fbpx
Wikipedia

Tank locomotive

A tank locomotive or tank engine is a steam locomotive that carries its water in one or more on-board water tanks, instead of a more traditional tender. Most tank engines also have bunkers (or fuel tanks) to hold fuel; in a tender-tank locomotive a tender holds some or all of the fuel, and may hold some water also.

LB&SCR J1 class

There are several different types of tank locomotive, distinguished by the position and style of the water tanks and fuel bunkers. The most common type has tanks mounted either side of the boiler. This type originated about 1840 and quickly became popular for industrial tasks, and later for shunting and shorter-distance main line duties.

Tank locomotives have advantages and disadvantages compared to traditional locomotives that required a separate tender to carry needed water and fuel.

History edit

Origins edit

 
Drawing of the Novelty showing the large well tank between the wheels and below the frame

The first tank locomotive was the Novelty that ran at the Rainhill Trials in 1829.[1] It was an example of a well tank. However, the more common form of side tank date from the 1840s; one of the first of these was supplied by George England and Co. of New Cross to the contractors building the Seaford branch line for the London Brighton and South Coast Railway in 1848.[2] In spite of the early belief that such locomotives were inherently unsafe,[3] the idea quickly caught on, particularly for industrial use and five manufacturers exhibited designs at The Great Exhibition in 1851. These were E. B. Wilson and Company, William Fairbairn & Sons, George England, Kitson Thompson and Hewitson and William Bridges Adams.[4] By the mid-1850s tank locomotives were to be found performing a variety of main line and industrial roles, particularly those involving shorter journeys or frequent changes in direction.

Types of tank locomotive edit

There are a number of types of tank locomotive, based on the location and style of the water tanks. These include the side tank, the saddle tank, the pannier tank, the well tank and others.

Side tank edit

Side tanks are cuboid-shaped tanks which are situated on both sides of the boiler, extending all or part of the boiler's length.[5] The tank sides extend down to the running platform, if such is present, for at least part of their length.[6] This was a common configuration in the UK.

The length of side tanks was often limited in order to give access to the valve gear (inside motion). Tanks that ran the full length of the boiler provided greater water capacity and, in this case, cut-outs in the rectangular tank gave access to the valve gear. Longer side tanks were sometimes tapered downwards at the front to improve forward visibility. Side tanks almost all stopped at, or before, the end of the boiler barrel, with the smokebox protruding ahead. A few designs did reach to the front of the smokebox and these were termed 'flatirons'.[citation needed]

Saddle tank edit

The water tank sits on top of the boiler like a saddle sits atop a horse.[5] Usually, the tank is curved in cross-section, although in some cases there were straight sides surmounted by a curve (like an inverted 'U'), or even an ogee shape (a concave arc flowing into a convex arc).[7] Walter Nielson patented the saddle tank arrangement in 1849.[8]

Saddle tanks were a popular arrangement especially for smaller locomotives in industrial use. It gave a greater water supply, but limited the size of the boiler and restricted access to it for cleaning. Furthermore, the locomotive has a higher centre of gravity and hence must operate at lower speeds. The driver's vision may also be restricted, again restricting the safe speed.

The squared-off shape of the Belpaire firebox does not fit easily beneath a saddle tank, and so most saddle tanks retained the older round-topped boiler instead. A few American locomotives used saddle tanks that only covered the boiler barrel, forward of the firebox.

Water in the tank is slightly pre-heated by the boiler, which reduces the loss of pressure found when cold feedwater is injected into the boiler. However, if the water becomes too hot, injectors lose efficiency and can fail. For this reason, the tanks often stopped short of the hotter and uninsulated smokebox.

  Media related to Saddle tank locomotives at Wikimedia Commons

Pannier tank edit

 
A GWR 57xx class pannier tank locomotive

Pannier tanks are box-shaped tanks carried on the sides of the boiler, not carried on the locomotive's running plates. This leaves a space between the tanks and the running plate. Pannier tanks have a lower centre of gravity than a saddle tank, whilst still giving the same easy access to the valve gear. Pannier tanks are so-named because the tanks are in a similar position to the panniers on a pack animal.[9]

  Media related to Pannier tank locomotives at Wikimedia Commons

Britain edit

In Britain, pannier tank locomotives were used almost exclusively by the Great Western Railway. The first Great Western pannier tanks were converted from saddle tank locomotives[10] when these were being rebuilt in the early 1900s with the Belpaire firebox. There were difficulties in accommodating the flat top of the latter within an encircling saddle tank which cut down capacity and increased the tendency to overheat the water in the tank.[11] Pannier tank locomotives are often seen as an icon of the GWR.[citation needed]

Belgium edit

In Belgium, pannier tanks were in use at least since 1866, once again in conjunction with Belpaire firebox. Locomotives were built for the Belgian State and for la Société Générale d'Exploitatation (SGE), a private company grouping smaller secondary lines.[12]

United States edit

In Logging railroads in the Western USA used 2-6-6-2 Saddle tanks or Pannier tanks for heavy timber trains.

Well tank edit

In this design, used in earlier and smaller locomotives, the water is stored in a 'well' on the underside of the locomotive, generally between the locomotive's frames. This arrangement was patented by S.D. Davison in 1852.[13] This does not restrict access to the boiler, but space is limited there, and the design is therefore not suitable for locomotives that need a good usable range before refilling. The arrangement does, however, have the advantage of creating a low centre of gravity, creating greater stability on poorly laid or narrow gauge tracks. The first tank locomotive, Novelty, was a well tank.

  Media related to Well tank locomotives at Wikimedia Commons

Rear tank (or back tank) edit

 
A Finnish Steam Locomotive Class F1 rear tank locomotive

In this design, the tank is placed behind the cab, usually over a supporting bogie.[14] This removes the weight of the water from the driving wheels, giving the locomotive a constant tractive weight. The disadvantage is a reduction in water carrying capacity. A rear tank is an essential component of the American Forney type of locomotive, which is a 4-4-0 American-type with wheels reversed.

