688.
  • Pennekamp, Peter H.; Gessmann, Jan; Diedrich, Oliver; Burian, Björn; Wimmer, Markus A.; Frauchiger, Vinzenz M.; Kraft, Clayton N. (March 2006). "Short-term microvascular response of striated muscle to cp-Ti, Ti-6Al-4V, and Ti-6Al-7Nb". Journal of Orthopaedic Research. 24 (3): 531–540. doi:10.1002/jor.20066. PMID 16463365. S2CID 39224569.
  • Kraft, Clayton N.; Burian, Björn; Diedrich, Oliver; Gessmann, Jan; Wimmer, Markus A.; Pennekamp, Peter H. (1 October 2005). "Microvascular response of striated muscle to common arthroplasty-alloys: A comparativein vivo study with CoCrMo, Ti-6Al-4V, and Ti-6Al-7Nb". Journal of Biomedical Materials Research Part A. 75A (1): 31–40. doi:10.1002/jbm.a.30407. PMID 16078208.
  • Duarte, Laís T.; Bolfarini, Claudemiro; Biaggio, Sonia R.; Rocha-Filho, Romeu C.; Nascente, Pedro A. P. (1 August 2014). "Growth of aluminum-free porous oxide layers on titanium and its alloys Ti-6Al-4V and Ti-6Al-7Nb by micro-arc oxidation". Materials Science and Engineering: C. 41: 343–348. doi:10.1016/j.msec.2014.04.068. PMID 24907769.
  • Khan, M.A.; Williams, R.L.; Williams, D.F. (April 1999). "The corrosion behaviour of Ti–6Al–4V, Ti–6Al–7Nb and Ti–13Nb–13Zr in protein solutions". Biomaterials. 20 (7): 631–637. doi:10.1016/s0142-9612(98)00217-8. PMID 10208405.
  • Challa, V. S. A.; Mali, S.; Misra, R. D. K. (July 2013). "Reduced toxicity and superior cellular response of preosteoblasts to Ti-6Al-7Nb alloy and comparison with Ti-6Al-4V". Journal of Biomedical Materials Research Part A. 101A (7): 2083–2089. doi:10.1002/jbm.a.34492. PMID 23349101.

designation, r56700, alpha, beta, titanium, alloy, first, synthesized, 1977, containing, aluminum, niobium, features, high, strength, similar, properties, cytotoxic, vanadium, containing, alloy, used, material, prostheses, titanium, alloys, that, built, hexago. Ti 6Al 7Nb UNS designation R56700 is an alpha beta titanium alloy first synthesized in 1977 containing 6 aluminum and 7 niobium It features high strength and has similar properties as the cytotoxic vanadium containing alloy Ti 6Al 4V Ti 6Al 7Nb is used as a material for hip prostheses 1 Ti 6Al 7Nb is one of the titanium alloys that built of hexagonal a phase stabilised with aluminium and regular body centred phase b stabilised with niobium The alloy is characterized by added advantageous mechanical properties it has higher corrosion resistance and biotolerance in relation to Ti 6Al 4V alloys 2 3 4 Contents 1 Physical properties 2 Production 3 Heat treatment 4 Applications 5 Biocompatibility 6 Specification 7 References 8 Further readingPhysical properties editPhysical properties of the alloy are mostly dependent on the morphology and the fractions volume of the phases presence from the parameters obtained from the manufacturing process 5 6 Property Minimum Value Maximum Value Unit Density 4 51 4 53 g cm3 Hardness 2700 2900 Mpa Melting point 1800 1860 K Specific heat 540 560 J kg K Elastic limit 895 905 MPa Energy content 750 1250 MJ kg Latent heat of fusion 360 370 kJ kg 7 As shown in the above table alloying is one of the effective methods to improve the mechanical properties and since Niobium belongs to the same group of Vanadium in the periodic table it is of course acts as a b stabilizing elements similar to Ti 6Al 4V alloy however the strength of Nb alloy is little less than that of Ti 6Al 4V The main difference between Ti 6Al 4V and Ti 6Al 7Nb is related to different factors such as solid solution strengthening the structure refining strengthening provided by the refined two phase structure and the difference in the microstructure between the two alloys 8 Production editTi 6Al 7Nb is produced by powder metallurgy methods The most common methods are hot pressing metal injection mouldering and blending and pressing In the production of Ti 6Al 7Nb usually a sintering temperature between 900 1400o C is used Altering the sintering temperature gives the Ti 6Al 7Nb different properties such as different porosity and microstructure It also gives a different composition between alpha beta and alpha beta phases In the recent years Ti 6Al 7Nb alloys could also be made by different 3D printer