fbpx
Wikipedia

TGF beta 1

Transforming growth factor beta 1 or TGF-β1 is a polypeptide member of the transforming growth factor beta superfamily of cytokines. It is a secreted protein that performs many cellular functions, including the control of cell growth, cell proliferation, cell differentiation, and apoptosis. In humans, TGF-β1 is encoded by the TGFB1 gene.[5][6]

TGFB1
Available structures
PDBOrtholog search: PDBe RCSB
Identifiers
AliasesTGFB1, CED, DPD1, LAP, TGFB, TGFbeta, transforming growth factor beta 1, IBDIMDE, TGF-beta1
External IDsOMIM: 190180 MGI: 98725 HomoloGene: 540 GeneCards: TGFB1
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_000660

NM_011577

RefSeq (protein)

NP_000651

NP_035707

Location (UCSC)Chr 19: 41.3 – 41.35 MbChr 7: 25.39 – 25.4 Mb
PubMed search[3][4]
Wikidata
View/Edit HumanView/Edit Mouse

Function edit

TGF-β is a multifunctional set of peptides that controls proliferation, differentiation, and other functions in many cell types. TGF-β acts synergistically with transforming growth factor-alpha (TGF-α) in inducing transformation. It also acts as a negative autocrine growth factor. Dysregulation of TGF-β activation and signaling may result in apoptosis. Many cells synthesize TGF-β and almost all of them have specific receptors for this peptide. TGF-β1, TGF-β2, and TGF-β3 all function through the same receptor signaling systems.[7]

TGF-β1 was first identified in human platelets as a protein with a molecular mass of 25 kilodaltons with a potential role in wound healing.[8][9] It was later characterized as a large protein precursor (containing 390 amino acids) that was proteolytically processed to produce a mature peptide of 112 amino acids.[10]

TGF-β1 plays an important role in controlling the immune system, and shows different activities on different types of cell, or cells at different developmental stages. Most immune cells (or leukocytes) secrete TGF-β1.[11]

T cells edit

Some T cells (e.g. regulatory T cells) release TGF-β1 to inhibit the actions of other T cells. Specifically, TGF-β1 prevents the interleukin(IL)-1- & interleukin-2-dependent proliferation in activated T cells,[12][13] as well as the activation of quiescent helper T cells and cytotoxic T cells.[14][15] Similarly, TGF-β1 can inhibit the secretion and activity of many other cytokines including interferon-γ, tumor necrosis factor-alpha (TNF-α), and various interleukins. It can also decrease the expression levels of cytokine receptors, such as the IL-2 receptor to down-regulate the activity of immune cells. However, TGF-β1 can also increase the expression of certain cytokines in T cells and promote their proliferation,[16] particularly if the cells are immature.[11]

B cells edit

TGF-β1 has similar effects on B cells that also vary according to the differentiation state of the cell. It inhibits proliferation, stimulates apoptosis of B cells,[17] and controls the expression of antibody, transferrin and MHC class II proteins on immature and mature B cells.[11][17]

Myeloid cells edit

The effects of TGF-β1 on macrophages and monocytes are predominantly suppressive; this cytokine can inhibit the proliferation of these cells and prevent their production of reactive oxygen (e.g. superoxide (O2)) and nitrogen (e.g. nitric oxide (NO)) intermediates. However, as with other cell types, TGF-β1 can also have the opposite effect on cells of myeloid origin. For example, TGF-β1 acts as a chemoattractant, directing an immune response to certain pathogens. Likewise, macrophages and monocytes respond to low levels of TGF-β1 in a chemotactic manner. Furthermore, the expression of monocytic cytokines (such as interleukin(IL)-1α, IL-1β, and TNF-α),[15] and macrophage's phagocytic can be increased by the action of TGF-β1.[11]

TGF-β1 reduces the efficacy of the MHC II in astrocytes and dendritic cells, which in turn decreases the activation of appropriate helper T cell populations.[18][19]

Interactions edit

TGF beta 1 has been shown to interact with:

References edit

  1. ^ a b c GRCh38: Ensembl release 89: ENSG00000105329 – Ensembl, May 2017
  2. ^ a b c GRCm38: Ensembl release 89: ENSMUSG00000002603 – Ensembl, May 2017
  3. ^ "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. ^ "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. ^ Ghadami M, Makita Y, Yoshida K, Nishimura G, Fukushima Y, Wakui K, Ikegawa S, Yamada K, Kondo S, Niikawa N, Tomita Ha (January 2000). "Genetic mapping of the Camurati-Engelmann disease locus to chromosome 19q13.1-q13.3". Am. J. Hum. Genet. 66 (1): 143–7. doi:10.1086/302728. PMC 1288319. PMID 10631145.
  6. ^ Vaughn SP, Broussard S, Hall CR, Scott A, Blanton SH, Milunsky JM, Hecht JT (May 2000). "Confirmation of the mapping of the Camurati-Englemann locus to 19q13. 2 and refinement to a 3.2-cM region". Genomics. 66 (1): 119–21. doi:10.1006/geno.2000.6192. PMID 10843814.
  7. ^ "Entrez Gene: TGFB1 transforming growth factor, beta 1".
  8. ^ Assoian RK, Komoriya A, Meyers CA, Miller DM, Sporn MB (1983). "Transforming growth factor-beta in human platelets. Identification of a major storage site, purification, and characterization". J. Biol. Chem. 258 (11): 7155–60. doi:10.1016/S0021-9258(18)32345-7. PMID 6602130.
  9. ^ Custo, S; Baron, B; Felice, A; Seria, E (5 July 2022). "A comparative profile of total protein and six angiogenically-active growth factors in three platelet products". GMS Interdisciplinary Plastic and Reconstructive Surgery DGPW. 11 (Doc06): Doc06. doi:10.3205/iprs000167. PMC 9284722. PMID 35909816.
  10. ^ Derynck R, Jarrett JA, Chen EY, Eaton DH, Bell JR, Assoian RK, Roberts AB, Sporn MB, Goeddel DV (1985). "Human transforming growth factor-beta complementary DNA sequence and expression in normal and transformed cells". Nature. 316 (6030): 701–5. Bibcode:1985Natur.316..701D. doi:10.1038/316701a0. PMID 3861940. S2CID 4245501.
  11. ^ a b c d Letterio JJ, Roberts AB (1998). "Regulation of immune responses by TGF-beta". Annu. Rev. Immunol. 16: 137–61. doi:10.1146/annurev.immunol.16.1.137. PMID 9597127.
  12. ^ Wahl SM, Hunt DA, Wong HL, Dougherty S, McCartney-Francis N, Wahl LM, Ellingsworth L, Schmidt JA, Hall G, Roberts AB (1988). "Transforming growth factor-beta is a potent immunosuppressive agent that inhibits IL-1-dependent lymphocyte proliferation". J. Immunol. 140 (9): 3026–32. doi:10.4049/jimmunol.140.9.3026. PMID 3129508. S2CID 35425214.
  13. ^ Tiemessen MM, Kunzmann S, Schmidt-Weber CB, Garssen J, Bruijnzeel-Koomen CA, Knol EF, van Hoffen E (2003). "Transforming growth factor-beta inhibits human antigen-specific CD4+ T cell proliferation without modulating the cytokine response". Int. Immunol. 15 (12): 1495–504. doi:10.1093/intimm/dxg147. PMID 14645158.
  14. ^ Gilbert KM, Thoman M, Bauche K, Pham T, Weigle WO (1997). "Transforming growth factor-beta 1 induces antigen-specific unresponsiveness in naive T cells". Immunol. Invest. 26 (4): 459–72. doi:10.3109/08820139709022702. PMID 9246566.
  15. ^ a b Wahl SM, Wen J, Moutsopoulos N (2006). "TGF-beta: a mobile purveyor of immune privilege". Immunol. Rev. 213: 213–27. doi:10.1111/j.1600-065X.2006.00437.x. PMID 16972906. S2CID 84309271.
  16. ^ Zhu H, Wang Z, Yu J, Yang X, He F, Liu Z, Che F, Chen X, Ren H, Hong M, Wang J (March 2019). "Role and mechanisms of cytokines in the secondary brain injury after intracerebral hemorrhage". Prog. Neurobiol. 178: 101610. doi:10.1016/j.pneurobio.2019.03.003. PMID 30923023. S2CID 85495400.
  17. ^ a b Lebman DA, Edmiston JS (1999). "The role of TGF-beta in growth, differentiation, and maturation of B lymphocytes". Microbes Infect. 1 (15): 1297–304. doi:10.1016/S1286-4579(99)00254-3. PMID 10611758.
  18. ^ Rodríguez LS, Narváez CF, Rojas OL, Franco MA, Ángel J (2012-01-01). "Human myeloid dendritic cells treated with supernatants of rotavirus infected Caco-2 cells induce a poor Th1 response". Cellular Immunology. 272 (2): 154–61. doi:10.1016/j.cellimm.2011.10.017. PMID 22082567.
  19. ^ Dong Y, Tang L, Letterio JJ, Benveniste EN (July 2001). "The Smad3 protein is involved in TGF-beta inhibition of class II transactivator and class II MHC expression". Journal of Immunology. 167 (1): 311–9. doi:10.4049/jimmunol.167.1.311. PMID 11418665.
  20. ^ Hildebrand A, Romarís M, Rasmussen LM, Heinegård D, Twardzik DR, Border WA, Ruoslahti E (September 1994). "Interaction of the small interstitial proteoglycans biglycan, decorin and fibromodulin with transforming growth factor beta". Biochem. J. 302 (2): 527–34. doi:10.1042/bj3020527. PMC 1137259. PMID 8093006.
  21. ^ Schönherr E, Broszat M, Brandan E, Bruckner P, Kresse H (July 1998). "Decorin core protein fragment Leu155-Val260 interacts with TGF-beta but does not compete for decorin binding to type I collagen". Arch. Biochem. Biophys. 355 (2): 241–8. doi:10.1006/abbi.1998.0720. PMID 9675033.
  22. ^ Takeuchi Y, Kodama Y, Matsumoto T (Dec 1994). "Bone matrix decorin binds transforming growth factor-beta and enhances its bioactivity". J. Biol. Chem. 269 (51): 32634–8. doi:10.1016/S0021-9258(18)31681-8. PMID 7798269.
  23. ^ Choy L, Derynck R (November 1998). "The type II transforming growth factor (TGF)-beta receptor-interacting protein TRIP-1 acts as a modulator of the TGF-beta response". J. Biol. Chem. 273 (47): 31455–62. doi:10.1074/jbc.273.47.31455. PMID 9813058.
  24. ^ Saharinen J, Keski-Oja J (August 2000). "Specific sequence motif of 8-Cys repeats of TGF-beta binding proteins, LTBPs, creates a hydrophobic interaction surface for binding of small latent TGF-beta". Mol. Biol. Cell. 11 (8): 2691–704. doi:10.1091/mbc.11.8.2691. PMC 14949. PMID 10930463.
  25. ^ Ebner R, Chen RH, Lawler S, Zioncheck T, Derynck R (November 1993). "Determination of type I receptor specificity by the type II receptors for TGF-beta or activin". Science. 262 (5135): 900–2. Bibcode:1993Sci...262..900E. doi:10.1126/science.8235612. PMID 8235612.
  26. ^ Oh SP, Seki T, Goss KA, Imamura T, Yi Y, Donahoe PK, Li L, Miyazono K, ten Dijke P, Kim S, Li E (March 2000). "Activin receptor-like kinase 1 modulates transforming growth factor-beta 1 signaling in the regulation of angiogenesis". Proc. Natl. Acad. Sci. U.S.A. 97 (6): 2626–31. Bibcode:2000PNAS...97.2626O. doi:10.1073/pnas.97.6.2626. PMC 15979. PMID 10716993.
  27. ^ McGonigle S, Beall MJ, Feeney EL, Pearce EJ (February 2001). "Conserved role for 14-3-3epsilon downstream of type I TGFbeta receptors". FEBS Lett. 490 (1–2): 65–9. doi:10.1016/s0014-5793(01)02133-0. PMID 11172812. S2CID 84710903.

