fbpx
Wikipedia

Solar analog

Solar-type stars, solar analogs (also analogues), and solar twins are stars that are particularly similar to the Sun. The stellar classification is a hierarchy with solar twin being most like the Sun followed by solar analog and then solar-type.[1] Observations of these stars are important for understanding better the properties of the Sun in relation to other stars and the habitability of planets.[2]

This illustration compares the somewhat larger and hotter Sun (left) to the relatively inactive star Tau Ceti.

By similarity to the Sun edit

Defining the three categories by their similarity to the Sun reflects the evolution of astronomical observational techniques. Originally, solar-type was the closest that similarity to the Sun could be defined. Later, more precise measurement techniques and improved observatories allowed for greater precision of key details like temperature, enabling the creation of a solar analog category for stars that were particularly similar to the Sun. Later still, continued improvements in precision allowed for the creation of a solar-twin category for near-perfect matches.[citation needed]

Similarity to the Sun allows for checking derived quantities—such as temperature, which is derived from the color index—against the Sun, the only star whose temperature is confidently known. For stars that are not similar to the Sun, this cross-checking cannot be done.[1]

Solar-type edit

These stars are broadly similar to the Sun. They are main-sequence stars with a B−V color between 0.48 and 0.80, the Sun having a B−V color of 0.65. Alternatively, a definition based on spectral type can be used, such as F8V through K2V, which would correspond to B−V color of 0.50 to 1.00.[1] This definition fits approximately 10% of stars, so a list of solar-type stars would be quite extensive.[3]

Solar-type stars show highly correlated behavior between their rotation rates and their chromospheric activity (e.g. Calcium H & K line emission) and coronal activity (e.g. X-ray emission)[4] Because solar-type stars spin down during their main-sequence lifetimes due to magnetic braking, these correlations allow rough ages to be derived. Mamajek & Hillenbrand (2008)[5] have estimated the ages for the 108 solar-type (F8V–K2V) main-sequence stars within 52 light-years (16 parsecs) of the Sun based on their chromospheric activity (as measured via Ca, H, and K emission lines).[citation needed]

The following table shows a sample of solar-type stars within 50 light years that nearly satisfy the criteria for solar analogs (B−V color between 0.48 and 0.80), based on current measurements (the Sun is listed for comparison):

Sample of solar-type stars
Identifier J2000 coordinates[6] Distance[6]
(ly)
Stellar
class
[6]
Temperature
(K)
Metallicity
(dex)
Age
(Gyr)
Notes
Right ascension Declination
Sun 0.0000158 G2V 5778 +0.00 4.6 [7]
Rigil Kentaurus [8] 15h 49m 36.49400s −60° 50′ 02.3737″ 4.37 G2V 5790 +0.20 4.4 [9][10][11][12]
Toliman 4.37 K0V 5260 4.4
Epsilon Eridani [13] -09h 27m 29.7s 03° 32′ 55.8″ 10.4 K2V 5084 -0.13 0.4-0.8
Tau Ceti [14] 01h 44m 04.1s −15° 56′ 15″ 11.9 G8V 5344 –0.52 5.8 [15]
82 Eridani [16] 03h 19m 55.7s −43° 04′ 11.2″ 19.8 G8V 5338 –0.54 6.1 [17]
Delta Pavonis [18] 20h 08m 43.6s −66° 10′ 55″ 19.9 G8IV 5604 +0.33 ~7 [19]
V538 Aurigae [20] 05h 41m 20.3s +53° 28′ 51.8″ 39.9 K1V 5257 −0.20 3.7 [17]
HD 14412 [21] 02h 18m 58.5s −25° 56′ 45″ 41.3 G5V 5432 −0.46 9.6 [17]
HR 4587 [22] 12h 00m 44.3s −10° 26′ 45.7″ 42.1 G8IV 5538 +0.18 8.5 [17]
HD 172051 [23] 18h 38m 53.4s −21° 03′ 07″ 42.7 G5V 5610 −0.32 4.3 [17]
72 Herculis [24] 17h 20m 39.6s +32° 28′ 04″ 46.9 G0V 5662 −0.37 5 [17]
HD 196761 [25] 20h 40m 11.8s −23° 46′ 26″ 46.9 G8V 5415 −0.31 6.6 [19]
Nu² Lupi [26] 15h 21m 48.1s −48° 19′ 03″ 47.5 G4V 5664 −0.34 10.3 [19]

Solar analog edit

These stars are photometrically similar to the Sun, having the following qualities:[1]

  • Temperature within 500 K from that of the Sun (5278 to 6278 K)
  • Metallicity of 50–200% (± 0.3 dex) of that of the Sun, meaning the star's protoplanetary disk would have had similar amounts of dust from which planets could form
  • No close companion (orbital period of ten days or less), because such a companion stimulates stellar activity

Solar analogs not meeting the stricter solar twin criteria include, within 50 light years and in order of increasing distance (The Sun is listed for comparison.):

Identifier J2000 coordinates[6] Distance[6]
(ly)
Stellar
class
[6]
Temperature
(K)
Metallicity
(dex)
Age
(Gyr)
Notes
Right ascension Declination
Sun 0.0000158 G2V 5,778 +0.00 4.6 [7]
Sigma Draconis [27] 19h 32m 21.6s +69° 39′ 40″ 18.8 G9–K0 V 5,297 −0.20 4.7 [28]
Beta Canum Venaticorum [29] 12h 33m 44.5s +41° 21′ 27″ 27.4 G0V 5,930 −0.30 6.0 [17]
61 Virginis [30] 13h 18m 24.3s −18° 18′ 40″ 27.8 G5V 5,558 −0.02 6.3 [19]
Zeta Tucanae [31] 00h 20m 04.3s –64° 52′ 29″ 28.0 F9.5V 5,956 −0.14 2.5 [15]
Beta Comae Berenices [32] 13h 11m 52.4s +27° 52′ 41″ 29.8 G0V 5,970 −0.06 2.0 [17]
61 Ursae Majoris [33] 11h 41m 03.0s +34° 12′ 06″ 31.1 G8V 5,483 −0.12 1.0 [17]
HR 511 [34] 01h 47m 44.8s +63° 51′ 09″ 32.8 K0V 5,333 +0.05 3.0 [17]
Alpha Mensae [35] 06h 10m 14.5s –74° 45′ 11″ 33.1 G5V 5,594 +0.10 5.4 [15]
HD 69830 [36] 08h 18m 23.9s −12° 37′ 56″ 40.6 K0V 5,410 −0.03 10.6 [15]
HD 10307 [37] 01h 41m 47.1s +42° 36′ 48″ 41.2 G1.5V 5,848 −0.05 7.0 [17]
HD 147513 [38] 16h 24m 01.3s −39° 11′ 35″ 42.0 G1V 5,858 +0.03 0.4 [19]
58 Eridani [39] 04h 47m 36.3s −16° 56′ 04″ 43.3 G3V 5,868 +0.02 0.6 [15]
47 Ursae Majoris [40] 10h 59m 28.0s +40° 25′ 49″ 45.9 G1V 5,954 +0.06 6.0 [15]
Psi Serpentis [41] 15h 44m 01.8s +02° 30′ 54.6″ 47.8 G5V 5,683 0.04 3.2 [42]
HD 84117 [43] 09h 42m 14.4s –23° 54′ 56″ 48.5 F8V 6,167 −0.03 3.1 [15]
HD 4391 [44] 00h 45m 45.6s –47° 33′ 07″ 48.6 G3V 5,878 −0.03 1.2 [15]
20 Leonis Minoris [45] 10h 01m 00.7s +31° 55′ 25″ 49.1 G3V 5,741 +0.20 6.5 [17]
Nu Phoenicis [46] 01h 15m 11.1s –45° 31′ 54″ 49.3 F8V 6,140 +0.18 5.7 [15]
51 Pegasi [47] 22h 57m 28.0s +20° 46′ 08″ 50.9 G2.5IVa 5,804 +0.20 7.0 [15]

