fbpx
Wikipedia

Operation Argus

Operation Argus was a series of United States low-yield, high-altitude nuclear weapons tests and missile tests secretly conducted from 27 August to 9 September 1958 over the South Atlantic Ocean.[1][2] The tests were performed by the Defense Nuclear Agency.

Operation Argus
X-17 with nuclear warhead launched from aboard the USS Norton Sound
Information
CountryUnited States
Test siteSouth Atlantic Ocean
Period1958
Number of tests3
Test typespace rocket (> 80 km)
Max. yield1.7 kilotonnes of TNT (7.1 TJ)
Test series chronology

The tests were to study the Christofilos effect, which suggested it was possible to defend against Soviet nuclear missiles by exploding a small number of nuclear bombs high over the South Pacific. This would create a disk of electrons over the United States that would overload the electronics on the Soviet warheads as they descended. It was also possible to use the effect to blind Soviet radars, meaning that any Soviet missile-based ABM system would be unable to attack the US counterstrike.

The tests demonstrated that the effect did occur, but that it dissipated too rapidly to be very effective. Papers concerning the topic were published the next year, emphasizing the events as purely scientific endeavors.

Objectives edit

The tests were proposed by Nicholas Christofilos in an unpublished paper[3] of what was then the Livermore branch of the Lawrence Radiation Laboratory (now Lawrence Livermore National Laboratory) as a means to verify the Christofilos effect, which argued that high-altitude nuclear detonations would create a radiation belt in the extreme upper regions of the Earth's atmosphere.[4] Such belts would be similar in effect to the Van Allen radiation belts. "Such radiation belts were viewed as having possible tactical use in war, including degradation of radio and radar transmissions, damage or destruction of the arming and fuzing mechanisms of ICBM warheads, and endangering the crews of orbiting space vehicles that might enter the belt."[2] Prior to Argus, Hardtack Teak had shown disruption of radio communications from a nuclear blast, though this was not due to the creation of radiation belts.

Argus was implemented rapidly after inception due to forthcoming bans on atmospheric and exoatmospheric testing in October 1958.[1] Consequently, the tests were performed within a mere half-year of conception (whereas "normal" testing took one to two years).[5] Because nuclear testing during this time was arguably a violation of the rules, the military borrowed International Geophysical Year equipment to disguise the nuclear tests.[1]

  • Two missiles, with warheads 136–227 kg to be launched within one month of each other, originating from a single site.
  • The missiles were to be detonated at altitudes of 200–1,000 miles (320–1,610 km), and also at 2,000–4,000 miles (3,200–6,400 km). Both detonations should occur near the geomagnetic equator.
  • Satellites were to be placed in equatorial (up to 30°) and polar (up to 70°) orbits, with perigees of roughly 322 kilometers (200 mi) and apogees of roughly 2,900 kilometers (1,800 mi) or greater. These satellites were to be used to measure electron density over time, and include a magnetometer, as well as a means for measuring ambient radio noise. Measurements were to be taken before the shots to determine a baseline, as well as during and after the events.
  • Sounding rockets, launched from appropriate ground locations, were to carry the same instrumentation as the satellites, except for radio noise. Ground stations to be used to study effects on radio astronomy and radar probing as well as auroral measurements.

Originally Argus was designated Hardtack-Argus, and later Floral. For reasons of security, both names were disused in favor of the independent name Argus.

Funding was provided by the Armed Forces Special Weapons Project (AFSWP), the predecessor of the present Defense Threat Reduction Agency (DTRA). Total funds allotted for the project were US$9,023,000.

Task Force 88 edit

 
Path of TF-88 during August and September 1958.

The United States Navy Task Force 88 (or TF-88), was formed 28 April 1958. TF-88 was organized solely to conduct Operation Argus. Once Argus was completed, the task force was dissolved, and its records dispersed. Some of these records have been destroyed or lost during the time period intervening. Of particular note among the missing documents were the film records (which recorded radiation levels during the Argus tests). This has proved contentious due to the greater-than-normal number of leukemia claims among TF-88 participants to the Veterans Administration. Because of this, it has been difficult to resolve to how much radiation the participants were exposed.