Wing tank edit

 
Wing tank locomotive Dougal on the Welshpool and Llanfair Light Railway

Wing tanks are side tanks that run the length of the smokebox, instead of the full length of the boiler.[15] In the early 19th century the term "wing tank" was sometimes used as a synonym for side tank.[16]

Wing tanks were mainly used on narrow gauge industrial locomotives that could be frequently re-filled with water and where side or saddle tanks would restrict access to valve gear. The Kerry Tramway's locomotive Excelsior has been described, by various sources, as both a wing tank and an inverted saddle tank.[17]

Inverted saddle tank edit

 
Joan on the Golden Valley Light Railway showing the inverted saddle tank around the smokebox

The inverted saddle tank was a variation of the Wing Tank where the two tanks were joined underneath the smokebox and supported it.[18] This rare design was used for the same reasons as the wing tank but provided slightly greater water capacity. The Brill Tramway locomotive Wotton is believed[by whom?] to have had an inverted saddle tank. The inverted saddle tank was a speciality of W.G.Bagnall.[19]

Tender-tank edit

 
Ffestiniog Railway tender-tank locomotive Welsh Pony

A tank locomotive may also haul a tender behind it.[20] This was the common arrangement on the largest locomotives, as well as on narrow gauge railways where the small size of the locomotive restricts the space available for fuel and water. These combined both fuel and water in a proportion (where coal was used) of 1 pound of coal for every 6 pounds of water.[citation needed].

Where a tender was used with a narrow-gauge locomotive it usually carried only fuel, with water carried in the locomotive's tanks. The tender offered greater fuel capacity than a bunker on the locomotive and often the water capacity could be increased by converting redundant bunker space into a water tank.

Combinations edit

 
The LSWR 415 class combined side tanks and a well tank

Large side tank engines might also have an additional rear tank (under the coal bunker), or a well tank (between the frames).[21] This may have been to increase the water capacity, to equalise the weight distribution, or else improve the stability by lowering the centre of gravity.[22]

Locomotive classification and wheel arrangement edit

Because tank locomotives are capable of running equally fast in both directions (see below) they usually have symmetrical wheel arrangements to ensure the same ride and stability characteristics regardless of the direction travelled, producing arrangements with only driving wheels (e.g. 0-4-0T and 0-6-0T) or equal numbers of leading and trailing wheels (e.g. 2-4-2T and 4-6-4T).[23] However other requirements, such as the need to support a large bunker, would require a non-symmetrical layout such as 2-6-4T.

Whyte classification edit

In the Whyte notation for classification of locomotives (primarily by wheel arrangement), various suffixes are used to denote tank locomotives:[24]

UIC classification edit

In the UIC notation which also classifies locomotives primarily by wheel arrangement, the suffix 't' is used to denote tank locomotives[25]

Fuel bunker edit

On tank locomotives which use solid fuels such as coal, a bunker is used to carry the fuel (for locomotives using liquid fuel such as oil, a Fuel tank is used). There are two main positions for bunkers on tank locomotives: to the rear of the cab (as illustrated in the left of the images below), a position typically used on locomotives with a trailing carrying axle or a trailing bogie; or on top of and to one side of the firebox, a positioning typically used in cases where the firebox overhangs the rear driving axle, as this counterbalances the overhanging weight of the firebox, stabilising the locomotive.[26]

Other types of tank locomotive edit

There are several other specialised types of steam locomotive which carry their own fuel but which are usually categorised for different reasons.

Garratt locomotive edit

 
South African Railways NGG16 class Garratt, preserved in Wales.

A Garratt locomotive is articulated in three parts. The boiler is mounted on the centre frame without wheels, and two sets of driving wheels (4 cylinders total) carrying fuel bunkers and water tanks are mounted on separate frames, one on each end of the boiler.[27] Articulation is used so larger locomotives can go around curves which would otherwise restrict the size of rigid framed locomotives. One of the major advantages of the Garratt form of articulation is the maintenance of the locomotive's centre-of-gravity over or inside the track centre-line when rounding curves.[28]

Crane tank locomotive edit

 
A crane tank preserved as a static exhibit at Bressingham

A crane tank (CT) is a steam tank locomotive fitted with a crane for working in railway workshops or other industrial environments. The crane may be fitted at the front, centre or rear.[29]

Streamlined tank locomotive edit

 
Hungarian Railways class 242

During the 1930s there was a trend for express passenger locomotives to be streamlined by enclosed bodyshells. Express locomotives were nearly all tender locomotives, but a few fast tank engines were also streamlined, for use on high-speed, but shorter, services where turn-around time was important and the tank engine's independence from turntables was useful.[citation needed] Examples included the German Class 61[30] and the Hungarian Class 242.[31]

Contractor's locomotive edit

 
Small Bagnall contractor's loco, with their distinctive cylindrical firebox

The contractor's locomotive was a small tank locomotive specially adapted for use by civil engineering contractor firms engaged in the building of railways. The locomotives would be used for hauling men, equipment and building materials over temporary railway networks built at the worksite that were frequently re-laid or taken up and moved elsewhere as building work progressed. Contractor's locomotives were usually saddle or well tank types (see above) but required several adaptations to make them suitable for their task. They were built to be as light as possible so they could run over the lightly built temporary rails and had deeply flanged wheels so they did not de-rail on the tracks which were often very uneven.[6]

