fbpx
Wikipedia

Isotopes of terbium

Naturally occurring terbium (65Tb) is composed of one stable isotope, 159Tb. Thirty-seven radioisotopes have been characterized, with the most stable being 158Tb with a half-life of 180 years, 157Tb with a half-life of 71 years, and 160Tb with a half-life of 72.3 days. All of the remaining radioactive isotopes have half-lives that are less than 6.907 days, and the majority of these have half-lives that are less than 24 seconds. This element also has 27 meta states, with the most stable being 156m1Tb (t1/2 = 24.4 hours), 154m2Tb (t1/2 = 22.7 hours) and 154m1Tb (t1/2 = 9.4 hours).

Isotopes of terbium (65Tb)
Main isotopes[1] Decay
abun­dance half-life (t1/2) mode pro­duct
157Tb synth 71 y ε 157Gd
158Tb synth 180 y ε 158Gd
β 158Dy
159Tb 100% stable
Standard atomic weight Ar°(Tb)

The primary decay mode before the most abundant stable isotope, 159Tb, is electron capture, and the primary mode behind is beta decay. The primary decay products before 159Tb are element Gd (gadolinium) isotopes, and the primary products after 159Tb are element Dy (dysprosium) isotopes.

List of isotopes edit

Nuclide
[n 1]
Z N Isotopic mass (Da)
[n 2][n 3]
Half-life
[n 4]
Decay
mode

[n 5]
Daughter
isotope

[n 6][n 7]
Spin and
parity
[n 8][n 4]
Natural abundance (mole fraction)
Excitation energy[n 4] Normal proportion Range of variation
135Tb 65 70 0.94(+33−22) ms (7/2−)
136Tb 65 71 135.96138(64)# 0.2# s
137Tb 65 72 136.95598(64)# 600# ms 11/2−#
138Tb 65 73 137.95316(43)# 800# ms [>200 ns] β+ 138Gd
p 137Gd
139Tb 65 74 138.94829(32)# 1.6(2) s β+ 139Gd 11/2−#
140Tb 65 75 139.94581(86) 2.4(2) s β+ (99.74%) 140Gd 5
β+, p (.26%) 139Eu
141Tb 65 76 140.94145(11) 3.5(2) s β+ 141Gd (5/2−)
141mTb 0(200)# keV 7.9(6) s β+ 141Gd 11/2−#
142Tb 65 77 141.93874(32)# 597(17) ms β+ (96.8(4)%) 142Gd 1+
EC (3.2(4)%)
β+, p 141Eu
142m1Tb 280.2(10) keV 303(17) ms IT (99.5%) 142Tb (5−)
β+ (.5%) 142Gd
142m2Tb 621.4(11) keV 15(4) µs
143Tb 65 78 142.93512(6) 12(1) s β+ 143Gd (11/2−)
143mTb 0(100)# keV <21 s β+ 143Gd 5/2+#
144Tb 65 79 143.93305(3) ~1 s β+ 144Gd 1+
β+, p (rare) 143Eu
144m1Tb 396.9(5) keV 4.25(15) s IT (66%) 144Tb (6−)
β+ (34%) 144Gd
β+, p (<1%) 143Eu
144m2Tb 476.2(5) keV 2.8(3) µs (8−)
144m3Tb 517.1(5) keV 670(60) ns (9+)
144m4Tb 544.5(6) keV <300 ns (10+)
145Tb 65 80 144.92927(6) 20# min β+ 145Gd (3/2+)
145mTb 0(100)# keV 30.9(7) s β+ 145Gd (11/2−)
146Tb 65 81 145.92725(5) 8(4) s β+ 146Gd 1+
146m1Tb 150(100)# keV 24.1(5) s β+ 146Gd 5−
146m2Tb 930(100)# keV 1.18(2) ms (10+)
147Tb 65 82 146.924045(13) 1.64(3) h β+ 147Gd 1/2+#
147mTb 50.6(9) keV 1.87(5) min β+ 147Gd (11/2)−
148Tb 65 83 147.924272(15) 60(1) min β+ 148Gd 2−
148m1Tb 90.1(3) keV 2.20(5) min β+ 148Gd (9)+
148m2Tb 8618.6(10) keV 1.310(7) µs (27+)