USS Norton Sound edit

USS Norton Sound was a United States Navy-guided missile ship responsible for missile-launching functions. It also served as a training facility for crews involved in the testing. The X-17A missiles to be used in the test were unfamiliar to those conducting the tests. Exercises including assembly and repair of dummy missiles were performed aboard Norton Sound. It also carried a 27-MHz COZI radar, which was operated by Air Force Cambridge Research Center, which was used to monitor effects of the shots. It was responsible for the launching of three low-yield nuclear warheads into the high atmosphere.[1] Its commanding officer, Captain Arthur R. Gralla, commanded Task Force 88.[6] Gralla would later receive the Legion of Merit for his role conducting the tests expeditiously.[7]

USS Albemarle edit

USS Albemarle, fresh out of an overhaul, was not listed on the TF-88 order. It set out to the Atlantic Ocean, supposedly as a shakedown cruise. It, too, had a COZI radar and other instrumentation for detecting man-made ionization. This instrumentation included International Geophysical Year (IGY) radiometers, receivers, radar, and optical equipment. After the IGY equipment was added, it sailed to the ocean around the area of the Azores to record data at the geomagnetic conjugate point of the South Atlantic test site, as the rest of task force 88 headed to the South Atlantic to perform the tests.[1]

USS Tarawa edit

USS Tarawa served as overall command of the operation, with her commander serving as Task Group Commander. It carried an Air Force MSQ-1A radar and communication system for missile tracking. It also housed VS-32 aircraft for search and security operations as well as scientific measurement, photographic, and observer missions for each test. HS-5 was also aboard and provided intra-task-force transportation for personnel and cargo.

USS Warrington edit

USS Warrington, in conjunction with Bearss, Hammerberg, and Courtney, maintained a weather picket 463 km west of the task force, provided an airplane guard for Tarawa during flight operations, and performed standard destroyer functions (such as surface security and search and rescue). Warrington also carried equipment for launching Loki Dart sounding rockets.

Task Group 88.3 edit

USS Neosho refueled task force ships during the operation. It was also outfitted with Air Force MSQ-1A radar and communication vans. Neosho also served as the flagship for TG 88.3, the Mobile Logistics Group, which consisted of Neosho, USS Salamonie (AO-26), and assigned destroyers.

USS Salamonie returned to the United States upon arrival at TF-88, and did not participate with any tests.

Satellite tracking edit

Two satellite launches were attempted in order to obtain data from these high-altitude tests. Explorer 4 was launched successfully to orbit on 26 July on Juno I missile from Cape Canaveral. The satellite had enough battery power to function for sixty days. This was long enough for the satellite to track and measure ARGUS.[1] Explorer 5 experienced a launch failure on 24 August.

There were many tracking systems used by the task force along with these satellites along with many organizations that helped track these missiles. "These included the Naval Research Laboratory, the Army Signal Research and Development Laboratory, the Smithsonian Astrophysical Laboratory, the Army Map Service, the Naval Ordnance Test Station, and the Ballistic Research Laboratory along with ground tracking stations from the Aleutian Islands through the Azores from academic, industrial, and military organizations."[1]

Preparation edit

 
Deployment of X-17A aboard USS-Norton Sound.

To prepare for the launch of the ARGUS missiles, many tests and preparations were performed. As the east coast units of TF 88 were heading towards the South Atlantic, they participated with countdown, launch, and missile- tracking drills using Loki/Dart high-altitude, antiaircraft rockets launched from the USS Warrington. Fourteen of these Loki launches were conducted from 12 to 22 August. These tests were performed to test equipment and procedures, and to train personnel in specialized assignments. Some of these assignments necessary for the ARGUS missile launchings were "stationing of ships, MSQ-1A radar tracking by the USS Neosho and the USS Tarawa, communications, positioning of sky-camera S2F aircraft, and area surveillance S2F aircraft."[2]

Tests edit

 
X-17A warhead.

About 1800 km southwest of Cape Town, South Africa, USS Norton Sound launched three modified X-17A missiles armed with 1.7 kt W-25 nuclear warheads into the upper atmosphere, where high altitude nuclear explosions occurred. Due to the South Atlantic Anomaly, the Van Allen radiation belt is closer to the Earth's surface at that location. The (extreme) altitude of the tests was chosen so as to prevent personnel involved with the test from being exposed to any ionizing radiation.[8] Even with the very minor threat of radiation exposure, precautions were taken to prevent radiological exposure. The task force commander and his staff had devised a series of precautionary radiation safe measures to be followed in each stage of the operation. Though the chance of exposure to radiation from these missiles was minute, the safety measures were performed as directed by the commander by the crew of Task Force 88.[2]

Coordinated measurement programs involving satellite, rocket, aircraft, and surface stations were employed by the services as well as other government agencies and various contractors worldwide.

The Argus explosions created artificial electron belts resulting from the β-decay of fission fragments. These lasted for several weeks. Such radiation belts affect radio and radar transmissions, damage or destroy arming and fusing mechanisms of intercontinental ballistic missile warheads, and endanger crews of orbiting space vehicles. It was found after performing these tests that the explosions did in fact degrade the reception and transmission of radar signals, another proof that Christofilos was correct about the Christofilos effect.[2]

Argus proved the validity of Christofilos' theory: the establishment of an electron shell derived from neutron and β-decay of fission products and ionization of device materials in the upper atmosphere was demonstrated. It not only provided data on military considerations, but produced a "great mass" of geophysical data.