At the same time, they had to be very powerful with good traction as they would often have to haul trains of wagons up very steep gradients, such as the sides of railway embankments or spoil heaps. Many were designed so that large iron ballast blocks could be fitted to the frames when extra weight and traction was required, then removed when it was not. Most had sanding gear fitted to all wheels for maximum traction. Some method of keeping mud and dust from clogging the wheels and brake shoes was also required – this either took the form of scraper bars fitted to the leading edge of the wheels or wheel washer jets supplied from the water tank. To handle long trains of loose-coupled (and often un-sprung) wagons, contractor's locomotives usually had very effective steam-powered brakes. Most lacked a full cab, often only having a front 'spectacle plate'. If a cab was provided it was usually removable along with the chimney, and sometimes the dome, so that the locomotive could be loaded onto a flatbed wagon for transport to new locations by rail whilst remaining within the loading gauge.[32]

Steam tram engines edit

 
Steam tram locomotive of Geldersche Tramwegen, Netherlands

Steam tram engines, which were built, or modified, to work on a street, or roadside, tramway were almost universally also tank engines.[33]

Tram engines had their wheels and motion enclosed to avoid accidents in traffic. They often had cow catchers to avoid road debris causing a derailment. Some tram engines were fitted with a roof and enclosed sides, giving them an appearance more like a goods wagon than a locomotive.[34]

Vertical boiler locomotives edit

 
Vertical boiler locomotive "Taffy".

Railway locomotives with vertical boilers universally were tank locomotives. They were small, cheaper-to-operate machines mostly used in industrial settings.[35]

Advantages and disadvantages edit

 
600 mm (1 ft 11+58 in) gauge tank locomotive Tx26-423 in Poznań, Poland

The benefits of tank locomotives include:

  • Bi-directionality: Most tank locomotives are capable of running at full speed in either direction (although this depends on the wheel arrangement; for example, a 2-6-0T will not be able to run as fast in reverse, due to lack of a trailing truck). Most tender locomotives are unable to do this, because the heavy tender is not designed to be pushed and may become unstable at higher speeds. Tender locomotives generally require turning facilities, such as a turntable or wye, at each end of the run. A tank locomotive, on the other hand, can simply run around the train (provided there is a siding) and pull it back in the other direction. The crew of a tank engine generally have a better view in the reverse direction than for a tender engine and are protected from the weather.[36]
  • Fuel and water add to adhesive weight: The usable tractive weight of a locomotive is the product of the weight on its driving wheels multiplied by the factor of adhesion. Therefore, up to the limits of the maximum permissible axle loading, and other loading limits, the more weight on the driving wheels the better. In a tank locomotive the weight of its own fuel and water increase the available tractive weight.
  • Compactness: A tank locomotive is shorter than the equivalent tender locomotive. This is important in environments with limited space for locomotives, such as the headshunt of a run-round loop.[37]
  • Efficiency: Many train tanks are designed to be in contact with, and be heated by, the boiler. Pre-heated water will reach boiling point faster than the colder water available from a tender. On the other hand, excessively hot water can interfere with steam injector operation and is to be avoided.
 
LB&SCR L class locomotives were fitted with well tanks and part of the side tanks were blanked off to improve stability

There are disadvantages:

  • Limited fuel and water capacity: A tender can typically contain far more of both than is available on a tank locomotive. This restricts the range of tank locomotives between fueling and watering points.[38] This is one reason why tank engines were more popular in Europe and the UK than in America or other places, because the distances were shorter between refueling stations and water towers.
  • Varying adhesive weight: As the water in the tanks is used up, the overall adhesive weight of the locomotive decreases, which in turn reduces the train weight the locomotive can pull. Locomotives with low water supplies also typically ride less well as there is less weight on the springs.
  • Instability: Water surging inside large side tanks can cause the locomotive to become unstable and prone to derailment, as was the case with the LB&SCR L class 4-6-4T before they were modified.[39]
  • Axle loading limits a problem: For larger tank locomotives, it is hard to put much fuel and water aboard without requiring more axles than a rigid frame can handle.
  • Limit of boiler diameter: The boiler and water tanks must fit within the loading gauge of the railway being run on. Above a certain diameter of boiler there is little or no room for water tanks to be added and still fit within the loading gauge.

Popularity edit

Worldwide, tank engines varied in popularity. They were more common in areas where the length of run was short, and a quick turn around time was needed or turning facilities were not available, mostly in Europe. With their limited fuel and water capacity, they were not favoured in areas where long runs between stops were the norm.

They were very common in the United Kingdom, France, and Germany. In the United Kingdom, they were frequently used for shunting and piloting duties, suburban passenger services and local freight. The GWR was famous for its Prairie tanks (such as the "61xx" class), used for many things including very heavy trains on the Welsh valley coal mining lines that the GWR 4200 Class 2-8-0T were designed for.[40] In Germany, too, large tank locomotives were built.[41] In the United States they were used for push-pull suburban service, switching in terminals and locomotive shops, and in logging, mining and industrial service.[42]