Further reading edit

  • Border WA, Noble NA (1994). "Transforming growth factor beta in tissue fibrosis". N. Engl. J. Med. 331 (19): 1286–92. doi:10.1056/NEJM199411103311907. PMID 7935686.
  • Munger JS, Harpel JG, Gleizes PE, Mazzieri R, Nunes I, Rifkin DB (1997). "Latent transforming growth factor-beta: structural features and mechanisms of activation". Kidney Int. 51 (5): 1376–82. doi:10.1038/ki.1997.188. PMID 9150447.
  • Iozzo RV (1999). "The biology of the small leucine-rich proteoglycans. Functional network of interactive proteins". J. Biol. Chem. 274 (27): 18843–6. doi:10.1074/jbc.274.27.18843. PMID 10383378.
  • Reinhold D, Wrenger S, Kähne T, Ansorge S (1999). "HIV-1 Tat: immunosuppression via TGF-beta1 induction". Immunol. Today. 20 (8): 384–5. doi:10.1016/S0167-5699(99)01497-8. PMID 10431160.
  • Yamada Y (2001). "Association of polymorphisms of the transforming growth factor-beta1 gene with genetic susceptibility to osteoporosis". Pharmacogenetics. 11 (9): 765–71. doi:10.1097/00008571-200112000-00004. PMID 11740340.
  • Chen W, Wahl SM (2002). "TGF-β: Receptors, Signaling Pathways and Autoimmunity". TGF-beta: receptors, signaling pathways and autoimmunity. Current Directions in Autoimmunity. Vol. 5. pp. 62–91. doi:10.1159/000060548. ISBN 978-3-8055-7308-5. PMID 11826761. {{cite book}}: |journal= ignored (help)
  • Marone M, Bonanno G, Rutella S, Leone G, Scambia G, Pierelli L (2002). "Survival and cell cycle control in early hematopoiesis: role of bcl-2, and the cyclin dependent kinase inhibitors P27 and P21". Leuk. Lymphoma. 43 (1): 51–7. doi:10.1080/10428190210195. PMID 11908736. S2CID 28490341.
  • Schnaper HW, Hayashida T, Hubchak SC, Poncelet AC (2003). "TGF-beta signal transduction and mesangial cell fibrogenesis". Am. J. Physiol. Renal Physiol. 284 (2): F243–52. doi:10.1152/ajprenal.00300.2002. PMID 12529270. S2CID 17046094.
  • Kalluri R, Neilson EG (2003). "Epithelial-mesenchymal transition and its implications for fibrosis". J. Clin. Invest. 112 (12): 1776–84. doi:10.1172/JCI20530. PMC 297008. PMID 14679171.
  • Grainger DJ (2004). "Transforming growth factor beta and atherosclerosis: so far, so good for the protective cytokine hypothesis". Arterioscler. Thromb. Vasc. Biol. 24 (3): 399–404. doi:10.1161/01.ATV.0000114567.76772.33. PMID 14699019.
  • Attisano L, Labbé E (2004). "TGFbeta and Wnt pathway cross-talk". Cancer Metastasis Rev. 23 (1–2): 53–61. doi:10.1023/A:1025811012690. PMID 15000149. S2CID 41685620.
  • McGowan TA, Zhu Y, Sharma K (2004). "Transforming growth factor-beta: a clinical target for the treatment of diabetic nephropathy". Curr. Diab. Rep. 4 (6): 447–54. doi:10.1007/s11892-004-0055-z. PMID 15539010. S2CID 45122439.
  • Sheppard D (2005). "Integrin-mediated activation of latent transforming growth factor beta". Cancer Metastasis Rev. 24 (3): 395–402. doi:10.1007/s10555-005-5131-6. PMID 16258727. S2CID 1929903.
  • Gressner AM, Weiskirchen R (2006). "Modern pathogenetic concepts of liver fibrosis suggest stellate cells and TGF-beta as major players and therapeutic targets". J. Cell. Mol. Med. 10 (1): 76–99. doi:10.1111/j.1582-4934.2006.tb00292.x. PMC 3933103. PMID 16563223.
  • Seoane J (2006). "Escaping from the TGFbeta anti-proliferative control". Carcinogenesis. 27 (11): 2148–56. doi:10.1093/carcin/bgl068. PMID 16698802.
  • Lee CG, Kang HR, Homer RJ, Chupp G, Elias JA (2006). "Transgenic modeling of transforming growth factor-beta(1): role of apoptosis in fibrosis and alveolar remodeling". Proc Am Thorac Soc. 3 (5): 418–23. doi:10.1513/pats.200602-017AW. PMC 2658706. PMID 16799085.
  • Wahl SM (2007). "Transforming growth factor-beta: innately bipolar". Curr. Opin. Immunol. 19 (1): 55–62. doi:10.1016/j.coi.2006.11.008. PMID 17137775.
  • Redondo S, Santos-Gallego CG, Tejerina T (2007). "TGF-beta1: a novel target for cardiovascular pharmacology". Cytokine Growth Factor Rev. 18 (3–4): 279–86. doi:10.1016/j.cytogfr.2007.04.005. PMID 17485238.
  • Ren H, Han R, Chen X, Liu X, Wan J, Wang L, Yang X, Wang J (May 2020). "Potential therapeutic targets for intracerebral hemorrhage-associated inflammation: An update". J Cereb Blood Flow Metab. 40 (9): 1752–1768. doi:10.1177/0271678X20923551. PMC 7446569. PMID 32423330. S2CID 218689863.