 
X-17A awaiting launch aboard USS-Norton Sound.

The tests were first reported journalistically by Hanson Baldwin and Walter Sullivan of The New York Times on 19 March 1959,[9][10] headlining it as the "greatest scientific experiment ever conducted". This was an unauthorized publication that caused great controversy among scientists because many of them were unaware of the presence of artificial particles in the Earth's atmosphere.[1] Approximately nine ships and 4,500 people participated with the operation. After the completion of testing, the task force returned to the United States via Rio de Janeiro, Brazil.

The tests were announced officially the next year, but the full results and documentation of the tests were not declassified until 30 April 1982.

List of Argus launches edit

United States' Argus series tests and detonations
Name [note 1] Date time (UT) Local Time Zone[note 2][11] Location[note 3] Elevation + height [note 4] Delivery [note 5]
Purpose [note 6]
Device[note 7] Yield[note 8] Fallout[note 9] References Notes
1 27 August 1958 02:28:?? WET (0 hrs)
Launch from South Atlantic Ocean 38°30′S 11°30′W / 38.5°S 11.5°W / -38.5; -11.5 (Launch_1), elv: 0 + 0 m (0 + 0 ft);
Detonation over South Atlantic Ocean 38°30′S 11°30′W / 38.5°S 11.5°W / -38.5; -11.5 (1)
N/A + 170 kilometers (110 mi) space rocket (> 80 km),
weapon effect
W-25 1.7 kilotonnes of TNT (7.1 TJ)[12] [13][14][15][16][17][18]
2 30 August 1958 03:18:?? WET (0 hrs)
Launch from South Atlantic Ocean 49°30′S 8°12′W / 49.5°S 8.2°W / -49.5; -8.2 (Launch_2), elv: 0 + 0 m (0 + 0 ft);
Detonation over South Atlantic Ocean 49°30′S 8°12′W / 49.5°S 8.2°W / -49.5; -8.2 (2)
N/A + 310 kilometers (190 mi) space rocket (> 80 km),
weapon effect
W-25 1.7 kilotonnes of TNT (7.1 TJ)[12] [13][14][15][16][17][18]
3 6 September 1958 22:13:?? WET (0 hrs)
Launch from South Atlantic Ocean 48°30′S 9°42′W / 48.5°S 9.7°W / -48.5; -9.7 (Launch_3), elv: 0 + 0 m (0 + 0 ft);
Detonation over South Atlantic Ocean 48°30′S 9°42′W / 48.5°S 9.7°W / -48.5; -9.7 (3)
N/A + 794 kilometers (493 mi) space rocket (> 80 km),
weapon effect
W-25 1.7 kilotonnes of TNT (7.1 TJ)[12] [13][14][15][16][17][18]
  1. ^ The US, France and Great Britain have code-named their test events, while the USSR and China did not, and therefore have only test numbers (with some exceptions – Soviet peaceful explosions were named). Word translations into English in parentheses unless the name is a proper noun. A dash followed by a number indicates a member of a salvo event. The US also sometimes named the individual explosions in such a salvo test, which results in "name1 – 1(with name2)". If test is canceled or aborted, then the row data like date and location discloses the intended plans, where known.
  2. ^ To convert the UT time into standard local, add the number of hours in parentheses to the UT time; for local daylight saving time, add one additional hour. If the result is earlier than 00:00, add 24 hours and subtract 1 from the day; if it is 24:00 or later, subtract 24 hours and add 1 to the day.
  3. ^ Rough place name and a latitude/longitude reference; for rocket-carried tests, the launch location is specified before the detonation location, if known. Some locations are extremely accurate; others (like airdrops and space blasts) may be quite inaccurate. "~" indicates a likely pro-forma rough location, shared with other tests in that same area.
  4. ^ Elevation is the ground level at the point directly below the explosion relative to sea level; height is the additional distance added or subtracted by tower, balloon, shaft, tunnel, air drop or other contrivance. For rocket bursts the ground level is "N/A". In some cases it is not clear if the height is absolute or relative to ground, for example, Plumbbob/John. No number or units indicates the value is unknown, while "0" means zero. Sorting on this column is by elevation and height added together.
  5. ^ Atmospheric, airdrop, balloon, gun, cruise missile, rocket, surface, tower, and barge are all disallowed by the Partial Nuclear Test Ban Treaty. Sealed shaft and tunnel are underground, and remained useful under the PTBT. Intentional cratering tests are borderline; they occurred under the treaty, were sometimes protested, and generally overlooked if the test was declared to be a peaceful use.
  6. ^ Include weapons development, weapon effects, safety test, transport safety test, war, science, joint verification and industrial/peaceful, which may be further broken down.
  7. ^ Designations for test items where known, "?" indicates some uncertainty about the preceding value, nicknames for particular devices in quotes. This category of information is often not officially disclosed.
  8. ^ Estimated energy yield in tons, kilotons, and megatons. A ton of TNT equivalent is defined as 4.184 gigajoules (1 gigacalorie).
  9. ^ Radioactive emission to the atmosphere aside from prompt neutrons, where known. The measured species is only iodine-131 if mentioned, otherwise it is all species. No entry means unknown, probably none if underground and "all" if not; otherwise notation for whether measured on the site only or off the site, where known, and the measured amount of radioactivity released.

