fbpx
Wikipedia

Tail value at risk

Tail value at risk (TVaR), also known as tail conditional expectation (TCE) or conditional tail expectation (CTE), is a risk measure associated with the more general value at risk. It quantifies the expected value of the loss given that an event outside a given probability level has occurred.

Background

There are a number of related, but subtly different, formulations for TVaR in the literature. A common case in literature is to define TVaR and average value at risk as the same measure.[1] Under some formulations, it is only equivalent to expected shortfall when the underlying distribution function is continuous at  , the value at risk of level  .[2] Under some other settings, TVaR is the conditional expectation of loss above a given value, whereas the expected shortfall is the product of this value with the probability of it occurring.[3] The former definition may not be a coherent risk measure in general, however it is coherent if the underlying distribution is continuous.[4] The latter definition is a coherent risk measure.[3] TVaR accounts for the severity of the failure, not only the chance of failure. The TVaR is a measure of the expectation only in the tail of the distribution.

Mathematical definition

The canonical tail value at risk is the left-tail (large negative values) in some disciplines and the right-tail (large positive values) in other, such as actuarial science. This is usually due to the differing conventions of treating losses as large negative or positive values. Using the negative value convention, Artzner and others define the tail value at risk as:

Given a random variable   which is the payoff of a portfolio at some future time and given a parameter   then the tail value at risk is defined by[5][6][7][8]

 

where   is the upper  -quantile given by  . Typically the payoff random variable   is in some Lp-space where   to guarantee the existence of the expectation. The typical values for   are 5% and 1%.

Formulas for continuous probability distributions

Closed-form formulas exist for calculating TVaR when the payoff of a portfolio   or a corresponding loss   follows a specific continuous distribution. If   follows some probability distribution with the probability density function (p.d.f.)   and the cumulative distribution function (c.d.f.)  , the left-tail TVaR can be represented as

 

For engineering or actuarial applications it is more common to consider the distribution of losses  , in this case the right-tail TVaR is considered (typically for   95% or 99%):

 .

Since some formulas below were derived for the left-tail case and some for the right-tail case, the following reconciliations can be useful:

  and  .

Normal distribution

If the payoff of a portfolio   follows normal (Gaussian) distribution with the p.d.f.   then the left-tail TVaR is equal to  , where   is the standard normal p.d.f.,   is the standard normal c.d.f., so   is the standard normal quantile.[9]

If the loss of a portfolio   follows normal distribution, the right-tail TVaR is equal to  .[10]

Generalized Student's t-distribution

If the payoff of a portfolio   follows generalized Student's t-distribution with the p.d.f.   then the left-tail TVaR is equal to  , where   is the standard t-distribution p.d.f.,   is the standard t-distribution c.d.f., so   is the standard t-distribution quantile.[9]

If the loss of a portfolio   follows generalized Student's t-distribution, the right-tail TVaR is equal to  .[10]

Laplace distribution

If the payoff of a portfolio   follows Laplace distribution with the p.d.f.   and the c.d.f.   then the left-tail TVaR is equal to   for  .[9]

If the loss of a portfolio   follows Laplace distribution, the right-tail TVaR is equal to  .[10]

Logistic distribution

If the payoff of a portfolio   follows logistic distribution with the p.d.f.   and the c.d.f.   then the left-tail TVaR is equal to  .[9]

If the loss of a portfolio   follows logistic distribution, the right-tail TVaR is equal to  .[10]

Exponential distribution

If the loss of a portfolio   follows exponential distribution with the p.d.f.   and the c.d.f.   then the right-tail TVaR is equal to  .[10]

Pareto distribution

If the loss of a portfolio   follows Pareto distribution with the p.d.f.   and the c.d.f.   then the right-tail TVaR is equal to  .[10]

Generalized Pareto distribution (GPD)

If the loss of a portfolio   follows GPD with the p.d.f.   and the c.d.f.   then the right-tail TVaR is equal to   and the VaR is equal to  .[10]

Weibull distribution

If the loss of a portfolio   follows Weibull distribution with the p.d.f.   and the c.d.f.   then the right-tail TVaR is equal to  , where   is the upper incomplete gamma function.[10]

Generalized extreme value distribution (GEV)

If the payoff of a portfolio   follows GEV with the p.d.f.   and the c.d.f.   then the left-tail TVaR is equal to   and the VaR is equal to  , where   is the upper incomplete gamma function,   is the logarithmic integral function.[11]