Solar twin edit

To date no solar twin that exactly matches the Sun has been found.[48] However, there are some stars that come very close to being identical to the Sun, and are such considered solar twins by members of the astronomical community. An exact solar twin would be a G2V star with a 5,778K surface temperature, be 4.6 billion years old, with the correct metallicity and a 0.1% solar luminosity variation.[49] Stars with an age of 4.6 billion years are at the most stable state. Proper metallicity, radius, chemical composition, rotation, magnetic activity, and size are also very important to low luminosity variation.[50][51][52][53]

 
Morgan-Keenan spectral classification of stars. Most common star type in the universe are M-dwarfs, 76%. The Sun is a 4.6 billion year-old G-class (G2V) star and is more massive than 95% of all stars. Only 7.6% are G-class stars

The stars below are more similar to the Sun and having the following qualities:[1]

  • Temperature within 50 K from that of the Sun (5728 to 5828 K)[a] (within 10 K of sun (5768–5788 K)).
  • Metallicity of 89–112% (± 0.05 dex) of that of the Sun, meaning the star's proplyd would have had almost exactly the same amount of dust for planetary formation
  • No stellar companion, because the Sun itself is a solitary star
  • An age within 1 billion years from that of the Sun (3.6 to 5.6 Ga)

Other Sun parameters:[54]

  • Sun rotates on its axis once in about 27 days or 1.997 kilometres (1.241 mi)/s
  • Sun radius is 700,000 kilometres (430,000 mi)
  • Sun chemical composition by mass: hydrogen (73.4%); helium (25%); carbon (0.2%); nitrogen (0.09%);oxygen (0.80%); neon (0.16%); magnesium (0.06%); silicon (0.09&); sulfur (0.05%); iron (0.003%);


The following are the known stars that come closest to satisfying the criteria for a solar twin. The Sun is listed for comparison. Highlighted boxes are out of range for a solar twin. The star may have been noted as solar twin in the past, but are more of a solar analog.

Identifier J2000 coordinates[6] Distance[6]
(ly)
Stellar
class
[6]
Temperature
(K)
Metallicity
(dex)
Age
(Gyr)
Notes
Right ascension Declination
Sun 0.0000158 G2V 5,778 +0.00 4.6 [7]
18 Scorpii [55] 16h 15m 37.3s –08° 22′ 06″ 45.1 G2Va 5,433 −0.03 2.9 [56][57]
HD 150248 [58] 16h 41m 49.8s –45° 22′ 07″ 88 G2 5,750 −0.04 6.2 [57]
HD 164595 [59] 18h 00m 38.9s +29° 34′ 19″ 91 G2 5,810 −0.06 4.5 [57]
HD 195034 [60] 20h 28m 11.8s +22° 07′ 44″ 92 G5 5,760 −0.04 2.9 [61]
HD 117939 [62] 13h 34m 32.6s –38° 54′ 26″ 98 G3 5,730 −0.10 6.1 [57]
HD 138573 [63] 15h 32m 43.7s +10° 58′ 06″ 99 G5IV–V 5,757 +0.00 7.1 [64]
HD 71334 [65] 08h 25m 49.5s −29° 55′ 50″ 124 G2 5,701 −0.075 8.1 [66]
HD 98649 [67] 11h 20m 51.769s –23° 13′ 02″ 135 G4V 5,759 −0.02 2.3 [57]
HD 143436 [68] 16h 00m 18.8s +00° 08′ 13″ 141 G0 5,768 +0.00 3.8 (±2.9) [69]
HD 129357 [70] 14h 41m 22.4s +29° 03′ 32″ 154 G2V 5,749 −0.02 8.2 [69]
HD 133600 [71] 15h 05m 13.2s +06° 17′ 24″ 171 G0 5,808 +0.02 6.3 [56]
HD 186302 [72] 19h 49m 6.43s −70° 11′ 16.7″ 184 G3 5,675 +0.00 4.5 [73]
HIP 11915 [74] 02h 33m 49.02s −19° 36′ 42.5″ 190 G5V 5,760 –0.059 4.1 [75]
HD 101364 [76] 11h 40m 28.5s +69° 00′ 31″ 208 G5V 5,795 +0.02 7.1 [56][77]
HD 197027 [78] 20h 41m 54.6s –27° 12′ 57″ 250 G3V 5,723 −0.013 8.2 [79]
Kepler-452 [80] 19h 44m 00.89s +44° 16′ 39.2″ 1400 G2V 5,757 +0.21 6.0 [81]
YBP 1194 [82] 08h 51m 00.8s +11° 48′ 53″ 2934 G5V 5,780 +0.023 ~ 4.2 (± 1.6) [83]

Some other stars are sometimes mentioned as solar-twin candidates such as: Beta Canum Venaticorum; however it has too low metallicities (−0.21) for solar twin. 16 Cygni B is sometimes noted as twin, but is part of a triple star system and is very old for a solar twin at 6.8 Ga. Two solar sibling candidates (similar age, metallicity, and kinematics) are Gaia DR2 1927143514955658880 and 1966383465746413568.[84]

By potential habitability edit

Another way of defining solar twin is as a "habstar"—a star with qualities believed to be particularly hospitable to a life-hosting planet. Qualities considered include variability, mass, age, metallicity, and close companions.[85][b]

  • At least 0.5–1 billion years old
  • On the main sequence
  • Non-variable
  • Capable of harboring terrestrial planets
  • Support a dynamically stable habitable zone
  • 0–1 non-wide stellar companion stars.

The requirement that the star remain on the main sequence for at least 0.5–1 Ga sets an upper limit of approximately 2.2–3.4 solar masses, corresponding to a hottest spectral type of A0-B7V. Such stars can be 100x as bright as the Sun.[85][88] Tardigrade-like life (due to the UV flux) could potentially survive on planets orbiting stars as hot as B1V, with a mass of 10 M☉, and a temperature of 25,000 K, a main-sequence lifetime of about 20 million years.[c]

Non-variability is ideally defined as variability of less than 1%, but 3% is the practical limit due to limits in available data. Variation in irradiance in a star's habitable zone due to a companion star with an eccentric orbit is also a concern.[51][52][85][53]

Terrestrial planets in multiple star systems, those containing three or more stars, are not likely to have stable orbits in the long term. Stable orbits in binary systems take one of two forms: S-Type (satellite or circumstellar) orbits around one of the stars, and P-Type (planetary or circumbinary) orbits around the entire binary pair. Eccentric Jupiters may also disrupt the orbits of planets in habitable zones.[85]

Metallicity of at least 40% solar ([Fe/H] = −0.4) is required for the formation of an Earth-like terrestrial planet. High metallicity strongly correlates to the formation of hot Jupiters, but these are not absolute bars to life, as some gas giants end up orbiting within the habitable zone themselves, and could potentially host Earth-like moons.[85]

One example of such a star is HD 70642 [89], a G5V, at temperature of 5533 K, but is much younger than the Sun, at 1.9 billion years old.[90]

Another such example would be HIP 11915, which has a planetary system containing a Jupiter-like planet orbiting at a similar distance that the planet Jupiter does in the Solar System.[91] To strengthen the similarities, the star is class G5V, has a temperature of 5750 K, has a Sun-like mass and radius, and is only 500 million years younger than the Sun. As such, the habitable zone would extend in the same area as the zone in the Solar System, around 1 AU. This would allow an Earth-like planet to exist around 1 AU.[92]

See also edit

Footnotes edit

  1. ^ A true solar twins as noted by the Lowell Observatory should have a temperature within ~10 K of the Sun. Space Telescope Science Institute, Lowell Observatory, noted in 1996 that temperature precision of ~10 K can be measured. A temperature of ~10 K reduces the solar twin list to near zero, so ±50 K is used for the chart.[2]
  2. ^ habstar or habitability, is currently defined as an area, such as a planet or a moon, where liquid water can exist for at least a short duration of time.[86][87]
  3. ^ The supergiant and following supernova & neutron star (due to >8 M mass) would likely destroy the life at the end of the B1V star's lifetime.

