fbpx
Wikipedia

Sub-orbital spaceflight

A sub-orbital spaceflight is a spaceflight in which the spacecraft reaches outer space, but its trajectory intersects the atmosphere or surface of the gravitating body from which it was launched, so that it will not complete one orbital revolution (it does not become an artificial satellite) or reach escape velocity.

Landing of the New Shepard booster stage, after completing a sub-orbital flight

For example, the path of an object launched from Earth that reaches the Kármán line (at 100 km (62 mi)) above sea level), and then falls back to Earth, is considered a sub-orbital spaceflight. Some sub-orbital flights have been undertaken to test spacecraft and launch vehicles later intended for orbital spaceflight. Other vehicles are specifically designed only for sub-orbital flight; examples include crewed vehicles, such as the X-15 and SpaceShipOne, and uncrewed ones, such as ICBMs and sounding rockets.

Flights which attain sufficient velocity to go into low Earth orbit, and then de-orbit before completing their first full orbit, are not considered sub-orbital. Examples of this include Yuri Gagarin's Vostok 1, and flights of the Fractional Orbital Bombardment System.

A flight that does not reach space is still sometimes called suborbital, but is not a 'suborbital spaceflight'. Usually a rocket is used, but experimental sub-orbital spaceflight has also been achieved with a space gun.[2]

Altitude requirement

 
Isaac Newton's Cannonball. Paths A and B depict a sub-orbital trajectory.

By one definition a sub-orbital spaceflight reaches an altitude higher than 100 km (62 mi) above sea level. This altitude, known as the Kármán line, was chosen by the Fédération Aéronautique Internationale because it is roughly the point where a vehicle flying fast enough to support itself with aerodynamic lift from the Earth's atmosphere would be flying faster than orbital speed.[3] The US military and NASA award astronaut wings to those flying above 50 mi (80 km),[4] although the U.S. State Department appears not to support a distinct boundary between atmospheric flight and spaceflight.[5]

Orbit

During freefall the trajectory is part of an elliptic orbit as given by the orbit equation. The perigee distance is less than the radius of the Earth R including atmosphere, hence the ellipse intersects the Earth, and hence the spacecraft will fail to complete an orbit. The major axis is vertical, the semi-major axis a is more than R/2. The specific orbital energy   is given by:

 

where   is the standard gravitational parameter.

Almost always a < R, corresponding to a lower   than the minimum for a full orbit, which is  

Thus the net extra specific energy needed compared to just raising the spacecraft into space is between 0 and  .

Speed, range, and altitude

To minimize the required delta-v (an astrodynamical measure which strongly determines the required fuel), the high-altitude part of the flight is made with the rockets off (this is technically called free-fall even for the upward part of the trajectory). (Compare with Oberth effect.) The maximum speed in a flight is attained at the lowest altitude of this free-fall trajectory, both at the start and at the end of it.

If one's goal is simply to "reach space", for example in competing for the Ansari X Prize, horizontal motion is not needed. In this case the lowest required delta-v, to reach 100 km altitude, is about 1.4 km/s. Moving slower, with less free-fall, would require more delta-v.

Compare this with orbital spaceflights: a low Earth orbit (LEO), with an altitude of about 300 km, needs a speed around 7.7 km/s, requiring a delta-v of about 9.2 km/s. (If there were no atmospheric drag the theoretical minimum delta-v would be 8.1 km/s to put a craft into a 300-km high orbit starting from a stationary point like the South Pole. The theoretical minimum can be up to 0.46 km/s less if launching eastward from near the equator.)

For sub-orbital spaceflights covering a horizontal distance the maximum speed and required delta-v are in between those of a vertical flight and a LEO. The maximum speed at the lower ends of the trajectory are now composed of a horizontal and a vertical component. The higher the horizontal distance covered, the greater the horizontal speed will be. (The vertical velocity will increase with distance for short distances but will decrease with distance at longer distances.) For the V-2 rocket, just reaching space but with a range of about 330 km, the maximum speed was 1.6 km/s. Scaled Composites SpaceShipTwo which is under development will have a similar free-fall orbit but the announced maximum speed is 1.1 km/s (perhaps because of engine shut-off at a higher altitude).