External links edit

  • Overview of all the structural information available in the PDB for UniProt: P01137 (Transforming growth factor beta-1) at the PDBe-KB.


beta, transforming, growth, factor, beta, polypeptide, member, transforming, growth, factor, beta, superfamily, cytokines, secreted, protein, that, performs, many, cellular, functions, including, control, cell, growth, cell, proliferation, cell, differentiatio. Transforming growth factor beta 1 or TGF b1 is a polypeptide member of the transforming growth factor beta superfamily of cytokines It is a secreted protein that performs many cellular functions including the control of cell growth cell proliferation cell differentiation and apoptosis In humans TGF b1 is encoded by the TGFB1 gene 5 6 TGFB1Available structuresPDBOrtholog search PDBe RCSBList of PDB id codes1KLA 1KLC 1KLD 3KFD 4KV5IdentifiersAliasesTGFB1 CED DPD1 LAP TGFB TGFbeta transforming growth factor beta 1 IBDIMDE TGF beta1External IDsOMIM 190180 MGI 98725 HomoloGene 540 GeneCards TGFB1Gene location Human Chr Chromosome 19 human 1 Band19q13 2Start41 301 587 bp 1 End41 353 922 bp 1 Gene location Mouse Chr Chromosome 7 mouse 2 Band7 A3 7 13 98 cMStart25 386 427 bp 2 End25 404 502 bp 2 RNA expression patternBgeeHumanMouse ortholog Top expressed inmonocytestromal cell of endometriumascending aortaright coronary arteryspleenright lungcanal of the cervixbloodupper lobe of left lungleft coronary arteryTop expressed inmolarcalvariaspleenthymusbody of femuranklelipbloodsubcutaneous adipose tissueyolk sacMore reference expression dataBioGPSMore reference expression dataGene ontologyMolecular functiontype II transforming growth factor beta receptor binding protein N terminus binding cytokine activity enzyme binding growth factor activity antigen binding type I transforming growth factor beta receptor binding protein homodimerization activity protein serine threonine kinase activator activity protein binding protein heterodimerization activity type III transforming growth factor beta receptor binding transforming growth factor beta receptor binding identical protein bindingCellular componentcytoplasm extracellular region nucleus microvillus cell surface blood microparticle plasma membrane secretory granule axon neuronal cell body Golgi lumen platelet alpha granule lumen extracellular matrix extracellular spaceBiological processpositive regulation of histone deacetylation positive regulation of transcription regulatory region DNA binding ureteric bud development tolerance induction to self antigen positive regulation of protein phosphorylation endoderm development response to cholesterol positive regulation of MAP kinase activity regulation of sodium ion transport response to progesterone negative regulation of cell cycle response to organic substance mammary gland development T cell homeostasis negative regulation of ossification negative regulation of hyaluronan biosynthetic process protein phosphorylation T cell differentiation positive regulation of vascular permeability animal organ regeneration positive regulation of blood vessel endothelial cell migration negative regulation of epithelial cell proliferation regulation of binding inner ear development myelination negative regulation of macrophage cytokine production cell population proliferation transforming growth factor beta receptor signaling pathway face morphogenesis negative regulation of cell population proliferation positive regulation of receptor clustering regulation of apoptotic process positive regulation of collagen biosynthetic process cellular response to transforming growth factor beta stimulus pathway restricted SMAD protein phosphorylation regulation of DNA binding regulation of actin cytoskeleton reorganization negative regulation of fat cell differentiation positive regulation of protein metabolic process cell cell junction organization negative regulation of myoblast differentiation positive regulation of protein kinase B signaling common partner SMAD protein phosphorylation positive regulation of branching involved in ureteric bud morphogenesis SMAD protein signal transduction epidermal growth factor receptor signaling pathway macrophage derived foam cell differentiation negative regulation of blood vessel endothelial cell migration positive regulation of protein dephosphorylation extrinsic apoptotic signaling pathway negative regulation of extracellular matrix disassembly mitotic cell cycle checkpoint signaling positive regulation of fibroblast proliferation negative regulation of cell differentiation regulation of branching involved in mammary gland duct morphogenesis positive regulation of exit from mitosis negative regulation of transforming growth factor beta receptor signaling pathway negative regulation of gene expression morphogenesis of a branching structure regulation of SMAD