References edit

  1. ^ a b c d e Soderblom, David R.; King, Jeremy R. (1998). "Solar-Type Stars: Basic Information on Their Classification and Characterization". In Jeffrey C. Hall (ed.). Solar Analogs: Characteristics and Optimum Candidates. The Second Annual Lowell Observatory Fall Workshop – October 5–7, 1997. Lowell Observatory. pp. 41–60. Bibcode:1998saco.conf...41S.
  2. ^ a b David R. Soderblom & Jeremy R. King (1998). "Solar-Type Stars: Basic Information on Their Classification and Characterization". Space Telescope Science Institute. Lowell Observatory: 41. Bibcode:1998saco.conf...41S. Retrieved 2016-09-30.
  3. ^ "The Classification of Stars". www.atlasoftheuniverse.com.
  4. ^ Baliunas, S. L.; Donahue, R. A.; Soon, J. H.; Horne, J. H.; Frazer, J.; Woodard-Eklund, L.; Bradford, M.; Rao, L. M.; Wilson, O. C.; Zhang, Q. (January 1, 1995). "Chromospheric variations in main-sequence stars". Astrophysical Journal, Part 1. 438 (1) – via ntrs.nasa.gov.
  5. ^ E. E. Mamajek; L. A. Hillenbrand (2008). "Improved Age Estimation for Solar-Type Dwarfs Using Activity-Rotation Diagnostics". Astrophysical Journal. 687 (2): 1264. arXiv:0807.1686. Bibcode:2008ApJ...687.1264M. doi:10.1086/591785. S2CID 27151456.
  6. ^ a b c d e f g h i "SIMBAD Astronomical Database". SIMBAD. Centre de Données astronomiques de Strasbourg. Retrieved 2009-01-14.
  7. ^ a b c Williams, D.R. (2004). "Sun Fact Sheet". NASA. Retrieved 2009-06-23.
  8. ^ Alpha Centauri A at SIMBAD - Ids - Bibliography - Image.
  9. ^ Van Leeuwen, F. (2007). "Validation of the new Hipparcos reduction". Astronomy and Astrophysics. 474 (2): 653–664. arXiv:0708.1752. Bibcode:2007A&A...474..653V. doi:10.1051/0004-6361:20078357. S2CID 18759600.
  10. ^ Wilkinson, John (2012). "The Sun and Stars". New Eyes on the Sun. Astronomers' Universe. pp. 219–236. doi:10.1007/978-3-642-22839-1_10. ISBN 978-3-642-22838-4. ISSN 1614-659X.
  11. ^ Thévenin, F.; Provost, J.; Morel, P.; Berthomieu, G.; Bouchy, F.; Carrier, F. (2002). "Asteroseismology and calibration of alpha Cen binary system". Astronomy & Astrophysics. 392: L9. arXiv:astro-ph/0206283. Bibcode:2002A&A...392L...9T. doi:10.1051/0004-6361:20021074. S2CID 17293259.
  12. ^ E. E. Mamajek; L. A. Hillenbrand (2008). "Improved Age Estimation for Solar-Type Dwarfs Using Activity-Rotation Diagnostics". Astrophysical Journal. 687 (2): 1264–1293. arXiv:0807.1686. Bibcode:2008ApJ...687.1264M. doi:10.1086/591785. S2CID 27151456.
  13. ^ Epsilon Eridani at SIMBAD - Ids - Bibliography - Image.
  14. ^ Tau Ceti at SIMBAD - Ids - Bibliography - Image.
  15. ^ a b c d e f g h i j Santos, N. C.; Israelian, G.; Randich, S.; García López, R. J.; Rebolo, R. (October 2004). "Beryllium anomalies in solar-type field stars". Astronomy and Astrophysics. 425 (3): 1013–1027. arXiv:astro-ph/0408109. Bibcode:2004A&A...425.1013S. doi:10.1051/0004-6361:20040510. S2CID 17279966.
  16. ^ 82 Eridani at SIMBAD - Ids - Bibliography - Image.
  17. ^ a b c d e f g h i j k l Holmberg J., Nordstrom B., Andersen J.; Nordström; Andersen (July 2009). "The Geneva-Copenhagen survey of the solar neighbourhood. III. Improved distances, ages, and kinematics". Astronomy and Astrophysics. 501 (3): 941–947. arXiv:0811.3982. Bibcode:2009A&A...501..941H. doi:10.1051/0004-6361/200811191. S2CID 118577511.{{cite journal}}: CS1 maint: multiple names: authors list (link) See Vizier catalogue V/130.
  18. ^ Delta Pavonis at SIMBAD - Ids - Bibliography - Image.
  19. ^ a b c d e Sousa, S. G.; et al. (August 2008). "Spectroscopic parameters for 451 stars in the HARPS GTO planet search program. Stellar [Fe/H] and the frequency of exo-Neptunes". Astronomy and Astrophysics. 487 (1): 373–381. arXiv:0805.4826. Bibcode:2008A&A...487..373S. doi:10.1051/0004-6361:200809698. S2CID 18173201. See VizieR catalogue J/A+A/487/373.
  20. ^ V538 Aurigae at SIMBAD - Ids - Bibliography - Image.
  21. ^ HD 14412 at SIMBAD - Ids - Bibliography - Image.
  22. ^ HR 4587 at SIMBAD - Ids - Bibliography - Image.
  23. ^ HD 172051 at SIMBAD - Ids - Bibliography - Image.
  24. ^ 72 Herculis at SIMBAD - Ids - Bibliography - Image.
  25. ^ HD 196761 at SIMBAD - Ids - Bibliography - Image.
  26. ^ nu2 lupi at SIMBAD - Ids - Bibliography - Image.
  27. ^ Sigma Draconis at SIMBAD - Ids - Bibliography - Image.
  28. ^ Boyajian, Tabetha S.; et al. (August 2008). "Angular Diameters of the G Subdwarf µ Cassiopeiae A and the K Dwarfs s Draconis and HR 511 from Interferometric Measurements with the CHARA Array". The Astrophysical Journal. 683 (1): 424–432. arXiv:0804.2719. Bibcode:2008ApJ...683..424B. doi:10.1086/589554. S2CID 8886682.
  29. ^ Beta Canum Venaticorum at SIMBAD - Ids - Bibliography - Image.
  30. ^ 61 Virginis at SIMBAD - Ids - Bibliography - Image.
  31. ^ Zeta Tucanae at SIMBAD - Ids - Bibliography - Image.
  32. ^ Beta Comae Berenices at SIMBAD - Ids - Bibliography - Image.
  33. ^ 61 Ursae Majoris at SIMBAD - Ids - Bibliography - Image.
  34. ^ HR 511 at SIMBAD - Ids - Bibliography - Image.
  35. ^ Alpha Mensae at SIMBAD - Ids - Bibliography - Image.
  36. ^ HD 69830 at SIMBAD - Ids - Bibliography - Image.
  37. ^ HD 10307 at SIMBAD - Ids - Bibliography - Image.
  38. ^ HD 147513 at SIMBAD - Ids - Bibliography - Image.
  39. ^ 58 Eridani at SIMBAD - Ids - Bibliography - Image.
  40. ^ 47 Ursae Majoris at SIMBAD - Ids - Bibliography - Image.
  41. ^ Psi Serpentis at SIMBAD - Ids - Bibliography - Image.
  42. ^ Mahdi, D.; et al. (March 2016). "Solar twins in the ELODIE archive". Astronomy & Astrophysics. 587: 9. arXiv:1601.01599. Bibcode:2016A&A...587A.131M. doi:10.1051/0004-6361/201527472. S2CID 119205608. A131.
  43. ^ HD 84117 at SIMBAD - Ids - Bibliography - Image.
  44. ^ HD 4391 at SIMBAD - Ids - Bibliography - Image.
  45. ^ 20 Leonis Minoris at SIMBAD - Ids - Bibliography - Image.
  46. ^ Nu Phoenicis at SIMBAD - Ids - Bibliography - Image.
  47. ^ 51 Pegasi at SIMBAD - Ids - Bibliography - Image.
  48. ^ "Solar Variability and Terrestrial Climate - NASA Science". science.nasa.gov.
  49. ^ "Solar Variability and Terrestrial Climate - NASA Science". science.nasa.gov.