For larger ranges, due to the elliptic orbit the maximum altitude can be much more than for a LEO. On a 10,000-km intercontinental flight, such as that of an intercontinental ballistic missile or possible future commercial spaceflight, the maximum speed is about 7 km/s, and the maximum altitude may be more than 1300 km. Any spaceflight that returns to the surface, including sub-orbital ones, will undergo atmospheric reentry. The speed at the start of the reentry is basically the maximum speed of the flight. The aerodynamic heating caused will vary accordingly: it is much less for a flight with a maximum speed of only 1 km/s than for one with a maximum speed of 7 or 8 km/s.

The minimum delta-v and the corresponding maximum altitude for a given range can be calculated, d, assuming a spherical Earth of circumference 40000 km and neglecting the Earth's rotation and atmosphere. Let θ be half the angle that the projectile is to go around the Earth, so in degrees it is 45°×d/10000 km. The minimum-delta-v trajectory corresponds to an ellipse with one focus at the centre of the Earth and the other at the point halfway between the launch point and the destination point (somewhere inside the Earth). (This is the orbit that minimizes the semi-major axis, which is equal to the sum of the distances from a point on the orbit to the two foci. Minimizing the semi-major axis minimizes the specific orbital energy and thus the delta-v, which is the speed of launch.) Geometrical arguments lead then to the following (with R being the radius of the Earth, about 6370 km):

 

 

 

 

Note that the altitude of apogee is maximized (at about 1320 km) for a trajectory going one quarter of the way around the Earth (10000 km). Longer ranges will have lower apogees in the minimal-delta-v solution.

 

 

(where g is the acceleration of gravity at the Earth's surface). The Δv increases with range, leveling off at 7.9 km/s as the range approaches 20000 km (halfway around the world). The minimum-delta-v trajectory for going halfway around the world corresponds to a circular orbit just above the surface (of course in reality it would have to be above the atmosphere). See lower for the time of flight.

An intercontinental ballistic missile is defined as a missile that can hit a target at least 5500 km away, and according to the above formula this requires an initial speed of 6.1 km/s. Increasing the speed to 7.9 km/s to attain any point on Earth requires a considerably larger missile because the amount of fuel needed goes up exponentially with delta-v (see Rocket equation).

The initial direction of a minimum-delta-v trajectory points halfway between straight up and straight toward the destination point (which is below the horizon). Again, this is the case if the Earth's rotation is ignored. It is not exactly true for a rotating planet unless the launch takes place at a pole.[6]

Flight duration

In a vertical flight of not too high altitudes, the time of the free-fall is both for the upward and for the downward part the maximum speed divided by the acceleration of gravity, so with a maximum speed of 1 km/s together 3 minutes and 20 seconds. The duration of the flight phases before and after the free-fall can vary.

For an intercontinental flight the boost phase takes 3 to 5 minutes, the free-fall (midcourse phase) about 25 minutes. For an ICBM the atmospheric reentry phase takes about 2 minutes; this will be longer for any soft landing, such as for a possible future commercial flight.

Sub-orbital flights can last from just seconds to days. Pioneer 1 was NASA's first space probe, intended to reach the Moon. A partial failure caused it to instead follow a sub-orbital trajectory, reentering the Earth's atmosphere 43 hours after launch.

To calculate the time of flight for a minimum-delta-v trajectory, according to Kepler's third law, the period for the entire orbit (if it didn't go through the Earth) would be:

 

Using Kepler's second law, we multiply this by the portion of the area of the ellipse swept by the line from the centre of the Earth to the projectile:

 

 

This gives about 32 minutes for going a quarter of the way around the Earth, and 42 minutes for going halfway around. For short distances, this expression is asymptotic to  .