List of ships involved in Operation Argus edit

See also edit

References edit

  1. ^ a b c d e f g h Mundey, Lisa (2012). "The Civilianization of a Nuclear Weapons Effects Test: Operation ARGUS". Historical Studies in the Natural Sciences. 42 (4): 283–321. doi:10.1525/hsns.2012.42.4.283.
  2. ^ a b c d e Department of Defense, Defense Nuclear Agency (1958). "Operation ARGUS, 1958". Department of Defense Documents: 1–143. hdl:2027/uiug.30112075683737.   This article incorporates text from this source, which is in the public domain.
  3. ^ Van Allen, James A.; McIlwain, Carl E.; Ludwig, George H. (15 August 1959). "Satellite observations of electrons artificially injected into the geomagnetic field". Proceedings of the National Academy of Sciences (PDF). 45 (8): 1152–1171. Bibcode:1959PNAS...45.1152V. doi:10.1073/pnas.45.8.1152. JSTOR 90137. PMC 222697.
  4. ^ Christofilos, Nicholas C. (15 August 1959). "The Argus Experiment" (PDF). Proceedings of the National Academy of Sciences of the United States of America (PDF). 45 (8): 1144–1152. Bibcode:1959PNAS...45.1144C. doi:10.1073/pnas.45.8.1144. JSTOR 90136. (PDF) from the original on 16 November 2021. Retrieved 6 June 2017.
  5. ^ (PDF). Nuclear Test Personnel Review. Defense Nuclear Agency. 1982. OCLC 760071663. Archived from the original (PDF) on 30 January 2012. Retrieved 1 June 2010.
  6. ^ Lawson, Cliff (2017). The Station Comes of Age: Satellites, Submarines, and Special Operations in the Final Years of the Naval Ordnance Test Station, 1959–1967. Naval Air Warfare Center Weapons Division. p. 43.
  7. ^ Hall of Valor Project. "Arthur R. Gralla". Military Times. from the original on 31 December 2018. Retrieved 30 December 2018.
  8. ^ U.S. Defense Threat Reduction Agency. DTRA Fact Sheets, "Operation Argus" 7 October 2012 at the Wayback Machine. November 2006. Retrieved 1 June 2010.
  9. ^ Baldwin, Hanson W. (19 March 1959). "3 Atomic Devices Detonated 300 Miles Up". The New York Times. p. 1.
  10. ^ Sullivan, Walter (19 March 1959). "Radiation and Geomagnetic Phenomena Probed and Revealed by Test Outlined". The New York Times. p. 1.
  11. ^ "Time Zone Historical Database". iana.com. from the original on 11 March 2014. Retrieved 8 March 2014.
  12. ^ a b c DCI Briefing to Joint Chiefs of Staff (PDF) (Report). 30 July 1963. p. 19. Archived (PDF) from the original on 6 November 2021. Retrieved 6 November 2021.
  13. ^ a b c Sublette, Carey, Nuclear Weapons Archive, retrieved 6 January 2014
  14. ^ a b c Operation Argus, 1958 (DNA6039F), Washington, DC: Defense Nuclear Agency, Department of Defense, 1982, from the original on 16 November 2021, retrieved 26 November 2013
  15. ^ a b c Norris, Robert Standish; Cochran, Thomas B. (1 February 1994), (PDF), Nuclear Weapons Databook Working Paper, Washington, DC: Natural Resources Defense Council, archived from the original (PDF) on 29 October 2013, retrieved 26 October 2013
  16. ^ a b c Hansen, Chuck (1995), The Swords of Armageddon, Vol. 8, Sunnyvale, CA: Chukelea Publications, ISBN 978-0-9791915-1-0
  17. ^ a b c (PDF) (DOE/NV-209 REV15), Las Vegas, NV: Department of Energy, Nevada Operations Office, 1 December 2000, archived from the original (PDF) on 12 October 2006, retrieved 18 December 2013
  18. ^ a b c Yang, Xiaoping; North, Robert; Romney, Carl (August 2000), CMR Nuclear Explosion Database (Revision 3), SMDC Monitoring Research