If the loss of a portfolio   follows GEV, then the right-tail TVaR is equal to  , where   is the lower incomplete gamma function,   is the Euler-Mascheroni constant.[10]

Generalized hyperbolic secant (GHS) distribution

If the payoff of a portfolio   follows GHS distribution with the p.d.f.  and the c.d.f.   then the left-tail TVaR is equal to  , where   is the Spence's function,   is the imaginary unit.[11]

Johnson's SU-distribution

If the payoff of a portfolio   follows Johnson's SU-distribution with the c.d.f.   then the left-tail TVaR is equal to  , where   is the c.d.f. of the standard normal distribution.[12]

Burr type XII distribution

If the payoff of a portfolio   follows the Burr type XII distribution with the p.d.f.   and the c.d.f.  , the left-tail TVaR is equal to  , where   is the hypergeometric function. Alternatively,  .[11]

Dagum distribution

If the payoff of a portfolio   follows the Dagum distribution with the p.d.f.   and the c.d.f.  , the left-tail TVaR is equal to  , where   is the hypergeometric function.[11]

Lognormal distribution

If the payoff of a portfolio   follows lognormal distribution, i.e. the random variable   follows normal distribution with the p.d.f.  , then the left-tail TVaR is equal to  , where   is the standard normal c.d.f., so   is the standard normal quantile.[13]

Log-logistic distribution

If the payoff of a portfolio   follows log-logistic distribution, i.e. the random variable   follows logistic distribution with the p.d.f.  , then the left-tail TVaR is equal to  , where   is the regularized incomplete beta function,  .

As the incomplete beta function is defined only for positive arguments, for a more generic case the left-tail TVaR can be expressed with the hypergeometric function:  .[13]

If the loss of a portfolio   follows log-logistic distribution with p.d.f.   and c.d.f.  , then the right-tail TVaR is equal to  , where   is the incomplete beta function.[10]

Log-Laplace distribution

If the payoff of a portfolio   follows log-Laplace distribution, i.e. the random variable   follows Laplace distribution the p.d.f.  , then the left-tail TVaR is equal to  .[13]

Log-generalized hyperbolic secant (log-GHS) distribution

If the payoff of a portfolio   follows log-GHS distribution, i.e. the random variable   follows GHS distribution with the p.d.f.  , then the left-tail TVaR is equal to  , where   is the hypergeometric function.[13]

References

  1. ^ Bargès; Cossette, Marceau (2009). "TVaR-based capital allocation with copulas". Insurance: Mathematics and Economics. 45 (3): 348–361. CiteSeerX 10.1.1.366.9837. doi:10.1016/j.insmatheco.2009.08.002.
  2. ^ (PDF). Archived from the original (PDF) on July 19, 2011. Retrieved February 2, 2011.
  3. ^ a b Sweeting, Paul (2011). "15.4 Risk Measures". Financial Enterprise Risk Management. International Series on Actuarial Science. Cambridge University Press. pp. 397–401. ISBN 978-0-521-11164-5. LCCN 2011025050.
  4. ^ Acerbi, Carlo; Tasche, Dirk (2002). "On the coherence of Expected Shortfall". Journal of Banking and Finance. 26 (7): 1487–1503. arXiv:cond-mat/0104295. doi:10.1016/s0378-4266(02)00283-2. S2CID 511156.
  5. ^ Artzner, Philippe; Delbaen, Freddy; Eber, Jean-Marc; Heath, David (1999). "Coherent Measures of Risk" (PDF). Mathematical Finance. 9 (3): 203–228. doi:10.1111/1467-9965.00068. S2CID 6770585. Retrieved February 3, 2011.
  6. ^ Landsman, Zinoviy; Valdez, Emiliano (February 2004). "Tail Conditional Expectations for Exponential Dispersion Models" (PDF). Retrieved February 3, 2011. {{cite journal}}: Cite journal requires |journal= (help)
  7. ^ Landsman, Zinoviy; Makov, Udi; Shushi, Tomer (July 2013). "Tail Conditional Expectations for Generalized Skew - Elliptical distributions". SSRN 2298265. {{cite journal}}: Cite journal requires |journal= (help)
  8. ^ Valdez, Emiliano (May 2004). "The Iterated Tail Conditional Expectation for the Log-Elliptical Loss Process" (PDF). Retrieved February 3, 2010. {{cite journal}}: Cite journal requires |journal= (help)
  9. ^ a b c d Khokhlov, Valentyn (2016). "Conditional Value-at-Risk for Elliptical Distributions". Evropský časopis Ekonomiky a Managementu. 2 (6): 70–79.
  10. ^ a b c d e f g h i j Norton, Matthew; Khokhlov, Valentyn; Uryasev, Stan (2018-11-27). "Calculating CVaR and bPOE for Common Probability Distributions With Application to Portfolio Optimization and Density Estimation". arXiv:1811.11301 [q-fin.RM].
  11. ^ a b c d Khokhlov, Valentyn (2018-06-21). "Conditional Value-at-Risk for Uncommon Distributions". SSRN. SSRN 3200629.
  12. ^ Stucchi, Patrizia (2011-05-31). "Moment-Based CVaR Estimation: Quasi-Closed Formulas". SSRN. SSRN 1855986.
  13. ^ a b c d Khokhlov, Valentyn (2018-06-17). "Conditional Value-at-Risk for Log-Distributions". SSRN. SSRN 3197929.