technique such as SLM and EBM 9 10 Heat treatment editHeat treatment of titanium is demonstrated to have significant influences on reducing the residual stresses improving the mechanical properties i e tensile strength or fatigue strength by solution treatment and ageing Moreover heat treatment provides an ideal combination of ductility machinability and structural stability due to the differences in microstructure and cooling rates between a and b phases 11 The cooling rate have an impact of the morphology When the cooling rate is reduced for example from air cool to slow cooling the morphology of the transformed a increases in thickness and length and is contained within fewer larger a colonies 12 The a colony size is the most important microstructural properties due to its influences the fatigue properties and deformation mechanics of b processed a b alloys 13 Applications editImplant devices replacing such as failed hard tissue artificial hip joints artificial knee joints bone plates screws for fracture fixation cardiac valve prostheses pacemakers and artificial hearts 14 Dental application 15 Biocompatibility editTi 6Al 7Nb has a high biocompatibility The oxides from Ti 6Al 7Nb is saturated in the body and are not transported in vivo or are a bioburden The alloy will not create adverse tissue tolerance reactions and creates fewer giant cell nuclei Ti 6Al 7Nb also shows a high compatibility to ingrowth to the human body 16 Specification editDesignations for Ti 6Al 7Nb in other naming conventions include 17 UNS R56700 ASTM Standard F1295 ISO Standard ISO 5832 11References edit Fellah Mamoun Labaiz Mohamed Assala Omar Dekhil Leila Taleb Ahlem Rezag Hadda Iost Alain 21 July 2014 Tribological behavior of Ti 6Al 4V and Ti 6Al 7Nb Alloys for Total Hip Prosthesis Advances in Tribology 2014 1 13 doi 10 1155 2014 451387 hdl 10985 9566 Chlebus Edward Kuznicka Bogumila Kurzynowski Tomasz Dybala Bogdan 1 May 2011 Microstructure and mechanical behaviour of Ti 6Al 7Nb alloy produced by selective laser melting Materials Characterization 62 5 488 495 doi 10 1016 j matchar 2011 03 006 Liu Xuanyong Chu Paul K Ding Chuanxian 24 December 2004 Surface modification of titanium titanium alloys and related materials for biomedical applications Materials Science and Engineering R Reports 47 3 49 121 CiteSeerX 10 1 1 472 7717 doi 10 1016 j mser 2004 11 001 Lopez M F Gutierrez A Jimenez J A 15 February 2002 In vitro corrosion behaviour of titanium alloys without vanadium Electrochimica Acta 47 9 1359 1364 doi 10 1016 S0013 4686 01 00860 X Lutjering G 15 March 1998 Influence of processing on microstructure and mechanical properties of a b titanium alloys Materials Science and Engineering A 243 1 32 45 doi 10 1016 S0921 5093 97 00778 8 Ajeel Sami Abualnoun Alzubaydi Thair L Swadi Abdulsalam K 2007 Influence of Heat Treatment Conditions on Microstructure of Ti 6Al 7Nb Alloy As Used Surgical Implant Materials Engineering and Technology Journal 25 Suppl 3 431 442 doi 10 30684 etj 25 3 15 S2CID 55885379 Properties Titanium Alloys Ti6Al7Nb Properties and Applications Kobayashi E Wang T J Doi H Yoneyama T Hamanaka H 1998 Mechanical properties and corrosion resistance of Ti 6Al 7Nb alloy dental castings Journal of Materials Science Materials in Medicine 9 10 567 574 doi 10 1023 A 1008909408948 PMID 15348689 S2CID 13241089 Bolzoni Leandro Hari Babu N Ruiz Navas Elisa Maria Gordo Elena 2013 Comparison of Microstructure and Properties of Ti 6Al 7Nb Alloy Processed by Different Powder Metallurgy Routes Key Engineering Materials 551 161 179 doi 10 4028 www scientific net KEM 551 161 hdl 10016 20805 S2CID 137360703 Oliveira V Chaves R R Bertazzoli R Caram R December 1998 Preparation and characterization of Ti Al Nb alloys for orthopedic implants Brazilian Journal of Chemical Engineering 15 4 326 333 doi 10 1590 S0104 66321998000400002 S2CID 94310566 Sercombe Tim Jones Noel Day Rob Kop Alan 26 September 2008 Heat treatment of Ti 6Al 7Nb components produced by selective laser melting Rapid Prototyping Journal 14 5 300 304 doi 10 1108 13552540810907974 Sercombe Tim Jones Noel Day Rob Kop Alan 26 September 2008 Heat treatment of Ti 6Al 7Nb