149Tb 65 84 148.923246(5) 4.118(25) h β+ (83.3%) 149Gd 1/2+
α (16.7%) 145Eu
149mTb 35.78(13) keV 4.16(4) min β+ (99.97%) 149Gd 11/2−
α (.022%) 145Eu
150Tb 65 85 149.923660(8) 3.48(16) h β+ (99.95%) 150Gd (2−)
α (.05%) 146Eu
150mTb 457(29) keV 5.8(2) min β+ 150Gd 9+
IT (rare) 150Tb
151Tb 65 86 150.923103(5) 17.609(1) h β+ (99.99%) 151Gd 1/2(+)
α (.0095%) 147Eu
151mTb 99.54(6) keV 25(3) s IT (93.8%) 151Tb (11/2−)
β+ (6.2%) 151Gd
152Tb 65 87 151.92407(4) 17.8784(95) h[4] β+ 152Gd 2−
α (7×10−7%) 148Eu
152m1Tb 342.15(16) keV 0.96 µs 5−
152m2Tb 501.74(19) keV 4.2(1) min IT (78.8%) 152Tb 8+
β+ (21.2%) 152Gd
153Tb 65 88 152.923435(5) 2.34(1) d β+ 153Gd 5/2+
153mTb 163.175(5) keV 186(4) µs 11/2−
154Tb 65 89 153.92468(5) 21.5(4) h β+ (99.9%) 154Gd 0(+#)
β (.1%) 154Dy
154m1Tb 12(7) keV 9.4(4) h β+ (78.2%) 154Gd 3−
IT (21.8%) 154Tb
β (.1%) 154Dy
154m2Tb 200(150)# keV 22.7(5) h 7−
154m3Tb 0+Z keV 513(42) ns
155Tb 65 90 154.923505(13) 5.32(6) d EC 155Gd 3/2+
156Tb 65 91 155.924747(5) 5.35(10) d β+ 156Gd 3−
β (rare) 156Dy
156m1Tb 54(3) keV 24.4(10) h IT 156Tb (7−)
156m2Tb 88.4(2) keV 5.3(2) h (0+)
157Tb 65 92 156.9240246(27) 71(7) y EC 157Gd 3/2+
158Tb 65 93 157.9254131(28) 180(11) y β+ (83.4%) 158Gd 3−
β (16.6%) 158Dy
158m1Tb 110.3(12) keV 10.70(17) s IT (99.39%) 158Tb 0−
β (.6%) 158Dy
β+ (.01%) 158Gd
158m2Tb 388.37(15) keV 0.40(4) ms 7−
159Tb[n 9] 65 94 158.9253468(27) Stable 3/2+ 1.0000
160Tb 65 95 159.9271676(27) 72.3(2) d β 160Dy 3−
161Tb[n 9] 65 96 160.9275699(28) 6.906(19) d β 161Dy 3/2+
162Tb 65 97 161.92949(4) 7.60(15) min β 162Dy 1−
163Tb 65 98 162.930648(5) 19.5(3) min β 163Dy 3/2+
164Tb 65 99 163.93335(11) 3.0(1) min β 164Dy (5+)
165Tb 65 100 164.93488(21)# 2.11(10) min β 165mDy 3/2+#
166Tb 65 101 165.93799(11) 25.6(22) s β 166Dy
167Tb 65 102 166.94005(43)# 19.4(27) s β 167Dy 3/2+#
168Tb 65 103 167.94364(54)# 8.2(13) s β 168Dy 4−#
169Tb 65 104 168.94622(64)# 5.13(32) s β 169Dy 3/2+#
170Tb 65 105 169.95025(75)# 960(78) ms β 170Dy
171Tb 65 106 170.95330(86)# 1.23(10) s β 171Dy 3/2+#
172Tb 65 107 760(190) ms β 172Dy 6+#
This table header & footer:
  1. ^ mTb – Excited nuclear isomer.
  2. ^ ( ) – Uncertainty (1σ) is given in concise form in parentheses after the corresponding last digits.
  3. ^ # – Atomic mass marked #: value and uncertainty derived not from purely experimental data, but at least partly from trends from the Mass Surface (TMS).
  4. ^ a b c # – Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).
  5. ^ Modes of decay:
  6. ^ Bold italics symbol as daughter – Daughter product is nearly stable.
  7. ^ Bold symbol as daughter – Daughter product is stable.
  8. ^ ( ) spin value – Indicates spin with weak assignment arguments.
  9. ^ a b Fission product