  50. ^ Mahdi, D.; Soubiran, C.; Blanco-Cuaresma, S.; Chemin, L. (March 1, 2016). "Solar twins in the ELODIE archive". Astronomy & Astrophysics. 587: A131. arXiv:1601.01599. Bibcode:2016A&A...587A.131M. doi:10.1051/0004-6361/201527472 – via www.aanda.org.
  51. ^ a b "Stellar Luminosity Calculator". astro.unl.edu.
  52. ^ a b "The Effects of Solar Variability on Earth's Climate: A Workshop Report". National Academies Press. November 12, 2012.
  53. ^ a b "Most of Earth's twins aren't identical, or even close! | ScienceBlogs". scienceblogs.com.
  54. ^ "15.1 The Structure and Composition of the Sun". January 23, 2017 – via pressbooks.online.ucf.edu. {{cite journal}}: Cite journal requires |journal= (help)
  55. ^ 18 Scorpii at SIMBAD - Ids - Bibliography - Image.
  56. ^ a b c Meléndez, Jorge; Ramírez, Iván (November 2007). "HIP 56948: A Solar Twin with a Low Lithium Abundance". The Astrophysical Journal. 669 (2): L89–L92. arXiv:0709.4290. Bibcode:2007ApJ...669L..89M. doi:10.1086/523942. S2CID 15952981.
  57. ^ a b c d e Porto de Mello, G. F.; da Silva, R.; da Silva, L. & de Nader, R. V. (March 2014). "A photometric and spectroscopic survey of solar twin stars within 50 parsecs of the Sun; I. Atmospheric parameters and color similarity to the Sun". Astronomy and Astrophysics. 563: A52. arXiv:1312.7571. Bibcode:2014A&A...563A..52P. doi:10.1051/0004-6361/201322277. S2CID 119111150.
  58. ^ HD 150248 at SIMBAD - Ids - Bibliography - Image.
  59. ^ HD 164595 at SIMBAD - Ids - Bibliography - Image.
  60. ^ HD 195034 at SIMBAD - Ids - Bibliography - Image.
  61. ^ Takeda, Yoichi; Tajitsu, Akito (2009). "High-Dispersion Spectroscopic Study of Solar Twins: HIP 56948, HIP 79672, and HIP 100963". Publications of the Astronomical Society of Japan. 61 (3): 471–478. arXiv:0901.2509. Bibcode:2009PASJ...61..471T. doi:10.1093/pasj/61.3.471.
  62. ^ HD 117939 at SIMBAD - Ids - Bibliography - Image.
  63. ^ HD 138573 at SIMBAD - Ids - Bibliography - Image.
  64. ^ Mahdi, D.; et al. (March 2016), "Solar twins in the ELODIE archive", Astronomy & Astrophysics, 587: 9, arXiv:1601.01599, Bibcode:2016A&A...587A.131M, doi:10.1051/0004-6361/201527472, S2CID 119205608, A131.
  65. ^ HD 71334 at SIMBAD - Ids - Bibliography - Image.
  66. ^ Carlos, Marília; Nissen, Poul E.; Meléndez, Jorge (2016). "Correlation between lithium abundances and ages of solar twin stars". Astronomy & Astrophysics. 587: A100. arXiv:1601.05054. Bibcode:2016A&A...587A.100C. doi:10.1051/0004-6361/201527478. S2CID 119268561.
  67. ^ HD 98649 at SIMBAD - Ids - Bibliography - Image.
  68. ^ HD 143436 at SIMBAD - Ids - Bibliography - Image.
  69. ^ a b King, Jeremy R.; Boesgaard, Ann M.; Schuler, Simon C. (November 2005). "Keck HIRES Spectroscopy of Four Candidate Solar Twins". The Astronomical Journal. 130 (5): 2318–2325. arXiv:astro-ph/0508004. Bibcode:2005AJ....130.2318K. doi:10.1086/452640. S2CID 6535115.
  70. ^ HD 129357 at SIMBAD - Ids - Bibliography - Image.
  71. ^ HD 133600 at SIMBAD - Ids - Bibliography - Image.
  72. ^ HD 186302 at SIMBAD - Ids - Bibliography - Image.
  73. ^ Adibekyan, V.; et al. (November 2018). "The AMBRE project: searching for the closest solar siblings". Astronomy & Astrophysics. 619: 19. arXiv:1601.01599. Bibcode:2016A&A...587A.131M. doi:10.1051/0004-6361/201834285. S2CID 119205608. A130.
  74. ^ HIP 11915 at SIMBAD - Ids - Bibliography - Image.
  75. ^ M. Bedell; J. Meléndez; J. L. Bean; I. Ramírez; M. Asplund; A. Alves-Brito; L. Casagrande; S. Dreizler; T. Monroe; L. Spina; M. Tucci Maia (June 26, 2015). "The Solar Twin Planet Search II. A Jupiter twin around a solar twin" (PDF). Astronomy and Astrophysics. 581: 8. arXiv:1507.03998. Bibcode:2015A&A...581A..34B. doi:10.1051/0004-6361/201525748. S2CID 56004595. Retrieved 17 July 2015.
  76. ^ HIP 56948 at SIMBAD - Ids - Bibliography - Image.
  77. ^ Vázquez, M.; Pallé, E.; Rodríguez, P. Montañés (2010). "Is Our Environment Special?". The Earth as a Distant Planet: A Rosetta Stone for the Search of Earth-Like Worlds. Astronomy and Astrophysics Library. Springer New York. pp. 391–418. doi:10.1007/978-1-4419-1684-6. ISBN 978-1-4419-1683-9. See table 9.1.
  78. ^ HIP 102152 at SIMBAD - Ids - Bibliography - Image.
  79. ^ Monroe, T. R.; et al. (2013). "High Precision Abundances of the Old Solar Twin HIP 102152: Insights on Li Depletion from the Oldest Sun". The Astrophysical Journal Letters. 774 (2): 22. arXiv:1308.5744. Bibcode:2013ApJ...774L..32M. doi:10.1088/2041-8205/774/2/L32. S2CID 56111132.
  80. ^ Kepler-452 at SIMBAD - Ids - Bibliography - Image.
  81. ^ "Planet Kepler-452 b". Extrasolar Planets Encyclopaedia. Retrieved 6 July 2016.
  82. ^ Cl* NGC 2682 YBP 1194 at SIMBAD - Ids - Bibliography - Image.
  83. ^ A. Önehag; A. Korn; B. Gustafsson; E. Stempels; D. A. VandenBerg (2011). "M67-1194, an unusually Sun-like solar twin in M67". Astronomy and Astrophysics. 528: A85. arXiv:1009.4579. Bibcode:2011A&A...528A..85O. doi:10.1051/0004-6361/201015138. S2CID 119116626.
  84. ^ de la Fuente Marcos, Carlos; de la Fuente Marcos, Raúl (11 October 2019). "Comet C/2018 V1 (Machholz–Fujikawa–Iwamoto): dislodged from the Oort Cloud or coming from interstellar space?". Monthly Notices of the Royal Astronomical Society. 489 (1): 951–961. arXiv:1908.02666. Bibcode:2019MNRAS.489..951D. doi:10.1093/mnras/stz2229.
  85. ^ a b c d e Turnbull, Margaret C.; Tarter, Jill C. (2002). "Target Selection for SETI. I. A Catalog of Nearby Habitable Stellar Systems". The Astrophysical Journal Supplement Series. 145 (1): 181–198. arXiv:astro-ph/0210675. Bibcode:2003ApJS..145..181T. doi:10.1086/345779. S2CID 14734094.
  86. ^ "Sol Company, solstation.com, Stars and Habitable Planets, 2012".
  87. ^ "Habitable zone | Astrobiology, Exoplanets & Habitability | Britannica". www.britannica.com.
  88. ^ Mike Wall (January 6, 2013). "Double-Star Systems Can Be Dangerous for Exoplanets". Space.com.
  89. ^ HD 70642 at SIMBAD - Ids - Bibliography - Image.
  90. ^ "Solar System 'twin' found". BBC News. 2003-07-03.
  91. ^ "Jupiter Twin Discovered Around Solar Twin". eso.org/. Retrieved 16 July 2015.
  92. ^ "Solar Variability and Terrestrial Climate – NASA Science". Retrieved 8 January 2013.