Further reading edit

External links edit

  • The short film Operation ARGUS, Report of Chief, AFSWP to ARPA is available for free viewing and download at the Internet Archive.

operation, argus, project, argus, redirects, here, project, search, extraterrestrial, intelligence, project, argus, seti, series, united, states, yield, high, altitude, nuclear, weapons, tests, missile, tests, secretly, conducted, from, august, september, 1958. Project Argus redirects here For the project to search for extraterrestrial intelligence see Project Argus SETI Operation Argus was a series of United States low yield high altitude nuclear weapons tests and missile tests secretly conducted from 27 August to 9 September 1958 over the South Atlantic Ocean 1 2 The tests were performed by the Defense Nuclear Agency Operation ArgusX 17 with nuclear warhead launched from aboard the USS Norton SoundInformationCountryUnited StatesTest siteSouth Atlantic OceanPeriod1958Number of tests3Test typespace rocket gt 80 km Max yield1 7 kilotonnes of TNT 7 1 TJ Test series chronology Operation Hardtack IOperation Hardtack II Map all coordinates in Operation Argus using OpenStreetMap Download coordinates as KML GPX all coordinates GPX primary coordinates GPX secondary coordinates The tests were to study the Christofilos effect which suggested it was possible to defend against Soviet nuclear missiles by exploding a small number of nuclear bombs high over the South Pacific This would create a disk of electrons over the United States that would overload the electronics on the Soviet warheads as they descended It was also possible to use the effect to blind Soviet radars meaning that any Soviet missile based ABM system would be unable to attack the US counterstrike The tests demonstrated that the effect did occur but that it dissipated too rapidly to be very effective Papers concerning the topic were published the next year emphasizing the events as purely scientific endeavors Contents 1 Objectives 2 Task Force 88 2 1 USS Norton Sound 2 2 USS Albemarle 2 3 USS Tarawa 2 4 USS Warrington 2 5 Task Group 88 3 3 Satellite tracking 4 Preparation 5 Tests 6 List of Argus launches 7 List of ships involved in Operation Argus 8 See also 9 References 10 Further reading 11 External linksObjectives editThe tests were proposed by Nicholas Christofilos in an unpublished paper 3 of what was then the Livermore branch of the Lawrence Radiation Laboratory now Lawrence Livermore National Laboratory as a means to verify the Christofilos effect which argued that high altitude nuclear detonations would create a radiation belt in the extreme upper regions of the Earth s atmosphere 4 Such belts would be similar in effect to the Van Allen radiation belts Such radiation belts were viewed as having possible tactical use in war including degradation of radio and radar transmissions damage or destruction of the arming and fuzing mechanisms of ICBM warheads and endangering the crews of orbiting space vehicles that might enter the belt 2 Prior to Argus Hardtack Teak had shown disruption of radio communications from a nuclear blast though this was not due to the creation of radiation belts Argus was implemented rapidly after inception due to forthcoming bans on atmospheric and exoatmospheric testing in October 1958 1 Consequently the tests were performed within a mere half year of conception whereas normal testing took one to two years 5 Because nuclear testing during this time was arguably a violation of the rules the military borrowed International Geophysical Year equipment to disguise the nuclear tests 1 Two missiles with warheads 136 227 kg to be launched within one month of each other originating from a single site The missiles were to be detonated at altitudes of 200 1 000 miles 320 1 610 km and also at 2 000 4 000 miles 3 200 6 400 km Both detonations should occur near the geomagnetic equator Satellites were to be placed in equatorial up to 30 and polar up to 70 orbits with perigees of roughly 322 kilometers 200 mi and apogees of roughly 2 900 kilometers 1 800 mi or greater These satellites were to be used to measure electron density over time and include a magnetometer as well as a means for measuring ambient radio noise Measurements were to be taken before the shots to determine a baseline as well as during and after the events Sounding rockets launched from appropriate ground locations were to carry the same instrumentation as the satellites except for radio noise Ground stations to be used to study effects on radio astronomy and radar probing as well as auroral measurements Originally Argus was designated Hardtack Argus and later Floral For reasons of security both names were disused in favor of the independent name Argus Funding was provided by the Armed Forces Special Weapons Project AFSWP the predecessor of the present Defense Threat Reduction Agency DTRA Total funds allotted for the project were US 9 023 000 Task Force 88 edit nbsp Path of TF 88 during August and September 1958 The United States Navy Task Force 88 or TF 88 was formed 28 April 1958 TF 88 was organized solely to conduct Operation Argus Once Argus was completed the task force was dissolved and its records dispersed Some of these records have been destroyed