tail, value, risk, tvar, redirects, here, tvar, also, refer, time, variance, tvar, also, known, tail, conditional, expectation, conditional, tail, expectation, risk, measure, associated, with, more, general, value, risk, quantifies, expected, value, loss, give. TVAR redirects here TVAR may also refer to Time variance Tail value at risk TVaR also known as tail conditional expectation TCE or conditional tail expectation CTE is a risk measure associated with the more general value at risk It quantifies the expected value of the loss given that an event outside a given probability level has occurred Contents 1 Background 2 Mathematical definition 3 Formulas for continuous probability distributions 3 1 Normal distribution 3 2 Generalized Student s t distribution 3 3 Laplace distribution 3 4 Logistic distribution 3 5 Exponential distribution 3 6 Pareto distribution 3 7 Generalized Pareto distribution GPD 3 8 Weibull distribution 3 9 Generalized extreme value distribution GEV 3 10 Generalized hyperbolic secant GHS distribution 3 11 Johnson s SU distribution 3 12 Burr type XII distribution 3 13 Dagum distribution 3 14 Lognormal distribution 3 15 Log logistic distribution 3 16 Log Laplace distribution 3 17 Log generalized hyperbolic secant log GHS distribution 4 ReferencesBackground EditThere are a number of related but subtly different formulations for TVaR in the literature A common case in literature is to define TVaR and average value at risk as the same measure 1 Under some formulations it is only equivalent to expected shortfall when the underlying distribution function is continuous at VaR a X displaystyle operatorname VaR alpha X the value at risk of level a displaystyle alpha 2 Under some other settings TVaR is the conditional expectation of loss above a given value whereas the expected shortfall is the product of this value with the probability of it occurring 3 The former definition may not be a coherent risk measure in general however it is coherent if the underlying distribution is continuous 4 The latter definition is a coherent risk measure 3 TVaR accounts for the severity of the failure not only the chance of failure The TVaR is a measure of the expectation only in the tail of the distribution Mathematical definition EditThe canonical tail value at risk is the left tail large negative values in some disciplines and the right tail large positive values in other such as actuarial science This is usually due to the differing conventions of treating losses as large negative or positive values Using the negative value convention Artzner and others define the tail value at risk as Given a random variable X displaystyle X which is the payoff of a portfolio at some future time and given a parameter 0 lt a lt 1 displaystyle 0 lt alpha lt 1 then the tail value at risk is defined by 5 6 7 8 TVaR a X E X X VaR a X E X X x a displaystyle operatorname TVaR alpha X operatorname E X X leq operatorname VaR alpha X operatorname E X X leq x alpha where x a displaystyle x alpha is the upper a displaystyle alpha quantile given by x a inf x R Pr X x gt a displaystyle x alpha inf x in mathbb R Pr X leq x gt alpha Typically the payoff random variable X displaystyle X is in some Lp space where p 1 displaystyle p geq 1 to guarantee the existence of the expectation The typical values for a displaystyle alpha are 5 and 1 Formulas for continuous probability distributions EditClosed form formulas exist for calculating TVaR when the payoff of a portfolio X displaystyle X or a corresponding loss L X displaystyle L X follows a specific continuous distribution If X displaystyle X follows some probability