Further reading edit

  • Lockwood, George Wesley; Skiff, Brian A.; Radick, Richard R. (1997). "The Photometric Variability of Sun-like Stars: Observations and Results, 1984—1995". The Astrophysical Journal. 485 (2): 789–811. Bibcode:1997ApJ...485..789L. doi:10.1086/304453.
  • Porto de Mello, Gustavo Frederico; da Silva, Ronaldo; da Silva, Licio (2000). "A Survey of Solar Twin Stars within 50 Parsecs of the Sun". Bioastronomy 99: A New Era in the Search for Life. 213: 73. Bibcode:2000ASPC..213...73P.
  • Turnbull, Margaret C.; Tarter, Jill C. (2003). "Target Selection for SETI. II. Tycho-2 Dwarfs, Old Open Clusters, and the Nearest 100 Stars". The Astrophysical Journal Supplement Series. 149 (2): 423–436. Bibcode:2003ApJS..149..423T. doi:10.1086/379320.
  • Hall, Jeffrey C.; Lockwood, George Wesley (2004). "The Chromospheric Activity and Variability of Cycling and Flat Activity Solar-Analog Stars". The Astrophysical Journal. 614 (2): 942–946. Bibcode:2004ApJ...614..942H. doi:10.1086/423926.
  • do Nascimento Jr., Jose Dias; Castro, Matthieu Sebastien; Meléndez, Jorge; Bazot, Michaël; Théado, Sylvie; Porto de Mello, Gustavo Frederico; De Medeiros, José Renan (2009). "Age and mass of solar twins constrained by lithium abundance". Astronomy and Astrophysics. 501 (1): 687–694. arXiv:0904.3580. Bibcode:2009A&A...501..687D. doi:10.1051/0004-6361/200911935. S2CID 9565600.