See also edit

References edit

  1. ^ Kalla-Bishop, P. M.; Greggio, Luciano (1985). Steam Locomotives. Crescent Books.
  2. ^ The Industrial Locomotive Society (1967), Steam locomotives in industry, Newton Abbot: David and Charles, pp. 9–10
  3. ^ "Calamitous fire", Daily News, London, no. 1975, September 20, 1852
  4. ^ "The Great Exhibition", The Morning Chronicle, London, no. 26429, August 29, 1851
  5. ^ a b Joseph Gregory Horner (1892). Lockwood's Dictionary of Terms Used in the Practice of Mechanical Engineering. Crosby, Lockwood and Son. p. 413.
  6. ^ a b Locomotive Cyclopedia of American Practice. Simmons-Boardman Publishing Corporation. 1922. p. 86.
  7. ^ Gordon Edgar (15 October 2019). Industrial Locomotives & Railways of Scotland. Amberley Publishing. p. 220. ISBN 978-1-4456-4943-6.
  8. ^ George Augustus Nokes (1899). The Evolution of the Steam Locomotive (1803 to 1898). Railway Publishing Company. p. 11.
  9. ^ Robin Jones (31 January 2014). Great Western Railway Pannier Tanks. Crowood. ISBN 978-1-84797-654-3.
  10. ^ . Archived from the original on 2016-05-14.
  11. ^ Holcroft, H: An outline of Great Western locomotive practice 1837–1947 Locomotive Publishing Company, London, U.K. (1957), p. 42
  12. ^ Dambly, Phil: "Nos inoubliables 'Vapeur'. Editions LE RAIL, Brussels (1968)
  13. ^ "An old "well" tank locomotive". Locomotive, Railway Carriage and Wagon Review. Locomotive Publishing Company. 1908. p. 218.
  14. ^ "Tank locomotives for suburban service on American railways". Engineering News. McGraw-Hill Publishing Company. 1905. p. 168.
  15. ^ Nehemiah Hawkins (1909). Hawkins' Mechanical Dictionary: A Cyclopedia of Words, Terms, Phrases and Data Used in the Mechanic Arts, Trades and Sciences. T. Audel. p. 655.
  16. ^ Institution of Mechanical Engineers (Great Britain) (1864). Proceedings of the Institution of Mechanical Engineers. The Institution. p. 103.
  17. ^ Cozens, Lewis (1953). The Van and Kerry Railways: With the Kerry Tramway. R. Cozens.
  18. ^ Mark Smithers (31 March 2016). The Royal Arsenal Railways: The Rise and Fall of a Military Railway Network. Pen & Sword Books. p. 192. ISBN 978-1-4738-4401-8.
  19. ^ "Narrow Gauge Locomotive For the Gas Light and Coke Company". Engineering. 7 June 1895.
  20. ^ Anthony Burton; John Scott-Morgan (30 November 2015). The Light Railways of Britain and Ireland. Pen and Sword. pp. 18–19. ISBN 978-1-4738-2706-6.
  21. ^ Lowe, James W. (2014). British Steam Locomotive Builders. Pen & Sword Books Limited. ISBN 978-1-4738-2289-4.
  22. ^ "Locomotives built between 1930 and 1962". Trains. Vol. 24. Kalmbach Publishing Company. 1964. p. 35.
  23. ^ Joseph Russell Howden (1909). The Boys' Book of Locomotives. F. A. Stokes Company. pp. 177–179.
  24. ^ Industrial Locomotives: including preserved and minor railway locomotives. Vol. 17EL. Melton Mowbray: Industrial Railway Society. 2015. ISBN 978 1 901556 88 9.
  25. ^ Standard designation of axle arrangement on locomotives and multiple-unit sets. [ Obligatory ] (5 ed.). 1 January 1983. {{cite book}}: |work= ignored (help)
  26. ^ Henry Greenly (1904). The Model Locomotive: Its Design and Construction; a Practical Manual on the Building and Management of Miniature Railway Engines. P. Marshall & Company. p. 35.
  27. ^ Nock, O.S (1971). Railways in the Years of Pre-Eminence 1905–19. Blandford Press. p. 127.
  28. ^ A. E. Durrant (1969). The Garratt Locomotive. David & Charles. ISBN 978-0-7153-4356-2.
  29. ^ Locomotive Magazine and Railway Carriage & Wagon Review. Locomotive Publishing Company. 1907. p. 47.
  30. ^ Gottwaldt, Alfred (2005). Die Baureihe 61 und der Henschel-Wegmann-Zug (in German). Freiburg: EK-Verlag. ISBN 978-3-88255-161-7.
  31. ^ Kubinszky, Mihály (1975). Ungarische Lokomotiven und Triebwagen (in Hungarian). Budapest: Akadémiai Kiadó. ISBN 963-05-0125-2.
  32. ^ John K. Brown (September 2001). The Baldwin Locomotive Works, 1831–1915: A Study in American Industrial Practice. JHU Press. ISBN 978-0-8018-6812-2.
  33. ^ Barcroft, Henry (1881). Steam Tramways: a Pressing Want of the Times. Hodges, Figgis.
  34. ^ Clark, Daniel Kinnear (1894). Tramways, Their Construction and Working, Embracing a Comprehensive History of the System, Accounts of the Various Modes of Traction. C. Lockwood and son.
  35. ^ Abbott, Rowland Aubrey Samuel; Lowe, James Wensley (1989). Vertical Boiler Locomotives and Railmotors Built in Great Britain. Oakwood Press. ISBN 978-0-85361-385-5.
  36. ^ Camp, Walter Mason, ed. (22 April 1905). "Meeting of Western Railway Club". The Railway and Engineering Review. Railway Review, Incorporated. XLV (16): 283.
  37. ^ Western Railway Club (1904). Official Proceedings. Western Railway Club. p. 2.
  38. ^ "6-wheeled tank locomotive, D.W. & W. Ry". Locomotive, Railway Carriage and Wagon Review. Locomotive Publishing Company. 13 June 1903. pp. 404–406.
  39. ^ Bradley, D.L. (1974). Locomotives of the London Brighton and South Coast Railway: Part 3. Railway Correspondence and Travel Society.
  40. ^ "The 4200 class GWR Tank locomotives". The Great Western Archive.
  41. ^ De Cet, Mirco; Kent, Alan (2006). The Complete Encyclopedia of Locomotives. Rebo International B.V. pp. 74–78. ISBN 978-90-366-1505-1.
  42. ^ John H. White (1 January 1979). A History of the American Locomotive: Its Development, 1830–1880. Courier Corporation. pp. 233–235. ISBN 978-0-486-23818-0.