distribution with the probability density function p d f f displaystyle f and the cumulative distribution function c d f F displaystyle F the left tail TVaR can be represented asTVaR a X E X X VaR a X 1 a 0 a VaR g X d g 1 a F 1 a x f x d x displaystyle operatorname TVaR alpha X operatorname E X X leq operatorname VaR alpha X frac 1 alpha int 0 alpha operatorname VaR gamma X d gamma frac 1 alpha int infty F 1 alpha xf x dx For engineering or actuarial applications it is more common to consider the distribution of losses L X displaystyle L X in this case the right tail TVaR is considered typically for a displaystyle alpha 95 or 99 TVaR a right L E L L V a R a L 1 1 a a 1 V a R g L d g 1 1 a F 1 a y f y d y displaystyle operatorname TVaR alpha text right L E L mid L geq VaR alpha L frac 1 1 alpha int alpha 1 VaR gamma L d gamma frac 1 1 alpha int F 1 alpha infty yf y dy Since some formulas below were derived for the left tail case and some for the right tail case the following reconciliations can be useful TVaR a X 1 a E X 1 a a TVaR a right L displaystyle operatorname TVaR alpha X frac 1 alpha E X frac 1 alpha alpha operatorname TVaR alpha text right L and TVaR a right L 1 1 a E L a 1 a TVaR a X displaystyle operatorname TVaR alpha text right L frac 1 1 alpha E L frac alpha 1 alpha operatorname TVaR alpha X Normal distribution Edit If the payoff of a portfolio X displaystyle X follows normal Gaussian distribution with the p d f f x 1 2 p s e x m 2 2 s 2 displaystyle f x frac 1 sqrt 2 pi sigma e frac x mu 2 2 sigma 2 then the left tail TVaR is equal to TVaR a X m s ϕ F 1 a a displaystyle operatorname TVaR alpha X mu sigma frac phi Phi 1 alpha alpha where ϕ x 1 2 p e x 2 2 displaystyle phi x frac 1 sqrt 2 pi e frac x 2 2 is the standard normal p d f F x displaystyle Phi x is the standard normal c d f so F 1 a displaystyle Phi 1 alpha is the standard normal quantile 9 If the loss of a portfolio L displaystyle L follows normal distribution the right tail TVaR is equal to TVaR a right L m s ϕ F 1 a 1 a displaystyle operatorname TVaR alpha text right L mu sigma frac phi Phi 1 alpha 1 alpha 10 Generalized Student s t distribution Edit If the payoff of a portfolio X displaystyle X follows generalized Student s t distribution with the p d f f x G n 1 2 G n 2 p n s 1 1 n x m s 2 n 1 2 displaystyle f x frac Gamma bigl frac nu 1 2 bigr Gamma bigl frac nu 2 bigr sqrt pi nu sigma Bigl 1 frac 1 nu bigl frac x mu sigma bigr 2 Bigr frac nu 1 2 then the left tail TVaR is equal to TVaR a X m s n T 1 a 2 n 1 t T 1 a a displaystyle operatorname TVaR alpha X mu sigma frac nu mathrm T 1 alpha 2 nu 1 frac tau mathrm T 1 alpha alpha where t x G n 1 2 G n 2 p n 1 x 2 n n 1 2 displaystyle tau x frac Gamma bigl frac nu 1 2 bigr Gamma bigl frac nu 2 bigr sqrt pi nu Bigl 1 frac x 2 nu Bigr frac nu 1 2 is the standard t distribution p d f T x displaystyle mathrm T x is the standard t distribution c d f so T 1 a displaystyle mathrm T 1 alpha is the standard t distribution quantile 9 If the loss of a portfolio L displaystyle L follows generalized Student s t distribution the right tail TVaR is equal to TVaR a right L m s n T 1 a 2 n 1 t T 1 a 1 a displaystyle operatorname TVaR alpha text right L mu sigma frac nu mathrm T 1 alpha 2 nu 1 frac tau mathrm T 1 alpha 1 alpha 10 Laplace distribution Edit If the payoff of a portfolio X displaystyle X follows Laplace distribution with the p d f f x 1 2 b e x m b displaystyle f x frac 1 2b e frac x mu b and the c d f F x 1 1 2 e x m b if x m 1 2 e x m b if x lt m displaystyle F x begin cases 1 frac 1 2 e frac x mu b amp text if x geq mu frac 1 2 e frac x mu b amp text if x lt