solar, analog, solar, twins, redirects, here, musical, group, solar, twins, band, star, that, likely, came, from, same, stellar, nursery, solar, sibling, solar, type, stars, solar, analogs, also, analogues, solar, twins, stars, that, particularly, similar, ste. Solar twins redirects here For the musical group see Solar Twins band For a star that likely came from the same stellar nursery as the Sun see Solar sibling Solar type stars solar analogs also analogues and solar twins are stars that are particularly similar to the Sun The stellar classification is a hierarchy with solar twin being most like the Sun followed by solar analog and then solar type 1 Observations of these stars are important for understanding better the properties of the Sun in relation to other stars and the habitability of planets 2 This illustration compares the somewhat larger and hotter Sun left to the relatively inactive star Tau Ceti Contents 1 By similarity to the Sun 1 1 Solar type 1 2 Solar analog 1 3 Solar twin 2 By potential habitability 3 See also 4 Footnotes 5 References 6 Further readingBy similarity to the Sun editDefining the three categories by their similarity to the Sun reflects the evolution of astronomical observational techniques Originally solar type was the closest that similarity to the Sun could be defined Later more precise measurement techniques and improved observatories allowed for greater precision of key details like temperature enabling the creation of a solar analog category for stars that were particularly similar to the Sun Later still continued improvements in precision allowed for the creation of a solar twin category for near perfect matches citation needed Similarity to the Sun allows for checking derived quantities such as temperature which is derived from the color index against the Sun the only star whose temperature is confidently known For stars that are not similar to the Sun this cross checking cannot be done 1 Solar type edit These stars are broadly similar to the Sun They are main sequence stars with a B V color between 0 48 and 0 80 the Sun having a B V color of 0 65 Alternatively a definition based on spectral type can be used such as F8V through K2V which would correspond to B V color of 0 50 to 1 00 1 This definition fits approximately 10 of stars so a list of solar type stars would be quite extensive 3 Solar type stars show highly correlated behavior between their rotation rates and their chromospheric activity e g Calcium H amp K line emission and coronal activity e g X ray emission 4 Because solar type stars spin down during their main sequence lifetimes due to magnetic braking these correlations allow rough ages to be derived Mamajek amp Hillenbrand 2008 5 have estimated the ages for the 108 solar type F8V K2V main sequence stars within 52 light years 16 parsecs of the Sun based on their chromospheric activity as measured via Ca H and K emission lines citation needed The following table shows a sample of solar type stars within 50 light years that nearly satisfy the criteria for solar analogs B V color between 0 48 and 0 80 based on current measurements the Sun is listed for comparison Sample of solar type stars Identifier J2000 coordinates 6 Distance 6 ly Stellarclass 6 Temperature K Metallicity dex Age Gyr Notes Right ascension Declination Sun 0 0000158 G2V 5778 0 00 4 6 7 Rigil Kentaurus 8 15h 49m 36 49400s 60 50 02 3737 4 37 G2V 5790 0 20 4 4 9 10 11 12 Toliman 4 37 K0V 5260 4 4 Epsilon Eridani 13 09h 27m 29 7s 03 32 55 8 10 4 K2V 5084 0 13 0 4 0 8 Tau Ceti 14 01h 44m 04 1s 15 56 15 11 9 G8V 5344 0 52 5 8 15 82 Eridani 16 03h 19m 55 7s 43 04 11 2 19 8 G8V 5338 0 54 6 1 17 Delta Pavonis 18 20h 08m 43 6s 66 10 55 19 9 G8IV 5604 0 33 7 19 V538 Aurigae 20 05h 41m 20 3s 53 28 51 8 39 9 K1V 5257 0 20 3 7 17 HD 14412 21 02h 18m 58 5s 25 56 45 41 3 G5V 5432 0 46 9 6 17 HR 4587 22 12h 00m 44 3s 10 26 45 7 42 1 G8IV 5538 0 18 8 5 17 HD 172051 23 18h 38m 53 4s 21 03 07 42 7 G5V 5610 0 32 4 3 17 72 Herculis 24 17h 20m 39 6s 32 28 04 46 9 G0V 5662 0 37 5 17 HD 196761 25 20h 40m 11 8s 23 46 26 46 9 G8V 5415 0 31 6 6 19 Nu Lupi 26 15h 21m 48 1s 48 19 03 47 5 G4V 5664 0 34 10 3 19 Solar analog edit These stars are photometrically similar to the Sun having the following qualities 1 Temperature within 500 K from that of the Sun 5278 to 6278 K Metallicity of 50 200 0 3 dex of that of the Sun meaning the star s protoplanetary disk would have had similar amounts of dust from which planets could form No close companion orbital period of ten days or less because such a companion stimulates stellar activity Solar analogs not meeting the stricter solar twin criteria include within 50 light years and in order of increasing distance The Sun is listed for comparison Identifier J2000 coordinates 6 Distance 6 ly Stellarclass 6 Temperature K Metallicity dex Age Gyr Notes Right ascension Declination Sun 0 0000158 G2V 5 778 0 00 4 6 7 Sigma Draconis 27 19h 32m 21 6s 69 39 40 18 8 G9 K0 V 5 297 0 20 4 7 28 Beta Canum Venaticorum 29 12h 33m 44 5s 41 21 27 27 4 G0V 5 930 0 30 6 0 17 61 Virginis 30 13h 18m 24 3s 18 18 40 27 8 G5V 5 558 0 02 6 3 19 Zeta Tucanae 31 00h 20m 04 3s 64 52 29 28 0 F9 5V 5 956 0 14 2 5 15 Beta Comae Berenices 32 13h 11m 52 4s 27 52 41 29 8 G0V 5 970 0 06 2 0 17 61 Ursae Majoris 33 11h 41m 03 0s 34 12 06 31 1 G8V 5 483 0 12 1 0 17 HR 511 34 01h 47m 44 8s 63 51 09 32 8 K0V 5 333 0 05 3 0 17 Alpha Mensae 35 06h 10m 14 5s 74 45 11 33 1 G5V 5 594 0 10 5 4 15 HD 69830 36 08h 18m 23 9s 12 37 56 40 6 K0V 5 410 0 03 10 6 15 HD 10307 37 01h 41m 47 1s 42 36 48 41 2 G1 5V 5 848 0 05 7 0 17 HD 147513 38 16h 24m 01 3s 39 11 35 42 0 G1V 5 858 0 03 0 4 19 58 Eridani 39 04h 47m 36 3s 16 56 04 43 3 G3V 5 868 0 02 0 6 15 47 Ursae Majoris 40 10h 59m 28 0s 40 25 49 45 9 G1V 5 954 0 06 6 0 15 Psi Serpentis 41 15h 44m 01 8s 02 30 54 6 47 8 G5V 5 683 0 04 3 2 42 HD 84117 43 09h 42m 14 4s 23 54 56 48 5 F8V 6 167 0 03 3 1 15 HD 4391 44 00h 45m 45 6s 47 33 07 48 6 G3V 5 878 0 03 1 2 15 20 Leonis Minoris 45 10h 01m 00 7s 31 55 25 49 1 G3V 5 741 0 20 6 5 17 Nu Phoenicis 46 01h 15m 11 1s 45 31 54 49 3 F8V 6 140 0 18 5 7 15 51 Pegasi 47 22h 57m 28 0s 20 46 08 50 9 G2 5IVa 5 804 0 20 7 0 15 Solar twin edit To date no solar twin that exactly matches the Sun has been found 48 However there are some stars that come very close to being identical to the Sun and are such considered solar twins by members of the astronomical community An exact solar twin would be a G2V star with a 5 778K surface temperature be 4 6 billion years old with the correct metallicity and a 0 1 solar luminosity variation 49 Stars with an age of 4 6 billion years are at the most stable state Proper metallicity radius chemical composition rotation magnetic activity and size are also very important to low luminosity variation 50 51 52 53 nbsp Morgan Keenan spectral classification of stars Most common star type in the universe are M dwarfs 76 The Sun is a 4 6 billion year old G class G2V star and is more massive than 95 of all stars Only 7 6 are G class stars The stars below are more similar to the Sun and having the following qualities 1 Temperature within 50 K from that of the Sun 5728 to 5828 K a within 10 K of sun 5768 5788 K Metallicity of 89 112 0 05 dex of that of the Sun meaning the star s proplyd would have had almost exactly the same amount of dust for planetary formation No stellar companion because the Sun itself is a solitary star An age within 1 billion years from that of the Sun 3 6 to 5 6 Ga Other Sun parameters 54 Sun rotates on its axis once in about 27 days or 1 997 kilometres 1 241 mi s Sun radius is 700 000 kilometres 430 000 mi Sun chemical composition by mass hydrogen 73 4 helium 25 carbon 0 2 nitrogen 0 09 oxygen 0 80 neon 0 16 magnesium 0 06 silicon 0 09 amp sulfur 0 05 iron 0 003 The following are the known stars that come closest to satisfying the criteria for a solar twin The Sun is listed for comparison Highlighted boxes are out of range for a solar twin The star may have been noted as solar twin in the past but are more of a solar analog Identifier J2000 coordinates 6 Distance 6 ly Stellarclass 6 Temperature K Metallicity dex Age Gyr Notes Right ascension Declination Sun 0 0000158 G2V 5 778 0 00 4 6 7 18 Scorpii 55 16h 15m 37 3s 08 22 06 45 1 G2Va 5 433 0 03 2 9 56 57 HD 150248 58 16h 41m 49 8s 45 22 07 88 G2 5 750 0 04 6 2 57 HD 164595 