tank, locomotive, tank, engine, redirects, here, engine, army, tank, tank, tank, locomotive, tank, engine, steam, locomotive, that, carries, water, more, board, water, tanks, instead, more, traditional, tender, most, tank, engines, also, have, bunkers, fuel, t. Tank engine redirects here For the engine of an army tank see tank A tank locomotive or tank engine is a steam locomotive that carries its water in one or more on board water tanks instead of a more traditional tender Most tank engines also have bunkers or fuel tanks to hold fuel in a tender tank locomotive a tender holds some or all of the fuel and may hold some water also LB amp SCR J1 classThere are several different types of tank locomotive distinguished by the position and style of the water tanks and fuel bunkers The most common type has tanks mounted either side of the boiler This type originated about 1840 and quickly became popular for industrial tasks and later for shunting and shorter distance main line duties Tank locomotives have advantages and disadvantages compared to traditional locomotives that required a separate tender to carry needed water and fuel Contents 1 History 1 1 Origins 2 Types of tank locomotive 2 1 Side tank 2 2 Saddle tank 2 3 Pannier tank 2 3 1 Britain 2 3 2 Belgium 2 3 3 United States 2 4 Well tank 2 5 Rear tank or back tank 2 6 Wing tank 2 7 Inverted saddle tank 2 8 Tender tank 2 9 Combinations 3 Locomotive classification and wheel arrangement 3 1 Whyte classification 3 2 UIC classification 4 Fuel bunker 5 Other types of tank locomotive 5 1 Garratt locomotive 5 2 Crane tank locomotive 5 3 Streamlined tank locomotive 5 4 Contractor s locomotive 5 5 Steam tram engines 5 6 Vertical boiler locomotives 6 Advantages and disadvantages 7 Popularity 8 See also 9 ReferencesHistory editOrigins edit nbsp Drawing of the Novelty showing the large well tank between the wheels and below the frameThe first tank locomotive was the Novelty that ran at the Rainhill Trials in 1829 1 It was an example of a well tank However the more common form of side tank date from the 1840s one of the first of these was supplied by George England and Co of New Cross to the contractors building the Seaford branch line for the London Brighton and South Coast Railway in 1848 2 In spite of the early belief that such locomotives were inherently unsafe 3 the idea quickly caught on particularly for industrial use and five manufacturers exhibited designs at The Great Exhibition in 1851 These were E B Wilson and Company William Fairbairn amp Sons George England Kitson Thompson and Hewitson and William Bridges Adams 4 By the mid 1850s tank locomotives were to be found performing a variety of main line and industrial roles particularly those involving shorter journeys or frequent changes in direction Types of tank locomotive editThere are a number of types of tank locomotive based on the location and style of the water tanks These include the side tank the saddle tank the pannier tank the well tank and others Side tank edit Side tanks are cuboid shaped tanks which are situated on both sides of the boiler extending all or part of the boiler s length 5 The tank sides extend down to the running platform if such is present for at least part of their length 6 This was a common configuration in the UK The length of side tanks was often limited in order to give access to the valve gear inside motion Tanks that ran the full length of the boiler provided greater water capacity and in this case cut outs in the rectangular tank gave access to the valve gear Longer side tanks were sometimes tapered downwards at the front to improve forward visibility Side tanks almost all stopped at or before the end of the boiler barrel with the smokebox protruding ahead A few designs did reach to the front of the smokebox and these were termed flatirons citation needed nbsp A typical side tank locomotive from 1897 nbsp An example with a tapered front and cut out to give access to the valve gear Saddle tank edit The water tank sits on top of the boiler like a saddle sits atop a horse 5 Usually the tank is curved in cross section although in some cases there were straight sides surmounted by a curve like an inverted U or even an ogee shape a concave arc flowing into a convex arc 7 Walter Nielson patented the saddle tank arrangement in 1849 8 Saddle tanks were a popular arrangement especially for smaller locomotives in industrial use It gave a greater water supply but limited the size of the boiler and restricted access to it for cleaning Furthermore the locomotive has a higher centre of gravity and hence must operate at lower speeds The driver s vision may also be restricted again restricting the safe speed The squared off shape of the Belpaire firebox does not fit easily beneath a saddle tank and so most saddle tanks retained the older round topped boiler instead A few American locomotives used saddle tanks that only covered the boiler barrel forward of the firebox Water in the tank is slightly pre heated by the boiler which reduces the loss of pressure found when cold feedwater is injected into the boiler However if the water becomes too hot injectors lose efficiency and can fail For this reason the tanks often stopped short of the hotter and uninsulated smokebox nbsp Large USA 2 8 2ST Note the short tank avoiding both firebox and smokebox nbsp A typical curved shaped saddle tank covering both firebox and smokebox nbsp A saddle tank with both straight sides and a protruding smokebox nbsp Media related to Saddle tank locomotives at Wikimedia Commons Pannier tank edit nbsp A GWR 57xx class pannier tank locomotivePannier tanks are box shaped tanks carried on the sides of the boiler not carried on the locomotive s running plates This leaves a space between the tanks and the running plate Pannier tanks have a lower centre of gravity than a saddle tank whilst still giving the same easy access to the valve gear Pannier tanks are so named because the tanks are in a similar position to the panniers on a pack animal 9 nbsp Media related to Pannier tank locomotives at Wikimedia Commons Britain edit In Britain pannier tank locomotives were used almost exclusively by the Great Western Railway The first Great Western pannier tanks were converted from saddle tank locomotives 10 when these were being rebuilt in the early 1900s with the Belpaire firebox There were difficulties in accommodating the flat top of the latter within an encircling saddle tank which cut down capacity and increased the tendency to overheat the water in the tank 11 Pannier tank