protein signal transduction positive regulation of peptidyl serine phosphorylation cell activation negative regulation of neuroblast proliferation positive regulation of transcription DNA templated cell growth negative regulation of T cell proliferation response to wounding negative regulation of cell growth positive regulation of chemotaxis protein export from nucleus regulation of protein import into nucleus positive regulation of peptidyl tyrosine phosphorylation positive regulation of protein import into nucleus positive regulation of cardiac muscle cell differentiation oligodendrocyte development positive regulation of interleukin 17 production inflammatory response negative regulation of interleukin 17 production lymph node development T cell activation Notch signaling pathway negative regulation of protein phosphorylation regulation of blood vessel remodeling SMAD protein complex assembly regulation of striated muscle tissue development response to vitamin D chondrocyte differentiation regulatory T cell differentiation regulation of cartilage development branch elongation involved in mammary gland duct branching positive regulation of bone mineralization positive regulation of epithelial cell proliferation female pregnancy cellular response to organic cyclic compound positive regulation of extracellular matrix assembly cellular calcium ion homeostasis wound healing negative regulation of transcription by RNA polymerase II response to glucose positive regulation of epithelial to mesenchymal transition cellular response to dexamethasone stimulus negative regulation of production of miRNAs involved in gene silencing by miRNA mitigation of host defenses by virus lens fiber cell differentiation positive regulation of NF kappaB transcription factor activity extracellular matrix assembly ATP biosynthetic process hematopoietic progenitor cell differentiation regulation of interleukin 23 production positive regulation of protein secretion frontal suture morphogenesis epithelial to mesenchymal transition phosphate containing compound metabolic process regulation of gene expression adaptive immune response based on somatic recombination of immune receptors built from immunoglobulin superfamily domains negative regulation of release of sequestered calcium ion into cytosol response to radiation mononuclear cell proliferation negative regulation of transcription DNA templated negative regulation of T cell activation positive regulation of odontogenesis lipopolysaccharide mediated signaling pathway positive regulation of protein localization to nucleus response to estradiol regulation of cell migration response to hypoxia hyaluronan catabolic process negative regulation of phagocytosis response to organic cyclic compound positive regulation of protein containing complex assembly protein kinase B signaling negative regulation of cell cell adhesion negative regulation of gene silencing by miRNA positive regulation of regulatory T cell differentiation cellular response to growth factor stimulus positive regulation of pathway restricted SMAD protein phosphorylation mammary gland branching involved in thelarche response to laminar fluid shear stress human ageing regulation of regulatory T cell differentiation platelet degranulation negative regulation of DNA replication myeloid dendritic cell differentiation salivary gland morphogenesis receptor catabolic process MAPK cascade positive regulation of histone acetylation regulation of transforming growth factor beta receptor signaling pathway positive regulation of phosphatidylinositol 3 kinase activity negative regulation of protein localization to plasma membrane positive regulation of NAD ADP ribosyltransferase activity negative regulation of immune response regulation of cell population proliferation negative regulation of skeletal muscle tissue development positive regulation of peptidyl threonine phosphorylation positive regulation of smooth muscle cell differentiation positive regulation of isotype switching to IgA isotypes connective tissue replacement involved in inflammatory response wound healing ossification involved in bone remodeling positive regulation of apoptotic process positive regulation of vascular endothelial growth factor production positive regulation of superoxide anion generation digestive tract development cell migration positive regulation of fibroblast migration positive regulation of cell division germ cell migration positive regulation of transcription by RNA polymerase II negative regulation of mitotic cell cycle positive regulation of SMAD protein signal transduction positive regulation of pri miRNA transcription by RNA polymerase II positive regulation of gene expression positive regulation of cell population proliferation liver regeneration regulation of epithelial to mesenchymal transition involved in