mu end cases then the left tail TVaR is equal to TVaR a X m b 1 ln 2 a displaystyle operatorname TVaR alpha X mu b 1 ln 2 alpha for a 0 5 displaystyle alpha leq 0 5 9 If the loss of a portfolio L displaystyle L follows Laplace distribution the right tail TVaR is equal to TVaR a right L m b a 1 a 1 ln 2 a if a lt 0 5 m b 1 ln 2 1 a if a 0 5 displaystyle operatorname TVaR alpha text right L begin cases mu b frac alpha 1 alpha 1 ln 2 alpha amp text if alpha lt 0 5 mu b 1 ln 2 1 alpha amp text if alpha geq 0 5 end cases 10 Logistic distribution Edit If the payoff of a portfolio X displaystyle X follows logistic distribution with the p d f f x 1 s e x m s 1 e x m s 2 displaystyle f x frac 1 s e frac x mu s Bigl 1 e frac x mu s Bigr 2 and the c d f F x 1 e x m s 1 displaystyle F x Bigl 1 e frac x mu s Bigr 1 then the left tail TVaR is equal to TVaR a X m s ln 1 a 1 1 a a displaystyle operatorname TVaR alpha X mu s ln frac 1 alpha 1 frac 1 alpha alpha 9 If the loss of a portfolio L displaystyle L follows logistic distribution the right tail TVaR is equal to TVaR a right L m s a ln a 1 a ln 1 a 1 a displaystyle operatorname TVaR alpha text right L mu s frac alpha ln alpha 1 alpha ln 1 alpha 1 alpha 10 Exponential distribution Edit If the loss of a portfolio L displaystyle L follows exponential distribution with the p d f f x l e l x if x 0 0 if x lt 0 displaystyle f x begin cases lambda e lambda x amp text if x geq 0 0 amp text if x lt 0 end cases and the c d f F x 1 e l x if x 0 0 if x lt 0 displaystyle F x begin cases 1 e lambda x amp text if x geq 0 0 amp text if x lt 0 end cases then the right tail TVaR is equal to TVaR a right L ln 1 a 1 l displaystyle operatorname TVaR alpha text right L frac ln 1 alpha 1 lambda 10 Pareto distribution Edit If the loss of a portfolio L displaystyle L follows Pareto distribution with the p d f f x a x m a x a 1 if x x m 0 if x lt x m displaystyle f x begin cases frac ax m a x a 1 amp text if x geq x m 0 amp text if x lt x m end cases and the c d f F x 1 x m x a if x x m 0 if x lt x m displaystyle F x begin cases 1 x m x a amp text if x geq x m 0 amp text if x lt x m end cases then the right tail TVaR is equal to TVaR a right L x m a 1 a 1 a a 1 displaystyle operatorname TVaR alpha text right L frac x m a 1 alpha 1 a a 1 10 Generalized Pareto distribution GPD Edit If the loss of a portfolio L displaystyle L follows GPD with the p d f f x 1 s 1 3 x m s 1 3 1 displaystyle f x frac 1 s Bigl 1 frac xi x mu s Bigr bigl frac 1 xi 1 bigr and the c d f F x 1 1 3 x m s 1 3 if 3 0 1 exp x m s if 3 0 displaystyle F x begin cases 1 Big 1 frac xi x mu s Big frac 1 xi amp text if xi neq 0 1 exp bigl frac x mu s bigr amp text if xi 0 end cases then the right tail TVaR is equal to TVaR a right L m s 1 a 3 1 3 1 a 3 1 3 if 3 0 m s 1 ln 1 a if 3 0 displaystyle operatorname TVaR alpha text right L begin cases mu s Bigl frac 1 alpha xi 1 xi frac 1 alpha xi 1 xi Bigr amp text if xi neq 0 mu s 1 ln 1 alpha amp text if xi 0 end cases and the VaR is equal to V a R a L m s 1 a 3 1 3 if 3 0 m s ln 1 a if 3 0 displaystyle VaR alpha L begin cases mu s frac 1 alpha xi 1 xi amp text if xi neq 0 mu s ln 1 alpha amp text if xi 0 end cases 10 Weibull distribution Edit If the loss of a portfolio L displaystyle L follows Weibull distribution with the p d f f x k l x l k 1 e x l k if x 0 0 if x lt 0 displaystyle f x begin cases frac k lambda Big frac x lambda Big k 1 e x lambda k amp text if x geq 0 0 amp text if x lt 0 end cases and the c d f F x 1 e x l k if x 0 0 if x lt 0 displaystyle F x begin cases 1 e x lambda k amp text if x geq 0 0 amp text if x lt 0 end cases then the right