locomotives are often seen as an icon of the GWR citation needed Belgium edit This section needs expansion You can help by adding to it April 2020 In Belgium pannier tanks were in use at least since 1866 once again in conjunction with Belpaire firebox Locomotives were built for the Belgian State and for la Societe Generale d Exploitatation SGE a private company grouping smaller secondary lines 12 United States edit This section needs expansion You can help by adding to it August 2023 In Logging railroads in the Western USA used 2 6 6 2 Saddle tanks or Pannier tanks for heavy timber trains Well tank edit In this design used in earlier and smaller locomotives the water is stored in a well on the underside of the locomotive generally between the locomotive s frames This arrangement was patented by S D Davison in 1852 13 This does not restrict access to the boiler but space is limited there and the design is therefore not suitable for locomotives that need a good usable range before refilling The arrangement does however have the advantage of creating a low centre of gravity creating greater stability on poorly laid or narrow gauge tracks The first tank locomotive Novelty was a well tank nbsp A French Decauville well tank nbsp A British well tank formerly used on suburban services in London nbsp Media related to Well tank locomotives at Wikimedia Commons Rear tank or back tank edit nbsp A Finnish Steam Locomotive Class F1 rear tank locomotiveIn this design the tank is placed behind the cab usually over a supporting bogie 14 This removes the weight of the water from the driving wheels giving the locomotive a constant tractive weight The disadvantage is a reduction in water carrying capacity A rear tank is an essential component of the American Forney type of locomotive which is a 4 4 0 American type with wheels reversed Wing tank edit nbsp Wing tank locomotive Dougal on the Welshpool and Llanfair Light Railway Wing tank redirects here Not to be confused with Winged tank For the auxiliary fuel tank of an aircraft see Drop tank This section needs expansion You can help by adding to it April 2020 Wing tanks are side tanks that run the length of the smokebox instead of the full length of the boiler 15 In the early 19th century the term wing tank was sometimes used as a synonym for side tank 16 Wing tanks were mainly used on narrow gauge industrial locomotives that could be frequently re filled with water and where side or saddle tanks would restrict access to valve gear The Kerry Tramway s locomotive Excelsior has been described by various sources as both a wing tank and an inverted saddle tank 17 Inverted saddle tank edit nbsp Joan on the Golden Valley Light Railway showing the inverted saddle tank around the smokeboxThe inverted saddle tank was a variation of the Wing Tank where the two tanks were joined underneath the smokebox and supported it 18 This rare design was used for the same reasons as the wing tank but provided slightly greater water capacity The Brill Tramway locomotive Wotton is believed by whom to have had an inverted saddle tank The inverted saddle tank was a speciality of W G Bagnall 19 Tender tank edit nbsp Ffestiniog Railway tender tank locomotive Welsh PonyA tank locomotive may also haul a tender behind it 20 This was the common arrangement on the largest locomotives as well as on narrow gauge railways where the small size of the locomotive restricts the space available for fuel and water These combined both fuel and water in a proportion where coal was used of 1 pound of coal for every 6 pounds of water citation needed Where a tender was used with a narrow gauge locomotive it usually carried only fuel with water carried in the locomotive s tanks The tender offered greater fuel capacity than a bunker on the locomotive and often the water capacity could be increased by converting redundant bunker space into a water tank Combinations edit nbsp The LSWR 415 class combined side tanks and a well tankLarge side tank engines might also have an additional rear tank under the coal bunker or a well tank between the frames 21 This may have been to increase the water capacity to equalise the weight distribution or else improve the stability by lowering the centre of gravity 22 Locomotive classification and wheel arrangement editBecause tank locomotives are capable of running equally fast in both directions see below they usually have symmetrical wheel arrangements to ensure the same ride and stability characteristics regardless of the direction travelled producing arrangements with only driving wheels e g 0 4 0T and 0 6 0T or equal numbers of leading and trailing wheels e g 2 4 2T and 4 6 4T 23 However other requirements such as the need to support a large bunker would require a non symmetrical layout such as 2 6 4T Whyte classification edit Main article Whyte notation Suffixes In the Whyte notation for classification of locomotives primarily by wheel arrangement various suffixes are used to denote tank locomotives 24 Suffix Meaning ExampleT Side tank locomotive 0 6 0TRT Rear tank locomotive 0 4 4RTST Saddle tank locomotive 0 6 0STWT Well tank locomotive 0 6 0WTPT Pannier tank locomotive 0 6 0PTCT Crane tank locomotive 0 6 0CTIST Inverted saddle tank locomotive 0 6 0ISTT T Tender tank locomotive 0 4 0T TUIC classification edit Main article UIC notation Structure In the UIC notation which also classifies locomotives primarily by wheel arrangement the suffix t is used to denote tank locomotives 25 Fuel bunker editMain article Fuel bunker On tank locomotives which use solid fuels such as coal a bunker is used to carry the fuel for locomotives using liquid fuel such as oil a Fuel tank is used There are two main positions for bunkers on tank locomotives to the rear of the cab as illustrated in the left of the images below a position typically used on locomotives with a trailing carrying axle or a trailing bogie or on top of and to one side of the firebox a positioning typically used in cases where the firebox overhangs the rear driving axle as this counterbalances the overhanging weight of the firebox stabilising the locomotive 26 nbsp A rear bunker nbsp A side bunker Other types of tank locomotive editThere are several other specialised types of steam locomotive which carry their own fuel but which are usually categorised for different reasons Garratt locomotive edit nbsp South African Railways NGG16 class Garratt preserved in Wales Main article Garratt locomotive A Garratt locomotive is articulated in three parts The boiler is mounted on the centre frame without