or lost during the time period intervening Of particular note among the missing documents were the film records which recorded radiation levels during the Argus tests This has proved contentious due to the greater than normal number of leukemia claims among TF 88 participants to the Veterans Administration Because of this it has been difficult to resolve to how much radiation the participants were exposed USS Norton Sound edit USS Norton Sound was a United States Navy guided missile ship responsible for missile launching functions It also served as a training facility for crews involved in the testing The X 17A missiles to be used in the test were unfamiliar to those conducting the tests Exercises including assembly and repair of dummy missiles were performed aboard Norton Sound It also carried a 27 MHz COZI radar which was operated by Air Force Cambridge Research Center which was used to monitor effects of the shots It was responsible for the launching of three low yield nuclear warheads into the high atmosphere 1 Its commanding officer Captain Arthur R Gralla commanded Task Force 88 6 Gralla would later receive the Legion of Merit for his role conducting the tests expeditiously 7 USS Albemarle edit USS Albemarle fresh out of an overhaul was not listed on the TF 88 order It set out to the Atlantic Ocean supposedly as a shakedown cruise It too had a COZI radar and other instrumentation for detecting man made ionization This instrumentation included International Geophysical Year IGY radiometers receivers radar and optical equipment After the IGY equipment was added it sailed to the ocean around the area of the Azores to record data at the geomagnetic conjugate point of the South Atlantic test site as the rest of task force 88 headed to the South Atlantic to perform the tests 1 USS Tarawa edit USS Tarawa served as overall command of the operation with her commander serving as Task Group Commander It carried an Air Force MSQ 1A radar and communication system for missile tracking It also housed VS 32 aircraft for search and security operations as well as scientific measurement photographic and observer missions for each test HS 5 was also aboard and provided intra task force transportation for personnel and cargo USS Warrington edit USS Warrington in conjunction with Bearss Hammerberg and Courtney maintained a weather picket 463 km west of the task force provided an airplane guard for Tarawa during flight operations and performed standard destroyer functions such as surface security and search and rescue Warrington also carried equipment for launching Loki Dart sounding rockets Task Group 88 3 edit USS Neosho refueled task force ships during the operation It was also outfitted with Air Force MSQ 1A radar and communication vans Neosho also served as the flagship for TG 88 3 the Mobile Logistics Group which consisted of Neosho USS Salamonie AO 26 and assigned destroyers USS Salamonie returned to the United States upon arrival at TF 88 and did not participate with any tests Satellite tracking editTwo satellite launches were attempted in order to obtain data from these high altitude tests Explorer 4 was launched successfully to orbit on 26 July on Juno I missile from Cape Canaveral The satellite had enough battery power to function for sixty days This was long enough for the satellite to track and measure ARGUS 1 Explorer 5 experienced a launch failure on 24 August There were many tracking systems used by the task force along with these satellites along with many organizations that helped track these missiles These included the Naval Research Laboratory the Army Signal Research and Development Laboratory the Smithsonian Astrophysical Laboratory the Army Map Service the Naval Ordnance Test Station and the Ballistic Research Laboratory along with ground tracking stations from the Aleutian Islands through the Azores from academic industrial and military organizations 1 Preparation edit nbsp Deployment of X 17A aboard USS Norton Sound To prepare for the launch of the ARGUS missiles many tests and preparations were performed As the east coast units of TF 88 were heading towards the South Atlantic they participated with countdown launch and missile tracking drills using Loki Dart high altitude antiaircraft rockets launched from the USS Warrington Fourteen of these Loki launches were conducted from 12 to 22 August These tests were performed to test equipment and procedures and to train personnel in specialized assignments Some of these assignments necessary for the ARGUS missile launchings were stationing of ships MSQ 1A radar tracking by the USS Neosho and the USS Tarawa communications positioning of sky camera S2F aircraft and area surveillance S2F aircraft 2 Tests edit nbsp X 17A warhead About 1800 km southwest of Cape Town South Africa USS Norton Sound launched three modified X 17A missiles armed with 1 7 kt W 25 nuclear warheads into the upper atmosphere where high altitude nuclear explosions occurred Due to the South Atlantic Anomaly the Van Allen radiation belt is closer to the Earth s surface at that location The extreme altitude of the tests was chosen so as to prevent personnel involved with the test from being exposed to any ionizing radiation 8 Even with the very