From the form involving arccosine, the derivative of the time of flight with respect to d (or θ) goes to zero as d approaches 20000 km (halfway around the world). The derivative of Δv also goes to zero here. So if d = 19000 km, the length of the minimum-delta-v trajectory will be about 19500 km, but it will take only a few seconds less time than the trajectory for d = 20000 km (for which the trajectory is 20000 km long).

Flight profiles

 
Profile for the first crewed American sub-orbital flight, 1961. Launch rocket lifts the spacecraft for the first 2:22 minutes. Dashed line: zero gravity.
 
Science and Mechanics cover of November 1931, showing a proposed sub-orbital spaceship that would reach an altitude 700 miles (1,100 km) on its one hour trip from Berlin to New York.

While there are a great many possible sub-orbital flight profiles, it is expected that some will be more common than others.

 
The X-15 (1958–1968) was launched to an altitude of 13.7 km by a B-52 mothership, lifted itself to approximately 100 km, and then glided to the ground.

Ballistic missiles

The first sub-orbital vehicles which reached space were ballistic missiles. The very first ballistic missile to reach space was the German V-2, the work of the scientists at Peenemünde, on October 3, 1942 which reached an altitude of 60 miles (97 km).[7] Then in the late 1940s the US and USSR concurrently developed missiles all of which were based on the V-2 Rocket, and then much longer range Intercontinental Ballistic Missiles (ICBMs). There are now many countries who possess ICBMs and even more with shorter range Intermediate Range Ballistic Missiles (IRBMs).

Tourist flights

Sub-orbital tourist flights will initially focus on attaining the altitude required to qualify as reaching space. The flight path will be either vertical or very steep, with the spacecraft landing back at its take-off site.

The spacecraft will shut off its engines well before reaching maximum altitude, and then coast up to its highest point. During a few minutes, from the point when the engines are shut off to the point where the atmosphere begins to slow down the downward acceleration, the passengers will experience weightlessness.

Megaroc had been planned for sub-orbital spaceflight by the British Interplanetary Society in the 1940s.[8][9]

In the autumn of 1945, the group M. Tikhonravov K. and N. G. Chernysheva at NII-4 rocket artillery Academy of Sciences technology on its own initiative the first stratospheric rocket project was developed by VR-190 for vertical flight two pilots to an altitude of 200 km based on captured German ballistic rocket V-2.[10]

In 2004, a number of companies worked on vehicles in this class as entrants to the Ansari X Prize competition. The Scaled Composites SpaceShipOne was officially declared by Rick Searfoss to have won the competition on October 4, 2004 after completing two flights within a two-week period.

In 2005, Sir Richard Branson of the Virgin Group announced the creation of Virgin Galactic and his plans for a 9-seat capacity SpaceShipTwo named VSS Enterprise. It has since been completed with eight seats (one pilot, one co-pilot and six passengers) and has taken part in captive-carry tests and with the first mother-ship WhiteKnightTwo, or VMS Eve. It has also completed solitary glides, with the movable tail sections in both fixed and "feathered" configurations. The hybrid rocket motor has been fired multiple times in ground-based test stands, and was fired in a powered flight for the second time on 5 September 2013.[11] Four additional SpaceShipTwos have been ordered and will operate from the new Spaceport America. Commercial flights carrying passengers were expected in 2014, but became cancelled due to the disaster during SS2 PF04 flight. Branson stated, "[w]e are going to learn from what went wrong, discover how we can improve safety and performance and then move forwards together."[12]

Scientific experiments

A major use of sub-orbital vehicles today is as scientific sounding rockets. Scientific sub-orbital flights began in the 1920s when Robert H. Goddard launched the first liquid fueled rockets, however they did not reach space altitude. In the late 1940s, captured German V-2 ballistic missiles were converted into V-2 sounding rockets which helped lay the foundation for modern sounding rockets.[13] Today there are dozens of different sounding rockets on the market, from a variety of suppliers in various countries. Typically, researchers wish to conduct experiments in microgravity or above the atmosphere.

Sub-orbital transportation

Research, such as that done for the X-20 Dyna-Soar project suggests that a semi-ballistic sub-orbital flight could travel from Europe to North America in less than an hour.