59 18h 00m 38 9s 29 34 19 91 G2 5 810 0 06 4 5 57 HD 195034 60 20h 28m 11 8s 22 07 44 92 G5 5 760 0 04 2 9 61 HD 117939 62 13h 34m 32 6s 38 54 26 98 G3 5 730 0 10 6 1 57 HD 138573 63 15h 32m 43 7s 10 58 06 99 G5IV V 5 757 0 00 7 1 64 HD 71334 65 08h 25m 49 5s 29 55 50 124 G2 5 701 0 075 8 1 66 HD 98649 67 11h 20m 51 769s 23 13 02 135 G4V 5 759 0 02 2 3 57 HD 143436 68 16h 00m 18 8s 00 08 13 141 G0 5 768 0 00 3 8 2 9 69 HD 129357 70 14h 41m 22 4s 29 03 32 154 G2V 5 749 0 02 8 2 69 HD 133600 71 15h 05m 13 2s 06 17 24 171 G0 5 808 0 02 6 3 56 HD 186302 72 19h 49m 6 43s 70 11 16 7 184 G3 5 675 0 00 4 5 73 HIP 11915 74 02h 33m 49 02s 19 36 42 5 190 G5V 5 760 0 059 4 1 75 HD 101364 76 11h 40m 28 5s 69 00 31 208 G5V 5 795 0 02 7 1 56 77 HD 197027 78 20h 41m 54 6s 27 12 57 250 G3V 5 723 0 013 8 2 79 Kepler 452 80 19h 44m 00 89s 44 16 39 2 1400 G2V 5 757 0 21 6 0 81 YBP 1194 82 08h 51m 00 8s 11 48 53 2934 G5V 5 780 0 023 4 2 1 6 83 Some other stars are sometimes mentioned as solar twin candidates such as Beta Canum Venaticorum however it has too low metallicities 0 21 for solar twin 16 Cygni B is sometimes noted as twin but is part of a triple star system and is very old for a solar twin at 6 8 Ga Two solar sibling candidates similar age metallicity and kinematics are Gaia DR2 1927143514955658880 and 1966383465746413568 84 By potential habitability editAnother way of defining solar twin is as a habstar a star with qualities believed to be particularly hospitable to a life hosting planet Qualities considered include variability mass age metallicity and close companions 85 b At least 0 5 1 billion years old On the main sequence Non variable Capable of harboring terrestrial planets Support a dynamically stable habitable zone 0 1 non wide stellar companion stars The requirement that the star remain on the main sequence for at least 0 5 1 Ga sets an upper limit of approximately 2 2 3 4 solar masses corresponding to a hottest spectral type of A0 B7V Such stars can be 100x as bright as the Sun 85 88 Tardigrade like life due to the UV flux could potentially survive on planets orbiting stars as hot as B1V with a mass of 10 M and a temperature of 25 000 K a main sequence lifetime of about 20 million years c Non variability is ideally defined as variability of less than 1 but 3 is the practical limit due to limits in available data Variation in irradiance in a star s habitable zone due to a companion star with an eccentric orbit is also a concern 51 52 85 53 Terrestrial planets in multiple star systems those containing three or more stars are not likely to have stable orbits in the long term Stable orbits in binary systems take one of two forms S Type satellite or circumstellar orbits around one of the stars and P Type planetary or circumbinary orbits around the entire binary pair Eccentric Jupiters may also disrupt the orbits of planets in habitable zones 85 Metallicity of at least 40 solar Fe H 0 4 is required for the formation of an Earth like terrestrial planet High metallicity strongly correlates to the formation of hot Jupiters but these are not absolute bars to life as some gas giants end up orbiting within the habitable zone themselves and could potentially host Earth like moons 85 One example of such a star is HD 70642 89 a G5V at temperature of 5533 K but is much younger than the Sun at 1 9 billion years old 90 Another such example would be HIP 11915 which has a planetary system containing a Jupiter like planet orbiting at a similar distance that the planet Jupiter does in the Solar System 91 To strengthen the similarities the star is class G5V has a temperature of 5750 K has a Sun like mass and radius and is only 500 million years younger than the Sun As such the habitable zone would extend in the same area as the zone in the Solar System around 1 AU This would allow an Earth like planet to exist around 1 AU 92 See also editCatalog of Nearby Habitable Systems HabCat List of nearest bright stars List of nearest stars and brown dwarfs Main sequence G type main sequence star Habitability of G type main sequence stars Planetary habitability Space colonizationFootnotes edit A true solar twins as noted by the Lowell Observatory should have a temperature within 10 K of the Sun Space Telescope Science Institute Lowell Observatory noted in 1996 that temperature precision of 10 K can be measured A temperature of 10 K reduces the solar twin list to near zero so 50 K is used for the chart 2 habstar or habitability is currently defined as an area such as a planet or a moon where liquid water can exist for at least a short duration of time 86 87 The supergiant and following supernova amp neutron star due to gt 8 M mass would likely destroy the life at the end of the B1V star s lifetime References edit a b c d e Soderblom David R King Jeremy R 1998 Solar Type Stars Basic Information on Their Classification and Characterization In Jeffrey C Hall ed Solar Analogs Characteristics and Optimum Candidates The Second Annual Lowell Observatory Fall Workshop October 5 7 1997 Lowell Observatory pp 41 60 Bibcode 1998saco conf 41S a b David R Soderblom amp Jeremy R King 1998 Solar Type Stars Basic Information on Their Classification and Characterization Space Telescope Science Institute Lowell Observatory 41 Bibcode 1998saco conf 41S Retrieved 2016 09 30 The Classification of Stars www atlasoftheuniverse com Baliunas S L Donahue R A Soon J H Horne J H Frazer J Woodard Eklund L Bradford M Rao L M Wilson O C Zhang Q January 1 1995 Chromospheric variations in main sequence stars Astrophysical Journal Part 1 438 1 via ntrs nasa gov E E Mamajek L A Hillenbrand 2008 Improved Age Estimation for Solar Type Dwarfs Using Activity Rotation Diagnostics Astrophysical Journal 687 2 1264 arXiv 0807 1686 Bibcode 2008ApJ 687 1264M doi 10 1086 591785 S2CID 27151456 a b c d e f g h i SIMBAD Astronomical Database SIMBAD Centre de Donnees astronomiques de Strasbourg Retrieved 2009 01 14 a b c Williams D R 2004 Sun Fact Sheet NASA Retrieved 2009 06 23 Alpha Centauri A at SIMBAD Ids Bibliography Image Van Leeuwen F 2007 Validation of the new Hipparcos reduction Astronomy and Astrophysics 474 2 653 664 arXiv 0708 1752 Bibcode 2007A amp A 474 653V doi 10 1051 0004 6361 20078357 S2CID 18759600 Wilkinson John 2012 The Sun and Stars New Eyes on the Sun Astronomers Universe pp 219 236 doi 10 1007 978 3 642 22839 1 10 ISBN 978 3 642 22838 4 ISSN 1614 659X Thevenin F Provost J Morel P Berthomieu G Bouchy F Carrier F 2002 Asteroseismology and calibration of alpha Cen binary system Astronomy amp Astrophysics 392 L9 arXiv astro ph 0206283 Bibcode 2002A amp A 392L 9T doi 10 1051 0004 6361 20021074 S2CID 17293259 E E Mamajek L A Hillenbrand 2008 Improved Age Estimation for Solar Type Dwarfs Using Activity Rotation Diagnostics Astrophysical Journal 687 2 1264 1293 arXiv 0807 1686 Bibcode 2008ApJ 687 1264M doi 10 1086 591785 S2CID 27151456 Epsilon Eridani at SIMBAD Ids Bibliography Image Tau Ceti at SIMBAD Ids Bibliography Image a b c d e f g h i j Santos N C Israelian G Randich S Garcia Lopez R J Rebolo R October 2004 Beryllium anomalies in solar type field stars Astronomy and Astrophysics 425 3 1013 1027 arXiv astro ph 0408109 Bibcode 2004A amp A 425 1013S doi 10 1051 0004 6361 20040510 S2CID 17279966 82 Eridani at SIMBAD Ids Bibliography Image a b c d e f g h i j k l Holmberg J Nordstrom B Andersen J Nordstrom Andersen July 2009 The Geneva Copenhagen survey of the solar neighbourhood III Improved distances ages and kinematics Astronomy and Astrophysics 501 3 941 947 arXiv 0811 3982 Bibcode 2009A amp A 501 941H doi 10 1051 0004 6361 200811191 S2CID 118577511 a href Template Cite journal html title Template Cite journal cite journal a CS1 maint multiple names authors list link See Vizier catalogue V 130 Delta Pavonis at SIMBAD Ids Bibliography Image a b c d e Sousa S G et al August 2008 Spectroscopic parameters for 451 stars in the HARPS GTO planet search program Stellar Fe H and the frequency of exo Neptunes Astronomy and Astrophysics 487 1 373 381 arXiv 0805 4826 Bibcode 2008A amp A 487 373S doi 10 1051 0004 6361 200809698 S2CID 18173201 See VizieR catalogue J A A 487 373 V538 Aurigae at SIMBAD Ids Bibliography Image HD 14412 at SIMBAD Ids Bibliography Image HR 4587 at SIMBAD Ids Bibliography Image HD 172051 at SIMBAD Ids Bibliography Image 72 Herculis at SIMBAD Ids Bibliography Image HD 