minor threat of radiation exposure precautions were taken to prevent radiological exposure The task force commander and his staff had devised a series of precautionary radiation safe measures to be followed in each stage of the operation Though the chance of exposure to radiation from these missiles was minute the safety measures were performed as directed by the commander by the crew of Task Force 88 2 Coordinated measurement programs involving satellite rocket aircraft and surface stations were employed by the services as well as other government agencies and various contractors worldwide The Argus explosions created artificial electron belts resulting from the b decay of fission fragments These lasted for several weeks Such radiation belts affect radio and radar transmissions damage or destroy arming and fusing mechanisms of intercontinental ballistic missile warheads and endanger crews of orbiting space vehicles It was found after performing these tests that the explosions did in fact degrade the reception and transmission of radar signals another proof that Christofilos was correct about the Christofilos effect 2 Argus proved the validity of Christofilos theory the establishment of an electron shell derived from neutron and b decay of fission products and ionization of device materials in the upper atmosphere was demonstrated It not only provided data on military considerations but produced a great mass of geophysical data nbsp X 17A awaiting launch aboard USS Norton Sound The tests were first reported journalistically by Hanson Baldwin and Walter Sullivan of The New York Times on 19 March 1959 9 10 headlining it as the greatest scientific experiment ever conducted This was an unauthorized publication that caused great controversy among scientists because many of them were unaware of the presence of artificial particles in the Earth s atmosphere 1 Approximately nine ships and 4 500 people participated with the operation After the completion of testing the task force returned to the United States via Rio de Janeiro Brazil The tests were announced officially the next year but the full results and documentation of the tests were not declassified until 30 April 1982 List of Argus launches editSee also List of nuclear weapons tests of the United States United States Argus series tests and detonations Name note 1 Date time UT Local Time Zone note 2 11 Location note 3 Elevation height note 4 Delivery note 5 Purpose note 6 Device note 7 Yield note 8 Fallout note 9 References Notes 1 27 August 1958 02 28 WET 0 hrs Launch from South Atlantic Ocean 38 30 S 11 30 W 38 5 S 11 5 W 38 5 11 5 Launch 1 elv 0 0 m 0 0 ft Detonation over South Atlantic Ocean 38 30 S 11 30 W 38 5 S 11 5 W 38 5 11 5 1 N A 170 kilometers 110 mi space rocket gt 80 km weapon effect W 25 1 7 kilotonnes of TNT 7 1 TJ 12 13 14 15 16 17 18 2 30 August 1958 03 18 WET 0 hrs Launch from South Atlantic Ocean 49 30 S 8 12 W 49 5 S 8 2 W 49 5 8 2 Launch 2 elv 0 0 m 0 0 ft Detonation over South Atlantic Ocean 49 30 S 8 12 W 49 5 S 8 2 W 49 5 8 2 2 N A 310 kilometers 190 mi space rocket gt 80 km weapon effect W 25 1 7 kilotonnes of TNT 7 1 TJ 12 13 14 15 16 17 18 3 6 September 1958 22 13 WET 0 hrs Launch from South Atlantic Ocean 48 30 S 9 42 W 48 5 S 9 7 W 48 5 9 7 Launch 3 elv 0 0 m 0 0 ft Detonation over South Atlantic Ocean 48 30 S 9 42 W 48 5 S 9 7 W 48 5 9 7 3 N A 794 kilometers 493 mi space rocket gt 80 km weapon effect W 25 1 7 kilotonnes of TNT 7 1 TJ 12 13 14 15 16 17 18 The US France and Great Britain have code named their test events while the USSR and China did not and therefore have only test numbers with some exceptions Soviet peaceful explosions were named Word translations into English in parentheses unless the name is a proper noun A dash followed by a number indicates a member of a salvo event The US also sometimes named the individual explosions in such a salvo test which results in name1 1 with name2 If test is canceled or aborted then the row data like date and location discloses the intended plans where known To convert the UT time into standard local add the number of hours in parentheses to the UT time for local daylight saving time add one additional hour If the result is earlier than 00 00 add 24 hours and subtract 1 from the day if it is 24 00 or later subtract 24 hours and add 1 to the day Rough place name and a latitude longitude reference for rocket carried tests the launch location is specified before the detonation location if known Some locations are extremely accurate others like airdrops and space blasts may be quite inaccurate indicates a likely pro forma rough location shared with other tests in that same area Elevation is the ground level at the point directly below the explosion relative to sea level height is the additional distance added or subtracted by tower balloon shaft tunnel air drop or other contrivance For rocket bursts the ground level is N A In some cases it is not clear if the height is absolute or relative to ground for example Plumbbob John No number or units indicates the value is unknown while 0 means zero Sorting on this column is by elevation and height added together Atmospheric airdrop balloon gun cruise missile rocket surface tower and barge are all