However, the size of rocket, relative to the payload, necessary to achieve this, is similar to an ICBM. ICBMs have delta-v's somewhat less than orbital; and therefore would be somewhat cheaper than the costs for reaching orbit, but the difference is not large.[14]

Thus due to the high cost, this is likely to be initially limited to high value, very high urgency cargo such as courier flights, or as the ultimate business jet; or possibly as an extreme sport, or for military fast-response.[opinion]

The SpaceLiner is a hypersonic suborbital spaceplane concept that could transport 50 passengers from Australia to Europe in 90 minutes or 100 passengers from Europe to California in 60 minutes.[15] The main challenge lies in increasing the reliability of the different components, particularly the engines, in order to make their use for passenger transportation on a daily basis possible.

SpaceX is potentially considering using their Starship as a sub-orbital point-to-point transport.[16]

Notable uncrewed sub-orbital spaceflights

Crewed sub-orbital spaceflights

Above 100 km (62.14 mi) in altitude.

Date (GMT) Mission Crew Country Remarks
1 1961-05-05 Mercury-Redstone 3 Alan Shepard   United States First crewed sub-orbital spaceflight, first American in space
2 1961-07-21 Mercury-Redstone 4 Virgil Grissom   United States Second crewed sub-orbital spaceflight, second American in space
3 1963-07-19 X-15 Flight 90 Joseph A. Walker   United States First winged craft in space
4 1963-08-22 X-15 Flight 91 Joseph A. Walker   United States First person and spacecraft to make two flights into space
5 1975-04-05 Soyuz 18a Vasili Lazarev
Oleg Makarov
  Soviet Union Failed orbital launch. Aborted after malfunction during stage separation
6 2004-06-21 SpaceShipOne flight 15P Mike Melvill   United States First commercial spaceflight
7 2004-09-29 SpaceShipOne flight 16P Mike Melvill   United States First of two flights to win Ansari X-Prize
8 2004-10-04 SpaceShipOne flight 17P Brian Binnie   United States Second X-Prize flight, clinching award
9 2021-07-20 Blue Origin NS-16 Jeff Bezos
Mark Bezos
Wally Funk
Oliver Daemen
  United States First crewed Blue Origin flight
10 2021-10-13 Blue Origin NS-18 Audrey Powers
Chris Boshuizen
Glen de Vries
William Shatner
  United States Second crewed Blue Origin flight
11 2021-12-11 Blue Origin NS-19 Laura Shepard Churchley
Michael Strahan
Dylan Taylor
Evan Dick
Lane Bess
Cameron Bess
  United States Third crewed Blue Origin flight
12 2022-03-31 Blue Origin NS-20 Marty Allen
Sharon Hagle
Marc Hagle
Jim Kitchen
George Nield
Gary Lai
  United States Fourth crewed Blue Origin flight
13 2022-06-04 Blue Origin NS-21 Evan Dick
Katya Echazarreta
Hamish Harding
Victor Correa Hespanha
Jaison Robinson
Victor Vescovo
  United States Fifth crewed Blue Origin flight
14 2022-08-04 Blue Origin NS-22 Coby Cotton
Mário Ferreira
Vanessa O'Brien
Clint Kelly III
Sara Sabry
Steve Young
  United States Sixth crewed Blue Origin flight
 
Timeline of Space­Ship­One, Space­Ship­Two, CSXT and New Shepard sub-orbital flights. Where booster and capsule achieved different altitudes, the higher is plotted. In the SVG file, hover over a point to show details.

Future of crewed sub-orbital spaceflight

Private companies such as Virgin Galactic, Armadillo Aerospace (reinvented as Exos Aerospace), Airbus,[19] Blue Origin and Masten Space Systems are taking an interest in sub-orbital spaceflight, due in part to ventures like the Ansari X Prize. NASA and others are experimenting with scramjet-based hypersonic aircraft which may well be used with flight profiles that qualify as sub-orbital spaceflight. Non-profit entities like ARCASPACE and Copenhagen Suborbitals also attempt rocket-based launches.