196761 at SIMBAD Ids Bibliography Image nu2 lupi at SIMBAD Ids Bibliography Image Sigma Draconis at SIMBAD Ids Bibliography Image Boyajian Tabetha S et al August 2008 Angular Diameters of the G Subdwarf µ Cassiopeiae A and the K Dwarfs s Draconis and HR 511 from Interferometric Measurements with the CHARA Array The Astrophysical Journal 683 1 424 432 arXiv 0804 2719 Bibcode 2008ApJ 683 424B doi 10 1086 589554 S2CID 8886682 Beta Canum Venaticorum at SIMBAD Ids Bibliography Image 61 Virginis at SIMBAD Ids Bibliography Image Zeta Tucanae at SIMBAD Ids Bibliography Image Beta Comae Berenices at SIMBAD Ids Bibliography Image 61 Ursae Majoris at SIMBAD Ids Bibliography Image HR 511 at SIMBAD Ids Bibliography Image Alpha Mensae at SIMBAD Ids Bibliography Image HD 69830 at SIMBAD Ids Bibliography Image HD 10307 at SIMBAD Ids Bibliography Image HD 147513 at SIMBAD Ids Bibliography Image 58 Eridani at SIMBAD Ids Bibliography Image 47 Ursae Majoris at SIMBAD Ids Bibliography Image Psi Serpentis at SIMBAD Ids Bibliography Image Mahdi D et al March 2016 Solar twins in the ELODIE archive Astronomy amp Astrophysics 587 9 arXiv 1601 01599 Bibcode 2016A amp A 587A 131M doi 10 1051 0004 6361 201527472 S2CID 119205608 A131 HD 84117 at SIMBAD Ids Bibliography Image HD 4391 at SIMBAD Ids Bibliography Image 20 Leonis Minoris at SIMBAD Ids Bibliography Image Nu Phoenicis at SIMBAD Ids Bibliography Image 51 Pegasi at SIMBAD Ids Bibliography Image Solar Variability and Terrestrial Climate NASA Science science nasa gov Solar Variability and Terrestrial Climate NASA Science science nasa gov Mahdi D Soubiran C Blanco Cuaresma S Chemin L March 1 2016 Solar twins in the ELODIE archive Astronomy amp Astrophysics 587 A131 arXiv 1601 01599 Bibcode 2016A amp A 587A 131M doi 10 1051 0004 6361 201527472 via www aanda org a b Stellar Luminosity Calculator astro unl edu a b The Effects of Solar Variability on Earth s Climate A Workshop Report National Academies Press November 12 2012 a b Most of Earth s twins aren t identical or even close ScienceBlogs scienceblogs com 15 1 The Structure and Composition of the Sun January 23 2017 via pressbooks online ucf edu a href Template Cite journal html title Template Cite journal cite journal a Cite journal requires journal help 18 Scorpii at SIMBAD Ids Bibliography Image a b c Melendez Jorge Ramirez Ivan November 2007 HIP 56948 A Solar Twin with a Low Lithium Abundance The Astrophysical Journal 669 2 L89 L92 arXiv 0709 4290 Bibcode 2007ApJ 669L 89M doi 10 1086 523942 S2CID 15952981 a b c d e Porto de Mello G F da Silva R da Silva L amp de Nader R V March 2014 A photometric and spectroscopic survey of solar twin stars within 50 parsecs of the Sun I Atmospheric parameters and color similarity to the Sun Astronomy and Astrophysics 563 A52 arXiv 1312 7571 Bibcode 2014A amp A 563A 52P doi 10 1051 0004 6361 201322277 S2CID 119111150 HD 150248 at SIMBAD Ids Bibliography Image HD 164595 at SIMBAD Ids Bibliography Image HD 195034 at SIMBAD Ids Bibliography Image Takeda Yoichi Tajitsu Akito 2009 High Dispersion Spectroscopic Study of Solar Twins HIP 56948 HIP 79672 and HIP 100963 Publications of the Astronomical Society of Japan 61 3 471 478 arXiv 0901 2509 Bibcode 2009PASJ 61 471T doi 10 1093 pasj 61 3 471 HD 117939 at SIMBAD Ids Bibliography Image HD 138573 at SIMBAD Ids Bibliography Image Mahdi D et al March 2016 Solar twins in the ELODIE archive Astronomy amp Astrophysics 587 9 arXiv 1601 01599 Bibcode 2016A amp A 587A 131M doi 10 1051 0004 6361 201527472 S2CID 119205608 A131 HD 71334 at SIMBAD Ids Bibliography Image Carlos Marilia Nissen Poul E Melendez Jorge 2016 Correlation between lithium abundances and ages of solar twin stars Astronomy amp Astrophysics 587 A100 arXiv 1601 05054 Bibcode 2016A amp A 587A 100C doi 10 1051 0004 6361 201527478 S2CID 119268561 HD 98649 at SIMBAD Ids Bibliography Image HD 143436 at SIMBAD Ids Bibliography Image a b King Jeremy R Boesgaard Ann M Schuler Simon C November 2005 Keck HIRES Spectroscopy of Four Candidate Solar Twins The Astronomical Journal 130 5 2318 2325 arXiv astro ph 0508004 Bibcode 2005AJ 130 2318K doi 10 1086 452640 S2CID 6535115 HD 129357 at SIMBAD Ids Bibliography Image HD 133600 at SIMBAD Ids Bibliography Image HD 186302 at SIMBAD Ids Bibliography Image Adibekyan V et al November 2018 The AMBRE project searching for the closest solar siblings Astronomy amp Astrophysics 619 19 arXiv 1601 01599 Bibcode 2016A amp A 587A 131M doi 10 1051 0004 6361 201834285 S2CID 119205608 A130 HIP 11915 at SIMBAD Ids Bibliography Image M Bedell J Melendez J L Bean I Ramirez M Asplund A Alves Brito L Casagrande S Dreizler T Monroe L Spina M Tucci Maia June 26 2015 The Solar Twin Planet Search II A Jupiter twin around a solar twin PDF Astronomy and Astrophysics 581 8 arXiv 1507 03998 Bibcode 2015A amp A 581A 34B doi 10 1051 0004 6361 201525748 S2CID 56004595 Retrieved 17 July 2015 HIP 56948 at SIMBAD Ids Bibliography Image Vazquez M Palle E Rodriguez P Montanes 2010 Is Our Environment Special The Earth as a Distant Planet A Rosetta Stone for the Search of Earth Like Worlds Astronomy and Astrophysics Library Springer New York pp 391 418 doi 10 1007 978 1 4419 1684 6 ISBN 978 1 4419 1683 9 See table 9 1 HIP 102152 at SIMBAD Ids Bibliography Image Monroe T R et al 2013 High Precision Abundances of the Old Solar Twin HIP 102152 Insights on Li Depletion from the Oldest Sun The Astrophysical Journal Letters 774 2 22 arXiv 1308 5744 Bibcode 2013ApJ 774L 32M doi 10 1088 2041 8205 774 2 L32 S2CID 56111132 Kepler 452 at SIMBAD Ids Bibliography Image Planet Kepler 452 b Extrasolar Planets Encyclopaedia Retrieved 6 July 2016 Cl NGC 2682 YBP 1194 at SIMBAD Ids Bibliography Image A Onehag A Korn B Gustafsson E Stempels D A VandenBerg 2011 M67 1194 an unusually Sun like solar twin in M67 Astronomy and Astrophysics 528 A85 arXiv 1009 4579 Bibcode 2011A amp A 528A 85O doi 10 1051 0004 6361 201015138 S2CID 119116626 de la Fuente Marcos Carlos de la Fuente Marcos Raul 11 October 2019 Comet C 2018 V1 Machholz Fujikawa Iwamoto dislodged from the Oort Cloud or coming from interstellar space Monthly Notices of the Royal Astronomical Society 489 1 951 961 arXiv 1908 02666 Bibcode 2019MNRAS 489 951D doi 10 1093 mnras stz2229 a b c d e Turnbull Margaret C Tarter Jill C 2002 Target Selection for SETI I A Catalog of Nearby Habitable Stellar Systems The Astrophysical Journal Supplement Series 145 1 181 198 arXiv astro ph 0210675 Bibcode 2003ApJS 145 181T doi 10 1086 345779 S2CID 14734094 Sol Company solstation com Stars and Habitable Planets 2012 Habitable zone Astrobiology Exoplanets amp Habitability Britannica www britannica com Mike Wall January 6 2013 Double Star Systems Can Be Dangerous for Exoplanets Space com HD 70642 at SIMBAD Ids Bibliography Image Solar System twin found BBC News 2003 07 03 Jupiter Twin Discovered Around Solar Twin eso org Retrieved 16 July 2015 Solar Variability and Terrestrial Climate NASA Science Retrieved 8 January 2013 Further reading editLockwood George Wesley Skiff Brian A Radick Richard R 1997 The Photometric Variability of Sun like Stars Observations and Results 1984 1995 The Astrophysical Journal 485 2 789 811 Bibcode 1997ApJ 485 789L doi 10 1086 304453 Porto de Mello Gustavo Frederico da Silva Ronaldo da Silva Licio 2000 A Survey of Solar Twin Stars within 50 Parsecs of the Sun Bioastronomy 99 A New Era in the Search for Life 213 73 Bibcode 2000ASPC 213 73P Turnbull Margaret C Tarter Jill C 2003 Target Selection for SETI II Tycho 2 Dwarfs Old Open Clusters and the Nearest 100 Stars The Astrophysical Journal Supplement Series 149 2 423 436 Bibcode 2003ApJS 149 423T doi 10 1086 379320 Hall Jeffrey C Lockwood George Wesley 2004 The Chromospheric Activity and Variability of Cycling and Flat Activity Solar Analog Stars The Astrophysical Journal 614 2 942 946 Bibcode 2004ApJ 614 942H doi 10 1086 423926 do Nascimento Jr Jose Dias Castro Matthieu Sebastien Melendez Jorge Bazot Michael Theado Sylvie Porto de Mello Gustavo Frederico De Medeiros Jose Renan 2009 Age and mass of solar twins constrained by lithium abundance Astronomy and Astrophysics 501 1 687 694 arXiv 0904 3580 Bibcode 2009A amp A 501 687D doi 10 1051 0004 6361 200911935 S2CID 9565600 Retrieved from https en wikipedia org w index php title Solar analog amp oldid 1223545403, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.