References edit

  1. ^ Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae.
  2. ^ "Standard Atomic Weights: Terbium". CIAAW. 2021.
  3. ^ Prohaska, Thomas; Irrgeher, Johanna; Benefield, Jacqueline; Böhlke, John K.; Chesson, Lesley A.; Coplen, Tyler B.; Ding, Tiping; Dunn, Philip J. H.; Gröning, Manfred; Holden, Norman E.; Meijer, Harro A. J. (2022-05-04). "Standard atomic weights of the elements 2021 (IUPAC Technical Report)". Pure and Applied Chemistry. doi:10.1515/pac-2019-0603. ISSN 1365-3075.
  4. ^ Collins, S.M.; Köster, U.; Robinson, A.P.; Ivanov, P.; Cocolios, T.E.; Russell, B.; Fenwick, A.J.; Bernerd, C.; Stegemann, S.; Johnston, K.; Gerami, A.M.; Chrysalidis, K.; Mohamud, H.; Ramirez, N.; Bhaisare, A.; Mewburn-Crook, J.; Cullen, D.M.; Pietras, B.; Pells, S.; Dockx, K.; Stucki, N.; Regan, P.H. (2023). "Determination of the Terbium-152 half-life from mass-separated samples from CERN-ISOLDE and assessment of the radionuclide purity". Applied Radiation and Isotopes. 202. Elsevier BV: 111044. doi:10.1016/j.apradiso.2023.111044. ISSN 0969-8043. PMID 37797447.
  • Isotope masses from:
    • Audi, Georges; Bersillon, Olivier; Blachot, Jean; Wapstra, Aaldert Hendrik (2003), "The NUBASE evaluation of nuclear and decay properties", Nuclear Physics A, 729: 3–128, Bibcode:2003NuPhA.729....3A, doi:10.1016/j.nuclphysa.2003.11.001
  • Isotopic compositions and standard atomic masses from:
    • de Laeter, John Robert; Böhlke, John Karl; De Bièvre, Paul; Hidaka, Hiroshi; Peiser, H. Steffen; Rosman, Kevin J. R.; Taylor, Philip D. P. (2003). "Atomic weights of the elements. Review 2000 (IUPAC Technical Report)". Pure and Applied Chemistry. 75 (6): 683–800. doi:10.1351/pac200375060683.
    • Wieser, Michael E. (2006). "Atomic weights of the elements 2005 (IUPAC Technical Report)". Pure and Applied Chemistry. 78 (11): 2051–2066. doi:10.1351/pac200678112051.
  • "News & Notices: Standard Atomic Weights Revised". International Union of Pure and Applied Chemistry. 19 October 2005.
  • Half-life, spin, and isomer data selected from the following sources.