See also

References

  1. ^ Foust, Jeff (20 July 2021). "Blue Origin launches Bezos on first crewed New Shepard flight". SpaceNews. Retrieved 20 Jul 2021.
  2. ^ . Archived from the original on 2010-09-26.
  3. ^ . Fédération Aéronautique Internationale. Archived from the original on 2011-08-09. Retrieved 2017-09-14.
  4. ^ Whelan, Mary (5 June 2013). "X-15 Space Pioneers Now Honored as Astronauts". nasa.gov. from the original on 11 June 2017. Retrieved 4 May 2018.
  5. ^ "85. U.S. Statement, Definition and Delimitation of Outer Space And The Character And Utilization Of The Geostationary Orbit, Legal Subcommittee of the United Nations Committee on the Peaceful Uses of Outer Space at its 40th Session in Vienna from April". state.gov. Retrieved 4 May 2018.
  6. ^ Blanco, Philip (September 2020). "Modeling ICBM Trajectories Around a Rotating Globe with Systems Tool Kit". The Physics Teacher. 58 (7): 494–496. Bibcode:2019PhTea..58..494B. doi:10.1119/10.0002070. S2CID 225017449.
  7. ^ Germany's V-2 Rocket, Kennedy, Gregory P.
  8. ^ Hollingham, Richard. "How a Nazi rocket could have put a Briton in space". bbc.com. from the original on 14 November 2016. Retrieved 4 May 2018.
  9. ^ "Megaroc". www.bis-space.com. from the original on 30 October 2016. Retrieved 4 May 2018.
  10. ^ Anatoli I. Kiselev; Alexander A. Medvedev; Valery A. Menshikov (December 2012). Astronautics: Summary and Prospects. Translated by V. Sherbakov; N. Novichkov; A. Nechaev. Springer Science & Business Media. pp. 1–2. ISBN 9783709106488.
  11. ^ "Scaled Composites: Projects - Test Logs for SpaceShipTwo". from the original on 2013-08-16. Retrieved 2013-08-14.
  12. ^ "Branson on Virgin Galactic crash: 'Space is hard – but worth it'". CNET. Retrieved August 1, 2015.
  13. ^ "ch2". history.nasa.gov. Archived from the original on 2015-11-29. Retrieved 2015-11-28.
  14. ^ "The Space Review: Point-to-point suborbital transportation: sounds good on paper, but…". www.thespacereview.com. from the original on 1 August 2017. Retrieved 4 May 2018.
  15. ^ Sippel, M. (2010). "Promising roadmap alternatives for the SpaceLiner" (PDF). Acta Astronautica. 66 (11–12): 1652–1658. Bibcode:2010AcAau..66.1652S. doi:10.1016/j.actaastro.2010.01.020.
  16. ^ Ralph, Eric (30 May 2019). "SpaceX CEO Elon Musk wants to use Starships as Earth-to-Earth transports". Teslarati. Retrieved 31 May 2019.
  17. ^ Walter Dornberger, Moewig, Berlin 1984. ISBN 3-8118-4341-9.
  18. ^ . White Sands Missile Range. Archived from the original on 2008-01-10.
  19. ^ Amos, Jonathan (3 June 2014). "Airbus drops model 'space jet'". BBC News. from the original on 4 May 2018. Retrieved 4 May 2018.