disallowed by the Partial Nuclear Test Ban Treaty Sealed shaft and tunnel are underground and remained useful under the PTBT Intentional cratering tests are borderline they occurred under the treaty were sometimes protested and generally overlooked if the test was declared to be a peaceful use Include weapons development weapon effects safety test transport safety test war science joint verification and industrial peaceful which may be further broken down Designations for test items where known indicates some uncertainty about the preceding value nicknames for particular devices in quotes This category of information is often not officially disclosed Estimated energy yield in tons kilotons and megatons A ton of TNT equivalent is defined as 4 184 gigajoules 1 gigacalorie Radioactive emission to the atmosphere aside from prompt neutrons where known The measured species is only iodine 131 if mentioned otherwise it is all species No entry means unknown probably none if underground and all if not otherwise notation for whether measured on the site only or off the site where known and the measured amount of radioactivity released List of ships involved in Operation Argus editUSS Tarawa CVS 40 USS Bearss DD 654 USS Warrington DD 843 USS Courtney DE 1021 USS Hammerberg DE 1015 USS Neosho AO 143 USS Salamonie AO 26 USS Norton Sound AVM 1 USS Albemarle AV 5 See also editHardtack Teak Operation Dominic I and II HAARP List of artificial radiation belts Aurora Conjugate aurorasReferences edit a b c d e f g h Mundey Lisa 2012 The Civilianization of a Nuclear Weapons Effects Test Operation ARGUS Historical Studies in the Natural Sciences 42 4 283 321 doi 10 1525 hsns 2012 42 4 283 a b c d e Department of Defense Defense Nuclear Agency 1958 Operation ARGUS 1958 Department of Defense Documents 1 143 hdl 2027 uiug 30112075683737 nbsp This article incorporates text from this source which is in the public domain Van Allen James A McIlwain Carl E Ludwig George H 15 August 1959 Satellite observations of electrons artificially injected into the geomagnetic field Proceedings of the National Academy of Sciences PDF 45 8 1152 1171 Bibcode 1959PNAS 45 1152V doi 10 1073 pnas 45 8 1152 JSTOR 90137 PMC 222697 Christofilos Nicholas C 15 August 1959 The Argus Experiment PDF Proceedings of the National Academy of Sciences of the United States of America PDF 45 8 1144 1152 Bibcode 1959PNAS 45 1144C doi 10 1073 pnas 45 8 1144 JSTOR 90136 Archived PDF from the original on 16 November 2021 Retrieved 6 June 2017 Report DNA 6039F Operation Argus 1958 PDF Nuclear Test Personnel Review Defense Nuclear Agency 1982 OCLC 760071663 Archived from the original PDF on 30 January 2012 Retrieved 1 June 2010 Lawson Cliff 2017 The Station Comes of Age Satellites Submarines and Special Operations in the Final Years of the Naval Ordnance Test Station 1959 1967 Naval Air Warfare Center Weapons Division p 43 Hall of Valor Project Arthur R Gralla Military Times Archived from the original on 31 December 2018 Retrieved 30 December 2018 U S Defense Threat Reduction Agency DTRA Fact Sheets Operation Argus Archived 7 October 2012 at the Wayback Machine November 2006 Retrieved 1 June 2010 Baldwin Hanson W 19 March 1959 3 Atomic Devices Detonated 300 Miles Up The New York Times p 1 Sullivan Walter 19 March 1959 Radiation and Geomagnetic Phenomena Probed and Revealed by Test Outlined The New York Times p 1 Time Zone Historical Database iana com Archived from the original on 11 March 2014 Retrieved 8 March 2014 a b c DCI Briefing to Joint Chiefs of Staff PDF Report 30 July 1963 p 19 Archived PDF from the original on 6 November 2021 Retrieved 6 November 2021 a b c Sublette Carey Nuclear Weapons Archive retrieved 6 January 2014 a b c Operation Argus 1958 DNA6039F Washington DC Defense Nuclear Agency Department of Defense 1982 archived from the original on 16 November 2021 retrieved 26 November 2013 a b c Norris Robert Standish Cochran Thomas B 1 February 1994 United States nuclear tests July 1945 to 31 December 1992 NWD 94 1 PDF Nuclear Weapons Databook Working Paper Washington DC Natural Resources Defense Council archived from the original PDF on 29 October 2013 retrieved 26 October 2013 a b c Hansen Chuck 1995 The Swords of Armageddon Vol 8 Sunnyvale CA Chukelea Publications ISBN 978 0 9791915 1 0 a b c United States Nuclear Tests July 1945 through September 1992 PDF DOE NV 209 REV15 Las Vegas NV Department of Energy Nevada Operations Office 1 December 2000 archived from the original PDF on 12 October 2006 retrieved 18 December 2013 a b c Yang Xiaoping North Robert Romney Carl August 2000 CMR Nuclear Explosion Database Revision 3 SMDC Monitoring ResearchFurther reading editChun Lt Col Clayton K S Shooting down a Star Program 437 the US Nuclear ASAT System and Present Day Copycat Killers College of Aerospace Doctrine Research and Education April 2000 Maxwell Air Force Base Alabama External links edit nbsp Wikimedia Commons has media related to Operation Argus The short film Operation ARGUS Report of Chief AFSWP to ARPA is available for free viewing and download at the Internet Archive Retrieved from https en wikipedia org w index php title Operation Argus amp oldid 1218774152, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.