isotopes, terbium, naturally, occurring, terbium, 65tb, composed, stable, isotope, 159tb, thirty, seven, radioisotopes, have, been, characterized, with, most, stable, being, 158tb, with, half, life, years, 157tb, with, half, life, years, 160tb, with, half, lif. Naturally occurring terbium 65Tb is composed of one stable isotope 159Tb Thirty seven radioisotopes have been characterized with the most stable being 158Tb with a half life of 180 years 157Tb with a half life of 71 years and 160Tb with a half life of 72 3 days All of the remaining radioactive isotopes have half lives that are less than 6 907 days and the majority of these have half lives that are less than 24 seconds This element also has 27 meta states with the most stable being 156m1Tb t1 2 24 4 hours 154m2Tb t1 2 22 7 hours and 154m1Tb t1 2 9 4 hours Isotopes of terbium 65Tb Main isotopes 1 Decay abun dance half life t1 2 mode pro duct 157Tb synth 71 y e 157Gd 158Tb synth 180 y e 158Gd b 158Dy 159Tb 100 stableStandard atomic weight Ar Tb 158 925354 0 000007 2 158 93 0 01 abridged 3 viewtalkedit The primary decay mode before the most abundant stable isotope 159Tb is electron capture and the primary mode behind is beta decay The primary decay products before 159Tb are element Gd gadolinium isotopes and the primary products after 159Tb are element Dy dysprosium isotopes List of isotopes editNuclide n 1 Z N Isotopic mass Da n 2 n 3 Half life n 4 Decaymode n 5 Daughterisotope n 6 n 7 Spin andparity n 8 n 4 Natural abundance mole fraction Excitation energy n 4 Normal proportion Range of variation 135Tb 65 70 0 94 33 22 ms 7 2 136Tb 65 71 135 96138 64 0 2 s 137Tb 65 72 136 95598 64 600 ms 11 2 138Tb 65 73 137 95316 43 800 ms gt 200 ns b 138Gd p 137Gd 139Tb 65 74 138 94829 32 1 6 2 s b 139Gd 11 2 140Tb 65 75 139 94581 86 2 4 2 s b 99 74 140Gd 5 b p 26 139Eu 141Tb 65 76 140 94145 11 3 5 2 s b 141Gd 5 2 141mTb 0 200 keV 7 9 6 s b 141Gd 11 2 142Tb 65 77 141 93874 32 597 17 ms b 96 8 4 142Gd 1 EC 3 2 4 b p 141Eu 142m1Tb 280 2 10 keV 303 17 ms IT 99 5 142Tb 5 b 5 142Gd 142m2Tb 621 4 11 keV 15 4 µs 143Tb 65 78 142 93512 6 12 1 s b 143Gd 11 2 143mTb 0 100 keV lt 21 s b 143Gd 5 2 144Tb 65 79 143 93305 3 1 s b 144Gd 1 b p rare 143Eu 144m1Tb 396 9 5 keV 4 25 15 s IT 66 144Tb 6 b 34 144Gd b p lt 1 143Eu 144m2Tb 476 2 5 keV 2 8 3 µs 8 144m3Tb 517 1 5 keV 670 60 ns 9 144m4Tb 544 5 6 keV lt 300 ns 10 145Tb 65 80 144 92927 6 20 min b 145Gd 3 2 145mTb 0 100 keV 30 9 7 s b 145Gd 11 2 146Tb 65 81 145 92725 5 8 4 s b 146Gd 1 146m1Tb 150 100 keV 24 1 5 s b 146Gd 5 146m2Tb 930 100 keV 1 18 2 ms 10 147Tb 65 82 146 924045 13 1 64 3 h b 147Gd 1 2 147mTb 50 6 9 keV 1 87 5 min b 147Gd 11 2 148Tb 65 83 147 924272 15 60 1 min b 148Gd 2 148m1Tb 90 1 3 keV 2 20 5 min b 148Gd 9 148m2Tb 8618 6 10 keV 1 310 7 µs 27 149Tb 65 84 148 923246 5 4 118 25 h b 83 3 149Gd 1 2 a 16 7 145Eu 149mTb 35 78 13 keV 4 16 4 min b 99 97 149Gd 11 2 a 022 145Eu 150Tb 65 85 149 923660 8 3 48 16 h b 99 95 150Gd 2 a 05 146Eu 150mTb 457 29 keV 5 8 2 min b 150Gd 9 IT rare 150Tb 151Tb 65 86 150 923103 5 17 609 1 h b 99 99 151Gd 1 2 a 0095 147Eu 151mTb 99 54 6 keV 25 3 s IT 93 8 151Tb 11 2 b 6 2 151Gd 152Tb 65 87 151 92407 4 17 8784 95 h 4 b 152Gd 2 a 7 10 7 148Eu 152m1Tb 342 15 16 keV 0 96 µs 5 152m2Tb 501 74 19 keV 4 2 1 min IT 78 8 152Tb 8 b 21 2 152Gd 153Tb 65 88 152 923435 5 2 34 1 d b 153Gd 5 2 153mTb 163 175 5 keV 186 4 µs 11 2 154Tb 65 89 153 92468 5 21 5 4 h b 99 9 154Gd 0 b 1 154Dy 154m1Tb 12 7 keV 9 4 4 h b 78 2 154Gd 3 IT 21 8 154Tb b 1 154Dy 154m2Tb 200 150 keV 22 7 5 h 7 154m3Tb 0 Z keV 513 42 ns 155Tb 65 90 154 923505 13 5 32 6 d EC 155Gd 3 2 156Tb 65 91 155 924747 5 5 35 10 d b 156Gd 3 b rare 156Dy 156m1Tb 54 3 keV 24 4 10 h IT 156Tb 7 156m2Tb 88 4 2 keV 5 3 2 h 0 157Tb 65 92 156 9240246 27 71 7 y EC 157Gd 3 2 158Tb 65 93 157 9254131 28 180 11 y b 83 4 158Gd 3 b 16 6 158Dy 158m1Tb 110 3 12 keV 10 70 17 s IT 99 39 158Tb 0 b 6 158Dy b 01 