tail TVaR is equal to TVaR a right L l 1 a G 1 1 k ln 1 a displaystyle operatorname TVaR alpha text right L frac lambda 1 alpha Gamma Big 1 frac 1 k ln 1 alpha Big where G s x displaystyle Gamma s x is the upper incomplete gamma function 10 Generalized extreme value distribution GEV Edit If the payoff of a portfolio X displaystyle X follows GEV with the p d f f x 1 s 1 3 x m s 1 3 1 exp 1 3 x m s 1 3 if 3 0 1 s e x m s e e x m s if 3 0 displaystyle f x begin cases frac 1 sigma Bigl 1 xi frac x mu sigma Bigr frac 1 xi 1 exp Bigl Bigl 1 xi frac x mu sigma Bigr frac 1 xi Bigr amp text if xi neq 0 frac 1 sigma e frac x mu sigma e e frac x mu sigma amp text if xi 0 end cases and the c d f F x exp 1 3 x m s 1 3 if 3 0 exp e x m s if 3 0 displaystyle F x begin cases exp Big big 1 xi frac x mu sigma big frac 1 xi Big amp text if xi neq 0 exp Big e frac x mu sigma Big amp text if xi 0 end cases then the left tail TVaR is equal to TVaR a X m s a 3 G 1 3 ln a a if 3 0 m s a li a a ln ln a if 3 0 displaystyle operatorname TVaR alpha X begin cases mu frac sigma alpha xi big Gamma 1 xi ln alpha alpha big amp text if xi neq 0 mu frac sigma alpha big text li alpha alpha ln ln alpha big amp text if xi 0 end cases and the VaR is equal to V a R a X m s 3 ln a 3 1 if 3 0 m s ln ln a if 3 0 displaystyle VaR alpha X begin cases mu frac sigma xi big ln alpha xi 1 big amp text if xi neq 0 mu sigma ln ln alpha amp text if xi 0 end cases where G s x displaystyle Gamma s x is the upper incomplete gamma function li x d x ln x displaystyle text li x int frac dx ln x is the logarithmic integral function 11 If the loss of a portfolio L displaystyle L follows GEV then the right tail TVaR is equal to TVaR a X m s 1 a 3 g 1 3 ln a 1 a if 3 0 m s 1 a y li a a ln ln a if 3 0 displaystyle operatorname TVaR alpha X begin cases mu frac sigma 1 alpha xi big gamma 1 xi ln alpha 1 alpha big amp text if xi neq 0 mu frac sigma 1 alpha big y text li alpha alpha ln ln alpha big amp text if xi 0 end cases where g s x displaystyle gamma s x is the lower incomplete gamma function y displaystyle y is the Euler Mascheroni constant 10 Generalized hyperbolic secant GHS distribution Edit If the payoff of a portfolio X displaystyle X follows GHS distribution with the p d f f x 1 2 s sech p 2 x m s displaystyle f x frac 1 2 sigma text sech frac pi 2 frac x mu sigma and the c d f F x 2 p arctan exp p 2 x m s displaystyle F x frac 2 pi arctan Big exp Big frac pi 2 frac x mu sigma Big Big then the left tail TVaR is equal to TVaR a X m 2 s p ln tan p a 2 2 s p 2 a i Li 2 i tan p a 2 Li 2 i tan p a 2 displaystyle operatorname TVaR alpha X mu frac 2 sigma pi ln Big tan frac pi alpha 2 Big frac 2 sigma pi 2 alpha i Big text Li 2 Big i tan frac pi alpha 2 Big text Li 2 Big i tan frac pi alpha 2 Big Big where Li 2 displaystyle text Li 2 is the Spence s function i 1 displaystyle i sqrt 1 is the imaginary unit 11 Johnson s SU distribution Edit If the payoff of a portfolio X displaystyle X follows Johnson s SU distribution with the c d f F x F g d sinh 1 x 3 l displaystyle F x Phi Big gamma delta sinh 1 Big frac x xi lambda Big Big then the left tail TVaR is equal to TVaR a X 3 l 2 a e x p 1 2 g d 2 d 2 F F 1 a 1 d e x p 1 2 g d 2 d 2 F F 1 a 1 d displaystyle operatorname TVaR alpha X xi frac lambda 2 alpha Big exp Big frac 1 2 gamma delta 2 delta 2 Big Phi Big Phi 1 alpha frac 1 delta Big exp Big frac 1 2 gamma delta 2 delta 2 Big Phi Big Phi 1 alpha frac 1 delta Big Big where F displaystyle Phi is the c d f of the standard normal distribution 12 Burr type XII distribution Edit If the payoff of a portfolio X displaystyle X follows the Burr type XII