endocardial cushion formation positive regulation of mononuclear cell migration cellular response to insulin like growth factor stimulus positive regulation of cell migration response to immobilization stress cellular response to mechanical stimulus cellular response to ionizing radiation vasculogenesis neural tube closure heart valve morphogenesis heart development neural tube development membrane protein intracellular domain proteolysis leukocyte migration ventricular cardiac muscle tissue morphogenesis positive regulation of ERK1 and ERK2 cascade transforming growth factor beta receptor signaling pathway involved in heart development embryonic liver development BMP signaling pathway cell development apoptotic process regulation of pri miRNA transcription by RNA polymerase II positive regulation of production of miRNAs involved in gene silencing by miRNA regulation of signaling receptor activitySources Amigo QuickGOOrthologsSpeciesHumanMouseEntrez704021803EnsemblENSG00000105329ENSMUSG00000002603UniProtP01137P04202RefSeq mRNA NM 000660NM 011577RefSeq protein NP 000651NP 035707Location UCSC Chr 19 41 3 41 35 MbChr 7 25 39 25 4 MbPubMed search 3 4 WikidataView Edit HumanView Edit Mouse Contents 1 Function 1 1 T cells 1 2 B cells 1 3 Myeloid cells 2 Interactions 3 References 4 Further reading 5 External linksFunction editSee also TGF beta signaling pathway TGF b is a multifunctional set of peptides that controls proliferation differentiation and other functions in many cell types TGF b acts synergistically with transforming growth factor alpha TGF a in inducing transformation It also acts as a negative autocrine growth factor Dysregulation of TGF b activation and signaling may result in apoptosis Many cells synthesize TGF b and almost all of them have specific receptors for this peptide TGF b1 TGF b2 and TGF b3 all function through the same receptor signaling systems 7 TGF b1 was first identified in human platelets as a protein with a molecular mass of 25 kilodaltons with a potential role in wound healing 8 9 It was later characterized as a large protein precursor containing 390 amino acids that was proteolytically processed to produce a mature peptide of 112 amino acids 10 TGF b1 plays an important role in controlling the immune system and shows different activities on different types of cell or cells at different developmental stages Most immune cells or leukocytes secrete TGF b1 11 T cells edit Some T cells e g regulatory T cells release TGF b1 to inhibit the actions of other T cells Specifically TGF b1 prevents the interleukin IL 1 amp interleukin 2 dependent proliferation in activated T cells 12 13 as well as the activation of quiescent helper T cells and cytotoxic T cells 14 15 Similarly TGF b1 can inhibit the secretion and activity of many other cytokines including interferon g tumor necrosis factor alpha TNF a and various interleukins It can also decrease the expression levels of cytokine receptors such as the IL 2 receptor to down regulate the activity of immune cells However TGF b1 can also increase the expression of certain cytokines in T cells and promote their proliferation 16 particularly if the cells are immature 11 B cells edit TGF b1 has similar effects on B cells that also vary according to the differentiation state of the cell It inhibits proliferation stimulates apoptosis of B cells 17 and controls the expression of antibody transferrin and MHC class II proteins on immature and mature B cells 11 17 Myeloid cells edit The effects of TGF b1 on macrophages and monocytes are predominantly suppressive this cytokine can inhibit the proliferation of these cells and prevent their production of reactive oxygen e g superoxide O2 and nitrogen e g nitric oxide NO intermediates However as with other cell types TGF b1 can also have the opposite effect on cells of myeloid origin For example TGF b1 acts as a chemoattractant directing an immune response to certain pathogens Likewise macrophages and monocytes respond to low levels of TGF b1 in a chemotactic manner Furthermore the expression of monocytic cytokines such as interleukin IL 1a IL 1b and TNF a 15 and macrophage s phagocytic can be increased by the action of TGF b1 11 TGF b1 reduces the efficacy of the MHC II in astrocytes and dendritic cells which in turn decreases the activation of appropriate helper T cell populations 18 19 Interactions editTGF beta 1 has been shown to interact with Decorin 20 21 22 EIF3I 23 LTBP1 24 TGF beta receptor 1 25 26 and YWHAE 27 References edit a b c GRCh38 Ensembl release 89 ENSG00000105329 Ensembl May 2017 a b c GRCm38 Ensembl release 89 ENSMUSG00000002603 Ensembl May 2017 Human PubMed Reference National Center for Biotechnology Information U S National Library of Medicine Mouse PubMed Reference National Center for Biotechnology Information U S National Library of Medicine Ghadami M Makita