components produced by selective laser melting Rapid Prototyping Journal 14 5 300 304 doi 10 1108 13552540810907974 Lutjering G 15 March 1998 Influence of processing on microstructure and mechanical properties of a b titanium alloys Materials Science and Engineering A 243 1 32 45 doi 10 1016 S0921 5093 97 00778 8 Elias C N Lima J H C Valiev R Meyers M A 1 March 2008 Biomedical applications of titanium and its alloys JOM 60 3 46 49 Bibcode 2008JOM 60c 46E doi 10 1007 s11837 008 0031 1 S2CID 12056136 Kobayashi E Wang T J Doi H Yoneyama T Hamanaka H 1 October 1998 Mechanical properties and corrosion resistance of Ti 6Al 7Nb alloy dental castings Journal of Materials Science Materials in Medicine 9 10 567 574 doi 10 1023 A 1008909408948 PMID 15348689 S2CID 13241089 Disegi John November 2008 Implant Materials PDF 2nd ed Synthes Archived from the original PDF on 11 December 2015 Milne Ian Ritchie R O Karihaloo B L 25 July 2003 Standardized titanium and titanium alloys Elsevier p 163 ISBN 9780080490731 in Sumita M Hanawa T Ohnishi I Yoneyama T 2003 Failure Processes in Biometallic Materials Comprehensive Structural Integrity pp 131 167 doi 10 1016 B0 08 043749 4 09143 6 ISBN 978 0 08 043749 1 Further reading editKazek Kesik Alicja Kalemba Rec Izabela Simka Wojciech 2019 Anodization of a Medical Grade Ti 6Al 7Nb Alloy in a Ca H2PO2 2 Hydroxyapatite Suspension Materials 12 18 3002 Bibcode 2019Mate 12 3002K doi 10 3390 ma12183002 PMC 6766300 PMID 31527501 Iijima D Yoneyama T Doi H Hamanaka H Kurosaki N April 2003 Wear properties of Ti and Ti 6Al 7Nb castings for dental prostheses Biomaterials 24 8 1519 1524 doi 10 1016 s0142 9612 02 00533 1 PMID 12527293 Hamad Thekra I Fatalla Abdalbseet A Waheed Amer Subhi Azzawi Zena G M Cao Ying guang Song Ke 1 June 2018 Biomechanical Evaluation of Nano Zirconia Coatings on Ti 6Al 7Nb Implant Screws in Rabbit Tibias Current Medical Science 38 3 530 537 doi 10 1007 s11596 018 1911 4 PMID 30074223 S2CID 49365946 Kajzer Anita Grzeszczuk Ola Kajzer Wojciech Nowinska Katarzyna Kaczmarek Marcin Tarnowski Michal Wierzchon Tadeusz 2017 Properties of Ti6Al7Nb titanium alloy nitrocarburized under glow discharge conditions Acta of Bioengineering and Biomechanics 19 4 181 188 doi 10 5277 ABB 00892 2017 03 PMID 29507440 Osathanon Thanaphum Bespinyowong Kritchai Arksornnukit Mansuang Takahashi Hidekazu Pavasant Prasit 1 July 2006 Ti 6Al 7Nb promotes cell spreading and fibronectin and osteopontin synthesis in osteoblast like cells Journal of Materials Science Materials in Medicine 17 7 619 625 doi 10 1007 s10856 006 9224 8 PMID 16770546 S2CID 8548688 Pennekamp Peter H Gessmann Jan Diedrich Oliver Burian Bjorn Wimmer Markus A Frauchiger Vinzenz M Kraft Clayton N March 2006 Short term microvascular response of striated muscle to cp Ti Ti 6Al 4V and Ti 6Al 7Nb Journal of Orthopaedic Research 24 3 531 540 doi 10 1002 jor 20066 PMID 16463365 S2CID 39224569 Kraft Clayton N Burian Bjorn Diedrich Oliver Gessmann Jan Wimmer Markus A Pennekamp Peter H 1 October 2005 Microvascular response of striated muscle to common arthroplasty alloys A comparativein vivo study with CoCrMo Ti 6Al 4V and Ti 6Al 7Nb Journal of Biomedical Materials Research Part A 75A 1 31 40 doi 10 1002 jbm a 30407 PMID 16078208 Duarte Lais T Bolfarini Claudemiro Biaggio Sonia R Rocha Filho Romeu C Nascente Pedro A P 1 August 2014 Growth of aluminum free porous oxide layers on titanium and its alloys Ti 6Al 4V and Ti 6Al 7Nb by micro arc oxidation Materials Science and Engineering C 41 343 348 doi 10 1016 j msec 2014 04 068 PMID 24907769 Khan M A Williams R L Williams D F April 1999 The corrosion behaviour of Ti 6Al 4V Ti 6Al 7Nb and Ti 13Nb 13Zr in protein solutions Biomaterials 20 7 631 637 doi 10 1016 s0142 9612 98 00217 8 PMID 10208405 Challa V S A Mali S Misra R D K July 2013 Reduced toxicity and superior cellular response of preosteoblasts to Ti 6Al 7Nb alloy and comparison with Ti 6Al 4V Journal of Biomedical Materials Research Part A 101A 7 2083 2089 doi 10 1002 jbm a 34492 PMID 23349101 Retrieved from https en wikipedia org w index php title Ti 6Al 7Nb amp oldid 1221313788, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.