distribution with the p d f f x c k b x g b c 1 1 x g b c k 1 displaystyle f x frac ck beta Big frac x gamma beta Big c 1 Big 1 Big frac x gamma beta Big c Big k 1 and the c d f F x 1 1 x g b c k displaystyle F x 1 Big 1 Big frac x gamma beta Big c Big k the left tail TVaR is equal to TVaR a X g b a 1 a 1 k 1 1 c a 1 2 F 1 1 c k 1 1 c 1 1 a 1 k displaystyle operatorname TVaR alpha X gamma frac beta alpha Big 1 alpha 1 k 1 Big 1 c Big alpha 1 2 F 1 Big frac 1 c k 1 frac 1 c 1 1 alpha 1 k Big Big where 2 F 1 displaystyle 2 F 1 is the hypergeometric function Alternatively TVaR a X g b a c k c 1 1 a 1 k 1 1 1 c 2 F 1 1 1 c k 1 2 1 c 1 1 a 1 k displaystyle operatorname TVaR alpha X gamma frac beta alpha frac ck c 1 Big 1 alpha 1 k 1 Big 1 frac 1 c 2 F 1 Big 1 frac 1 c k 1 2 frac 1 c 1 1 alpha 1 k Big 11 Dagum distribution Edit If the payoff of a portfolio X displaystyle X follows the Dagum distribution with the p d f f x c k b x g b c k 1 1 x g b c k 1 displaystyle f x frac ck beta Big frac x gamma beta Big ck 1 Big 1 Big frac x gamma beta Big c Big k 1 and the c d f F x 1 x g b c k displaystyle F x Big 1 Big frac x gamma beta Big c Big k the left tail TVaR is equal to TVaR a X g b a c k c k 1 a 1 k 1 k 1 c 2 F 1 k 1 k 1 c k 1 1 c 1 a 1 k 1 displaystyle operatorname TVaR alpha X gamma frac beta alpha frac ck ck 1 Big alpha 1 k 1 Big k frac 1 c 2 F 1 Big k 1 k frac 1 c k 1 frac 1 c frac 1 alpha 1 k 1 Big where 2 F 1 displaystyle 2 F 1 is the hypergeometric function 11 Lognormal distribution Edit If the payoff of a portfolio X displaystyle X follows lognormal distribution i e the random variable ln 1 X displaystyle ln 1 X follows normal distribution with the p d f f x 1 2 p s e x m 2 2 s 2 displaystyle f x frac 1 sqrt 2 pi sigma e frac x mu 2 2 sigma 2 then the left tail TVaR is equal to TVaR a X 1 exp m s 2 2 F F 1 a s a displaystyle operatorname TVaR alpha X 1 exp Bigl mu frac sigma 2 2 Bigr frac Phi Phi 1 alpha sigma alpha where F x displaystyle Phi x is the standard normal c d f so F 1 a displaystyle Phi 1 alpha is the standard normal quantile 13 Log logistic distribution Edit If the payoff of a portfolio X displaystyle X follows log logistic distribution i e the random variable ln 1 X displaystyle ln 1 X follows logistic distribution with the p d f f x 1 s e x m s 1 e x m s 2 displaystyle f x frac 1 s e frac x mu s Bigl 1 e frac x mu s Bigr 2 then the left tail TVaR is equal to TVaR a X 1 e m a I a 1 s 1 s p s sin p s displaystyle operatorname TVaR alpha X 1 frac e mu alpha I alpha 1 s 1 s frac pi s sin pi s where I a displaystyle I alpha is the regularized incomplete beta function I a a b B a a b B a b displaystyle I alpha a b frac mathrm B alpha a b mathrm B a b As the incomplete beta function is defined only for positive arguments for a more generic case the left tail TVaR can be expressed with the hypergeometric function TVaR a X 1 e m a s s 1 2 F 1 s s 1 s 2 a displaystyle operatorname TVaR alpha X 1 frac e mu alpha s s 1 2 F 1 s s 1 s 2 alpha 13 If the loss of a portfolio L displaystyle L follows log logistic distribution with p d f f x b a x a b 1 1 x a b 2 displaystyle f x frac frac b a x a b 1 1 x a b 2 and c d f F x 1 1 x a b displaystyle F x frac 1 1 x a b then the right tail TVaR is equal to TVaR a right L a 1 a p b csc p b B a 1 b 1 1 1 b displaystyle operatorname TVaR alpha text right L frac a 1 alpha Bigl frac pi b csc Bigl frac pi b Bigr mathrm B alpha Bigl frac 1 b 1 1 frac 1 b Bigr Bigr where B a displaystyle B alpha is the incomplete beta function 10 Log Laplace distribution Edit If the payoff of a portfolio X displaystyle X follows log Laplace distribution i e