Y Yoshida K Nishimura G Fukushima Y Wakui K Ikegawa S Yamada K Kondo S Niikawa N Tomita Ha January 2000 Genetic mapping of the Camurati Engelmann disease locus to chromosome 19q13 1 q13 3 Am J Hum Genet 66 1 143 7 doi 10 1086 302728 PMC 1288319 PMID 10631145 Vaughn SP Broussard S Hall CR Scott A Blanton SH Milunsky JM Hecht JT May 2000 Confirmation of the mapping of the Camurati Englemann locus to 19q13 2 and refinement to a 3 2 cM region Genomics 66 1 119 21 doi 10 1006 geno 2000 6192 PMID 10843814 Entrez Gene TGFB1 transforming growth factor beta 1 Assoian RK Komoriya A Meyers CA Miller DM Sporn MB 1983 Transforming growth factor beta in human platelets Identification of a major storage site purification and characterization J Biol Chem 258 11 7155 60 doi 10 1016 S0021 9258 18 32345 7 PMID 6602130 Custo S Baron B Felice A Seria E 5 July 2022 A comparative profile of total protein and six angiogenically active growth factors in three platelet products GMS Interdisciplinary Plastic and Reconstructive Surgery DGPW 11 Doc06 Doc06 doi 10 3205 iprs000167 PMC 9284722 PMID 35909816 Derynck R Jarrett JA Chen EY Eaton DH Bell JR Assoian RK Roberts AB Sporn MB Goeddel DV 1985 Human transforming growth factor beta complementary DNA sequence and expression in normal and transformed cells Nature 316 6030 701 5 Bibcode 1985Natur 316 701D doi 10 1038 316701a0 PMID 3861940 S2CID 4245501 a b c d Letterio JJ Roberts AB 1998 Regulation of immune responses by TGF beta Annu Rev Immunol 16 137 61 doi 10 1146 annurev immunol 16 1 137 PMID 9597127 Wahl SM Hunt DA Wong HL Dougherty S McCartney Francis N Wahl LM Ellingsworth L Schmidt JA Hall G Roberts AB 1988 Transforming growth factor beta is a potent immunosuppressive agent that inhibits IL 1 dependent lymphocyte proliferation J Immunol 140 9 3026 32 doi 10 4049 jimmunol 140 9 3026 PMID 3129508 S2CID 35425214 Tiemessen MM Kunzmann S Schmidt Weber CB Garssen J Bruijnzeel Koomen CA Knol EF van Hoffen E 2003 Transforming growth factor beta inhibits human antigen specific CD4 T cell proliferation without modulating the cytokine response Int Immunol 15 12 1495 504 doi 10 1093 intimm dxg147 PMID 14645158 Gilbert KM Thoman M Bauche K Pham T Weigle WO 1997 Transforming growth factor beta 1 induces antigen specific unresponsiveness in naive T cells Immunol Invest 26 4 459 72 doi 10 3109 08820139709022702 PMID 9246566 a b Wahl SM Wen J Moutsopoulos N 2006 TGF beta a mobile purveyor of immune privilege Immunol Rev 213 213 27 doi 10 1111 j 1600 065X 2006 00437 x PMID 16972906 S2CID 84309271 Zhu H Wang Z Yu J Yang X He F Liu Z Che F Chen X Ren H Hong M Wang J March 2019 Role and mechanisms of cytokines in the secondary brain injury after intracerebral hemorrhage Prog Neurobiol 178 101610 doi 10 1016 j pneurobio 2019 03 003 PMID 30923023 S2CID 85495400 a b Lebman DA Edmiston JS 1999 The role of TGF beta in growth differentiation and maturation of B lymphocytes Microbes Infect 1 15 1297 304 doi 10 1016 S1286 4579 99 00254 3 PMID 10611758 Rodriguez LS Narvaez CF Rojas OL Franco MA Angel J 2012 01 01 Human myeloid dendritic cells treated with supernatants of rotavirus infected Caco 2 cells induce a poor Th1 response Cellular Immunology 272 2 154 61 doi 10 1016 j cellimm 2011 10 017 PMID 22082567 Dong Y Tang L Letterio JJ Benveniste EN July 2001 The Smad3 protein is involved in TGF beta inhibition of class II transactivator and class II MHC expression Journal of Immunology 167 1 311 9 doi 10 4049 jimmunol 167 1 311 PMID 11418665 Hildebrand A Romaris M Rasmussen LM Heinegard D Twardzik DR Border WA Ruoslahti E September 1994 Interaction of the small interstitial proteoglycans biglycan decorin and fibromodulin with transforming growth factor beta Biochem J 302 2 527 34 doi 10 1042 bj3020527 PMC 1137259 PMID 8093006 Schonherr E Broszat M Brandan E Bruckner P Kresse H July 1998 Decorin core protein fragment Leu155 Val260 interacts with TGF beta but does not compete for decorin binding to type I collagen Arch Biochem Biophys 355 2 241 8 doi 10 1006 abbi 1998 0720 PMID 9675033 Takeuchi Y Kodama Y Matsumoto T Dec 1994 Bone matrix decorin binds transforming growth factor beta and enhances its bioactivity J Biol Chem 269 51 32634 8 doi 10 1016 S0021 9258 18 31681 8 PMID 7798269 Choy L Derynck R November 1998 The type II transforming growth factor TGF beta receptor interacting protein TRIP 1 acts as a modulator of the TGF beta response J Biol Chem 273 47 31455 62 doi 10 1074 jbc 273 47 31455 PMID 9813058 Saharinen J Keski Oja J August 2000 Specific sequence motif of 8 Cys repeats of TGF beta binding proteins LTBPs creates a hydrophobic interaction surface for binding of small latent TGF beta Mol Biol Cell 11 8 2691 704 doi 10 1091 mbc 11 8 2691 PMC 14949 PMID 10930463 Ebner R Chen RH Lawler S Zioncheck T Derynck R November 1993 Determination of type I receptor specificity