wheels and two sets of driving wheels 4 cylinders total carrying fuel bunkers and water tanks are mounted on separate frames one on each end of the boiler 27 Articulation is used so larger locomotives can go around curves which would otherwise restrict the size of rigid framed locomotives One of the major advantages of the Garratt form of articulation is the maintenance of the locomotive s centre of gravity over or inside the track centre line when rounding curves 28 Crane tank locomotive edit nbsp A crane tank preserved as a static exhibit at BressinghamMain article Crane tank locomotive A crane tank CT is a steam tank locomotive fitted with a crane for working in railway workshops or other industrial environments The crane may be fitted at the front centre or rear 29 Streamlined tank locomotive edit nbsp Hungarian Railways class 242During the 1930s there was a trend for express passenger locomotives to be streamlined by enclosed bodyshells Express locomotives were nearly all tender locomotives but a few fast tank engines were also streamlined for use on high speed but shorter services where turn around time was important and the tank engine s independence from turntables was useful citation needed Examples included the German Class 61 30 and the Hungarian Class 242 31 Contractor s locomotive edit nbsp Small Bagnall contractor s loco with their distinctive cylindrical fireboxThe contractor s locomotive was a small tank locomotive specially adapted for use by civil engineering contractor firms engaged in the building of railways The locomotives would be used for hauling men equipment and building materials over temporary railway networks built at the worksite that were frequently re laid or taken up and moved elsewhere as building work progressed Contractor s locomotives were usually saddle or well tank types see above but required several adaptations to make them suitable for their task They were built to be as light as possible so they could run over the lightly built temporary rails and had deeply flanged wheels so they did not de rail on the tracks which were often very uneven 6 At the same time they had to be very powerful with good traction as they would often have to haul trains of wagons up very steep gradients such as the sides of railway embankments or spoil heaps Many were designed so that large iron ballast blocks could be fitted to the frames when extra weight and traction was required then removed when it was not Most had sanding gear fitted to all wheels for maximum traction Some method of keeping mud and dust from clogging the wheels and brake shoes was also required this either took the form of scraper bars fitted to the leading edge of the wheels or wheel washer jets supplied from the water tank To handle long trains of loose coupled and often un sprung wagons contractor s locomotives usually had very effective steam powered brakes Most lacked a full cab often only having a front spectacle plate If a cab was provided it was usually removable along with the chimney and sometimes the dome so that the locomotive could be loaded onto a flatbed wagon for transport to new locations by rail whilst remaining within the loading gauge 32 Steam tram engines edit nbsp Steam tram locomotive of Geldersche Tramwegen NetherlandsSteam tram engines which were built or modified to work on a street or roadside tramway were almost universally also tank engines 33 Tram engines had their wheels and motion enclosed to avoid accidents in traffic They often had cow catchers to avoid road debris causing a derailment Some tram engines were fitted with a roof and enclosed sides giving them an appearance more like a goods wagon than a locomotive 34 Vertical boiler locomotives edit nbsp Vertical boiler locomotive Taffy Main article Vertical boiler Railway locomotives with vertical boilers universally were tank locomotives They were small cheaper to operate machines mostly used in industrial settings 35 Advantages and disadvantages edit nbsp 600 mm 1 ft 11 5 8 in gauge tank locomotive Tx26 423 in Poznan PolandThe benefits of tank locomotives include Bi directionality Most tank locomotives are capable of running at full speed in either direction although this depends on the wheel arrangement for example a 2 6 0T will not be able to run as fast in reverse due to lack of a trailing truck Most tender locomotives are unable to do this because the heavy tender is not designed to be pushed and may become unstable at higher speeds Tender locomotives generally require turning facilities such as a turntable or wye at each end of the run A tank locomotive on the other hand can simply run around the train provided there is a siding and pull it back in the other direction The crew of a tank engine generally have a better view in the reverse direction than for a tender engine and are protected from the weather 36 Fuel and water add to adhesive weight The usable tractive weight of a locomotive is the product of the weight on its driving wheels multiplied by the factor of adhesion Therefore up to the limits of the maximum permissible axle loading and other loading limits the more weight on the driving wheels the better In a tank locomotive the weight of its own fuel and water increase the available tractive weight Compactness A tank locomotive is shorter than the equivalent tender locomotive This is important in environments with limited space for locomotives such as the headshunt of a run round loop 37 Efficiency Many train tanks are designed to be in contact with and be heated by the boiler Pre heated water will reach boiling point faster than the colder water available from a tender On the other hand excessively hot water can interfere with steam injector operation and is to be avoided nbsp LB amp SCR L class locomotives were fitted with well tanks and part of the side tanks were blanked off to improve stabilityThere are disadvantages Limited fuel and water capacity A tender can typically contain far more of both than is available on a tank locomotive This restricts the range of tank locomotives between fueling and watering points 38 This is one reason why tank engines were more popular in Europe and the UK than in America or other places because the distances were shorter between refueling stations and water towers Varying adhesive weight As the water in the tanks is used up the overall adhesive weight of the locomotive decreases which in turn reduces the train weight the locomotive can pull Locomotives with low water supplies also typically ride less well as there is less weight