the random variable ln 1 X displaystyle ln 1 X follows Laplace distribution the p d f f x 1 2 b e x m b displaystyle f x frac 1 2b e frac x mu b then the left tail TVaR is equal to TVaR a X 1 e m 2 a b b 1 if a 0 5 1 e m 2 b a b 1 1 a 1 b 1 if a gt 0 5 displaystyle operatorname TVaR alpha X begin cases 1 frac e mu 2 alpha b b 1 amp text if alpha leq 0 5 1 frac e mu 2 b alpha b 1 big 1 alpha 1 b 1 big amp text if alpha gt 0 5 end cases 13 Log generalized hyperbolic secant log GHS distribution Edit If the payoff of a portfolio X displaystyle X follows log GHS distribution i e the random variable ln 1 X displaystyle ln 1 X follows GHS distribution with the p d f f x 1 2 s sech p 2 x m s displaystyle f x frac 1 2 sigma text sech frac pi 2 frac x mu sigma then the left tail TVaR is equal to TVaR a X 1 1 a s p 2 tan p a 2 exp p m 2 s 2 s p tan p a 2 2 F 1 1 1 2 s p 3 2 s p tan p a 2 2 displaystyle operatorname TVaR alpha X 1 frac 1 alpha sigma pi 2 Big tan frac pi alpha 2 exp frac pi mu 2 sigma Big 2 sigma pi tan frac pi alpha 2 2 F 1 Big 1 frac 1 2 frac sigma pi frac 3 2 frac sigma pi tan big frac pi alpha 2 big 2 Big where 2 F 1 displaystyle 2 F 1 is the hypergeometric function 13 References Edit Barges Cossette Marceau 2009 TVaR based capital allocation with copulas Insurance Mathematics and Economics 45 3 348 361 CiteSeerX 10 1 1 366 9837 doi 10 1016 j insmatheco 2009 08 002 Average Value at Risk PDF Archived from the original PDF on July 19 2011 Retrieved February 2 2011 a b Sweeting Paul 2011 15 4 Risk Measures Financial Enterprise Risk Management International Series on Actuarial Science Cambridge University Press pp 397 401 ISBN 978 0 521 11164 5 LCCN 2011025050 Acerbi Carlo Tasche Dirk 2002 On the coherence of Expected Shortfall Journal of Banking and Finance 26 7 1487 1503 arXiv cond mat 0104295 doi 10 1016 s0378 4266 02 00283 2 S2CID 511156 Artzner Philippe Delbaen Freddy Eber Jean Marc Heath David 1999 Coherent Measures of Risk PDF Mathematical Finance 9 3 203 228 doi 10 1111 1467 9965 00068 S2CID 6770585 Retrieved February 3 2011 Landsman Zinoviy Valdez Emiliano February 2004 Tail Conditional Expectations for Exponential Dispersion Models PDF Retrieved February 3 2011 a href Template Cite journal html title Template Cite journal cite journal a Cite journal requires journal help Landsman Zinoviy Makov Udi Shushi Tomer July 2013 Tail Conditional Expectations for Generalized Skew Elliptical distributions SSRN 2298265 a href Template Cite journal html title Template Cite journal cite journal a Cite journal requires journal help Valdez Emiliano May 2004 The Iterated Tail Conditional Expectation for the Log Elliptical Loss Process PDF Retrieved February 3 2010 a href Template Cite journal html title Template Cite journal cite journal a Cite journal requires journal help a b c d Khokhlov Valentyn 2016 Conditional Value at Risk for Elliptical Distributions Evropsky casopis Ekonomiky a Managementu 2 6 70 79 a b c d e f g h i j Norton Matthew Khokhlov Valentyn Uryasev Stan 2018 11 27 Calculating CVaR and bPOE for Common Probability Distributions With Application to Portfolio Optimization and Density Estimation arXiv 1811 11301 q fin RM a b c d Khokhlov Valentyn 2018 06 21 Conditional Value at Risk for Uncommon Distributions SSRN SSRN 3200629 Stucchi Patrizia 2011 05 31 Moment Based CVaR Estimation Quasi Closed Formulas SSRN SSRN 1855986 a b c d Khokhlov Valentyn 2018 06 17 Conditional Value at Risk for Log Distributions SSRN SSRN 3197929 Retrieved from https en wikipedia org w index php title Tail value at risk amp oldid 1100040185, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.