158Gd 158m2Tb 388 37 15 keV 0 40 4 ms 7 159Tb n 9 65 94 158 9253468 27 Stable 3 2 1 0000 160Tb 65 95 159 9271676 27 72 3 2 d b 160Dy 3 161Tb n 9 65 96 160 9275699 28 6 906 19 d b 161Dy 3 2 162Tb 65 97 161 92949 4 7 60 15 min b 162Dy 1 163Tb 65 98 162 930648 5 19 5 3 min b 163Dy 3 2 164Tb 65 99 163 93335 11 3 0 1 min b 164Dy 5 165Tb 65 100 164 93488 21 2 11 10 min b 165mDy 3 2 166Tb 65 101 165 93799 11 25 6 22 s b 166Dy 167Tb 65 102 166 94005 43 19 4 27 s b 167Dy 3 2 168Tb 65 103 167 94364 54 8 2 13 s b 168Dy 4 169Tb 65 104 168 94622 64 5 13 32 s b 169Dy 3 2 170Tb 65 105 169 95025 75 960 78 ms b 170Dy 171Tb 65 106 170 95330 86 1 23 10 s b 171Dy 3 2 172Tb 65 107 760 190 ms b 172Dy 6 This table header amp footer view mTb Excited nuclear isomer Uncertainty 1s is given in concise form in parentheses after the corresponding last digits Atomic mass marked value and uncertainty derived not from purely experimental data but at least partly from trends from the Mass Surface TMS a b c Values marked are not purely derived from experimental data but at least partly from trends of neighboring nuclides TNN Modes of decay EC Electron capture IT Isomeric transition p Proton emission Bold italics symbol as daughter Daughter product is nearly stable Bold symbol as daughter Daughter product is stable spin value Indicates spin with weak assignment arguments a b Fission productReferences edit Kondev F G Wang M Huang W J Naimi S Audi G 2021 The NUBASE2020 evaluation of nuclear properties PDF Chinese Physics C 45 3 030001 doi 10 1088 1674 1137 abddae Standard Atomic Weights Terbium CIAAW 2021 Prohaska Thomas Irrgeher Johanna Benefield Jacqueline Bohlke John K Chesson Lesley A Coplen Tyler B Ding Tiping Dunn Philip J H Groning Manfred Holden Norman E Meijer Harro A J 2022 05 04 Standard atomic weights of the elements 2021 IUPAC Technical Report Pure and Applied Chemistry doi 10 1515 pac 2019 0603 ISSN 1365 3075 Collins S M Koster U Robinson A P Ivanov P Cocolios T E Russell B Fenwick A J Bernerd C Stegemann S Johnston K Gerami A M Chrysalidis K Mohamud H Ramirez N Bhaisare A Mewburn Crook J Cullen D M Pietras B Pells S Dockx K Stucki N Regan P H 2023 Determination of the Terbium 152 half life from mass separated samples from CERN ISOLDE and assessment of the radionuclide purity Applied Radiation and Isotopes 202 Elsevier BV 111044 doi 10 1016 j apradiso 2023 111044 ISSN 0969 8043 PMID 37797447 Isotope masses from Audi Georges Bersillon Olivier Blachot Jean Wapstra Aaldert Hendrik 2003 The NUBASE evaluation of nuclear and decay properties Nuclear Physics A 729 3 128 Bibcode 2003NuPhA 729 3A doi 10 1016 j nuclphysa 2003 11 001 Isotopic compositions and standard atomic masses from de Laeter John Robert Bohlke John Karl De Bievre Paul Hidaka Hiroshi Peiser H Steffen Rosman Kevin J R Taylor Philip D P 2003 Atomic weights of the elements Review 2000 IUPAC Technical Report Pure and Applied Chemistry 75 6 683 800 doi 10 1351 pac200375060683 Wieser Michael E 2006 Atomic weights of the elements 2005 IUPAC Technical Report Pure and Applied Chemistry 78 11 2051 2066 doi 10 1351 pac200678112051 News amp Notices Standard Atomic Weights Revised International Union of Pure and Applied Chemistry 19 October 2005 Half life spin and isomer data selected from the following sources Audi Georges Bersillon Olivier Blachot Jean Wapstra Aaldert Hendrik 2003 The NUBASE evaluation of nuclear and decay properties Nuclear Physics A 729 3 128 Bibcode 2003NuPhA 729 3A doi 10 1016 j nuclphysa 2003 11 001 National Nuclear Data Center NuDat 2 x database Brookhaven National Laboratory Holden Norman E 2004 11 Table of the Isotopes In Lide David R ed CRC Handbook of Chemistry and Physics 85th ed Boca Raton Florida CRC Press ISBN 978 0 8493 0485 9 Retrieved from https en wikipedia org w index php title Isotopes of terbium amp oldid 1192269754 Terbium 161, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.