on the springs Instability Water surging inside large side tanks can cause the locomotive to become unstable and prone to derailment as was the case with the LB amp SCR L class 4 6 4T before they were modified 39 Axle loading limits a problem For larger tank locomotives it is hard to put much fuel and water aboard without requiring more axles than a rigid frame can handle Limit of boiler diameter The boiler and water tanks must fit within the loading gauge of the railway being run on Above a certain diameter of boiler there is little or no room for water tanks to be added and still fit within the loading gauge Popularity editWorldwide tank engines varied in popularity They were more common in areas where the length of run was short and a quick turn around time was needed or turning facilities were not available mostly in Europe With their limited fuel and water capacity they were not favoured in areas where long runs between stops were the norm They were very common in the United Kingdom France and Germany In the United Kingdom they were frequently used for shunting and piloting duties suburban passenger services and local freight The GWR was famous for its Prairie tanks such as the 61xx class used for many things including very heavy trains on the Welsh valley coal mining lines that the GWR 4200 Class 2 8 0T were designed for 40 In Germany too large tank locomotives were built 41 In the United States they were used for push pull suburban service switching in terminals and locomotive shops and in logging mining and industrial service 42 See also editSteam locomotive componentsReferences edit Kalla Bishop P M Greggio Luciano 1985 Steam Locomotives Crescent Books The Industrial Locomotive Society 1967 Steam locomotives in industry Newton Abbot David and Charles pp 9 10 Calamitous fire Daily News London no 1975 September 20 1852 The Great Exhibition The Morning Chronicle London no 26429 August 29 1851 a b Joseph Gregory Horner 1892 Lockwood s Dictionary of Terms Used in the Practice of Mechanical Engineering Crosby Lockwood and Son p 413 a b Locomotive Cyclopedia of American Practice Simmons Boardman Publishing Corporation 1922 p 86 Gordon Edgar 15 October 2019 Industrial Locomotives amp Railways of Scotland Amberley Publishing p 220 ISBN 978 1 4456 4943 6 George Augustus Nokes 1899 The Evolution of the Steam Locomotive 1803 to 1898 Railway Publishing Company p 11 Robin Jones 31 January 2014 Great Western Railway Pannier Tanks Crowood ISBN 978 1 84797 654 3 Pannier tanks Archived from the original on 2016 05 14 Holcroft H An outline of Great Western locomotive practice 1837 1947 Locomotive Publishing Company London U K 1957 p 42 Dambly Phil Nos inoubliables Vapeur Editions LE RAIL Brussels 1968 An old well tank locomotive Locomotive Railway Carriage and Wagon Review Locomotive Publishing Company 1908 p 218 Tank locomotives for suburban service on American railways Engineering News McGraw Hill Publishing Company 1905 p 168 Nehemiah Hawkins 1909 Hawkins Mechanical Dictionary A Cyclopedia of Words Terms Phrases and Data Used in the Mechanic Arts Trades and Sciences T Audel p 655 Institution of Mechanical Engineers Great Britain 1864 Proceedings of the Institution of Mechanical Engineers The Institution p 103 Cozens Lewis 1953 The Van and Kerry Railways With the Kerry Tramway R Cozens Mark Smithers 31 March 2016 The Royal Arsenal Railways The Rise and Fall of a Military Railway Network Pen amp Sword Books p 192 ISBN 978 1 4738 4401 8 Narrow Gauge Locomotive For the Gas Light and Coke Company Engineering 7 June 1895 Anthony Burton John Scott Morgan 30 November 2015 The Light Railways of Britain and Ireland Pen and Sword pp 18 19 ISBN 978 1 4738 2706 6 Lowe James W 2014 British Steam Locomotive Builders Pen amp Sword Books Limited ISBN 978 1 4738 2289 4 Locomotives built between 1930 and 1962 Trains Vol 24 Kalmbach Publishing Company 1964 p 35 Joseph Russell Howden 1909 The Boys Book of Locomotives F A Stokes Company pp 177 179 Industrial Locomotives including preserved and minor railway locomotives Vol 17EL Melton Mowbray Industrial Railway Society 2015 ISBN 978 1 901556 88 9 Standard designation of axle arrangement on locomotives and multiple unit sets Obligatory 5 ed 1 January 1983 a href Template Cite book html title Template Cite book cite book a work ignored help Henry Greenly 1904 The Model Locomotive Its Design and Construction a Practical Manual on the Building and Management of Miniature Railway Engines P Marshall amp Company p 35 Nock O S 1971 Railways in the Years of Pre Eminence 1905 19 Blandford Press p 127 A E Durrant 1969 The Garratt Locomotive David amp Charles ISBN 978 0 7153 4356 2 Locomotive Magazine and Railway Carriage amp Wagon Review Locomotive Publishing Company 1907 p 47 Gottwaldt Alfred 2005 Die Baureihe 61 und der Henschel Wegmann Zug in German Freiburg EK Verlag ISBN 978 3 88255 161 7 Kubinszky Mihaly 1975 Ungarische Lokomotiven und Triebwagen in Hungarian Budapest Akademiai Kiado ISBN 963 05 0125 2 John K Brown September 2001 The Baldwin Locomotive Works 1831 1915 A Study in American Industrial Practice JHU Press ISBN 978 0 8018 6812 2 Barcroft Henry 1881 Steam Tramways a Pressing Want of the Times Hodges Figgis Clark Daniel Kinnear 1894 Tramways Their Construction and Working Embracing a Comprehensive History of the System Accounts of the Various Modes of Traction C Lockwood and son Abbott Rowland Aubrey Samuel Lowe James Wensley 1989 Vertical Boiler Locomotives and Railmotors Built in Great Britain Oakwood Press ISBN 978 0 85361 385 5 Camp Walter Mason ed 22 April 1905 Meeting of Western Railway Club The Railway and Engineering Review Railway Review Incorporated XLV 16 283 Western Railway Club 1904 Official Proceedings Western Railway Club p 2 6 wheeled tank locomotive D W amp W Ry Locomotive Railway Carriage and Wagon Review Locomotive Publishing Company 13 June 1903 pp 404 406 Bradley D L 1974 Locomotives of the London Brighton and South Coast Railway Part 3 Railway Correspondence and Travel Society The 4200 class GWR Tank locomotives The Great Western Archive De Cet Mirco Kent Alan 2006 The Complete Encyclopedia of Locomotives Rebo International B V pp 74 78 ISBN 978 90 366 1505 1 John H White 1 January 1979 A History of the American Locomotive Its Development 1830 1880 Courier Corporation pp 233 235 ISBN 978 0 486 23818 0 nbsp Wikimedia Commons has media related to Tank locomotives Retrieved from https en wikipedia org w index php title Tank locomotive amp oldid 1195392464, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.