by the type II receptors for TGF beta or activin Science 262 5135 900 2 Bibcode 1993Sci 262 900E doi 10 1126 science 8235612 PMID 8235612 Oh SP Seki T Goss KA Imamura T Yi Y Donahoe PK Li L Miyazono K ten Dijke P Kim S Li E March 2000 Activin receptor like kinase 1 modulates transforming growth factor beta 1 signaling in the regulation of angiogenesis Proc Natl Acad Sci U S A 97 6 2626 31 Bibcode 2000PNAS 97 2626O doi 10 1073 pnas 97 6 2626 PMC 15979 PMID 10716993 McGonigle S Beall MJ Feeney EL Pearce EJ February 2001 Conserved role for 14 3 3epsilon downstream of type I TGFbeta receptors FEBS Lett 490 1 2 65 9 doi 10 1016 s0014 5793 01 02133 0 PMID 11172812 S2CID 84710903 Further reading editBorder WA Noble NA 1994 Transforming growth factor beta in tissue fibrosis N Engl J Med 331 19 1286 92 doi 10 1056 NEJM199411103311907 PMID 7935686 Munger JS Harpel JG Gleizes PE Mazzieri R Nunes I Rifkin DB 1997 Latent transforming growth factor beta structural features and mechanisms of activation Kidney Int 51 5 1376 82 doi 10 1038 ki 1997 188 PMID 9150447 Iozzo RV 1999 The biology of the small leucine rich proteoglycans Functional network of interactive proteins J Biol Chem 274 27 18843 6 doi 10 1074 jbc 274 27 18843 PMID 10383378 Reinhold D Wrenger S Kahne T Ansorge S 1999 HIV 1 Tat immunosuppression via TGF beta1 induction Immunol Today 20 8 384 5 doi 10 1016 S0167 5699 99 01497 8 PMID 10431160 Yamada Y 2001 Association of polymorphisms of the transforming growth factor beta1 gene with genetic susceptibility to osteoporosis Pharmacogenetics 11 9 765 71 doi 10 1097 00008571 200112000 00004 PMID 11740340 Chen W Wahl SM 2002 TGF b Receptors Signaling Pathways and Autoimmunity TGF beta receptors signaling pathways and autoimmunity Current Directions in Autoimmunity Vol 5 pp 62 91 doi 10 1159 000060548 ISBN 978 3 8055 7308 5 PMID 11826761 a href Template Cite book html title Template Cite book cite book a journal ignored help Marone M Bonanno G Rutella S Leone G Scambia G Pierelli L 2002 Survival and cell cycle control in early hematopoiesis role of bcl 2 and the cyclin dependent kinase inhibitors P27 and P21 Leuk Lymphoma 43 1 51 7 doi 10 1080 10428190210195 PMID 11908736 S2CID 28490341 Schnaper HW Hayashida T Hubchak SC Poncelet AC 2003 TGF beta signal transduction and mesangial cell fibrogenesis Am J Physiol Renal Physiol 284 2 F243 52 doi 10 1152 ajprenal 00300 2002 PMID 12529270 S2CID 17046094 Kalluri R Neilson EG 2003 Epithelial mesenchymal transition and its implications for fibrosis J Clin Invest 112 12 1776 84 doi 10 1172 JCI20530 PMC 297008 PMID 14679171 Grainger DJ 2004 Transforming growth factor beta and atherosclerosis so far so good for the protective cytokine hypothesis Arterioscler Thromb Vasc Biol 24 3 399 404 doi 10 1161 01 ATV 0000114567 76772 33 PMID 14699019 Attisano L Labbe E 2004 TGFbeta and Wnt pathway cross talk Cancer Metastasis Rev 23 1 2 53 61 doi 10 1023 A 1025811012690 PMID 15000149 S2CID 41685620 McGowan TA Zhu Y Sharma K 2004 Transforming growth factor beta a clinical target for the treatment of diabetic nephropathy Curr Diab Rep 4 6 447 54 doi 10 1007 s11892 004 0055 z PMID 15539010 S2CID 45122439 Sheppard D 2005 Integrin mediated activation of latent transforming growth factor beta Cancer Metastasis Rev 24 3 395 402 doi 10 1007 s10555 005 5131 6 PMID 16258727 S2CID 1929903 Gressner AM Weiskirchen R 2006 Modern pathogenetic concepts of liver fibrosis suggest stellate cells and TGF beta as major players and therapeutic targets J Cell Mol Med 10 1 76 99 doi 10 1111 j 1582 4934 2006 tb00292 x PMC 3933103 PMID 16563223 Seoane J 2006 Escaping from the TGFbeta anti proliferative control Carcinogenesis 27 11 2148 56 doi 10 1093 carcin bgl068 PMID 16698802 Lee CG Kang HR Homer RJ Chupp G Elias JA 2006 Transgenic modeling of transforming growth factor beta 1 role of apoptosis in fibrosis and alveolar remodeling Proc Am Thorac Soc 3 5 418 23 doi 10 1513 pats 200602 017AW PMC 2658706 PMID 16799085 Wahl SM 2007 Transforming growth factor beta innately bipolar Curr Opin Immunol 19 1 55 62 doi 10 1016 j coi 2006 11 008 PMID 17137775 Redondo S Santos Gallego CG Tejerina T 2007 TGF beta1 a novel target for cardiovascular pharmacology Cytokine Growth Factor Rev 18 3 4 279 86 doi 10 1016 j cytogfr 2007 04 005 PMID 17485238 Ren H Han R Chen X Liu X Wan J Wang L Yang X Wang J May 2020 Potential therapeutic targets for intracerebral hemorrhage associated inflammation An update J Cereb Blood Flow Metab 40 9 1752 1768 doi 10 1177 0271678X20923551 PMC 7446569 PMID 32423330 S2CID 218689863 External links editOverview of all the structural information available in the PDB for UniProt P01137 Transforming growth factor beta 1 at the PDBe KB Retrieved from https en wikipedia org w index php title TGF beta 1 amp oldid 1215736814, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.