orbital, spaceflight, orbital, spaceflight, spaceflight, which, spacecraft, reaches, outer, space, trajectory, intersects, atmosphere, surface, gravitating, body, from, which, launched, that, will, complete, orbital, revolution, does, become, artificial, satel. A sub orbital spaceflight is a spaceflight in which the spacecraft reaches outer space but its trajectory intersects the atmosphere or surface of the gravitating body from which it was launched so that it will not complete one orbital revolution it does not become an artificial satellite or reach escape velocity Landing of the New Shepard booster stage after completing a sub orbital flight Sub orbital human spaceflight FAI defined space border Name Year Flights LocationMercury Redstone 3 Mercury Redstone 4 1961 2 Cape CanaveralX 15 Flight 90 X 15 Flight 91 1963 2 Edwards AFBSoyuz 18a 1975 1 Baikonur CosmodromeSpaceShipOne Flight 15P SpaceShipOne Flight 16P SpaceShipOne Flight 17P 2004 3 Mojave Air and Space PortBlue Origin NS 16 1 Blue Origin NS 18 Blue Origin NS 19 2021 3 Corn RanchBlue Origin NS 20 Blue Origin NS 21 Blue Origin NS 22 2022 3Sub orbital human spaceflight United States defined space border excluding those above Name Year Flights LocationX 15 Flight 62 1962 1 Edwards AFBX 15 Flight 77 X 15 Flight 87 1963 2X 15 Flight 138 X 15 Flight 143 X 15 Flight 150 X 15 Flight 153 1965 4X 15 Flight 174 1966 1X 15 Flight 190 X 15 Flight 191 1967 2X 15 Flight 197 1968 1Soyuz MS 10 2018 1 Baikonur CosmodromeVSS Unity VP 03 2018 1 Mojave Air and Space PortVSS Unity VF 01 2019 1VSS Unity Unity21VSS Unity Unity22 2021 2 Spaceport AmericaFor example the path of an object launched from Earth that reaches the Karman line at 100 km 62 mi above sea level and then falls back to Earth is considered a sub orbital spaceflight Some sub orbital flights have been undertaken to test spacecraft and launch vehicles later intended for orbital spaceflight Other vehicles are specifically designed only for sub orbital flight examples include crewed vehicles such as the X 15 and SpaceShipOne and uncrewed ones such as ICBMs and sounding rockets Flights which attain sufficient velocity to go into low Earth orbit and then de orbit before completing their first full orbit are not considered sub orbital Examples of this include Yuri Gagarin s Vostok 1 and flights of the Fractional Orbital Bombardment System A flight that does not reach space is still sometimes called suborbital but is not a suborbital spaceflight Usually a rocket is used but experimental sub orbital spaceflight has also been achieved with a space gun 2 Contents 1 Altitude requirement 2 Orbit 3 Speed range and altitude 4 Flight duration 5 Flight profiles 5 1 Ballistic missiles 5 2 Tourist flights 5 3 Scientific experiments 5 4 Sub orbital transportation 6 Notable uncrewed sub orbital spaceflights 7 Crewed sub orbital spaceflights 8 Future of crewed sub orbital spaceflight 9 See also 10 ReferencesAltitude requirement Edit Isaac Newton s Cannonball Paths A and B depict a sub orbital trajectory By one definition a sub orbital spaceflight reaches an altitude higher than 100 km 62 mi above sea level This altitude known as the Karman line was chosen by the Federation Aeronautique Internationale because it is roughly the point where a vehicle flying fast enough to support itself with aerodynamic lift from the Earth s atmosphere would be flying faster than orbital speed 3 The US military and NASA award astronaut wings to those flying above 50 mi 80 km 4 although the U S State Department appears not to support a distinct boundary between atmospheric flight and spaceflight 5 Orbit EditDuring freefall the trajectory is part of an elliptic orbit as given by the orbit equation The perigee distance is less than the radius of the Earth R including atmosphere hence the ellipse intersects the Earth and hence the spacecraft will fail to complete an orbit The major axis is vertical the semi major axis a is more than R 2 The specific orbital energy ϵ displaystyle epsilon is given by e m 2 a gt m R displaystyle varepsilon mu over 2a gt mu over R where m displaystyle mu is the standard gravitational parameter Almost always a lt R corresponding to a lower ϵ displaystyle epsilon than the minimum for a full orbit which is m 2 R displaystyle mu over 2R Thus the net extra specific energy needed compared to just raising the spacecraft into space is between 0 and m 2 R displaystyle mu over 2R Speed range and altitude EditTo minimize the required delta v an astrodynamical measure which strongly determines the required fuel the high altitude part of the flight is made with the rockets off this is technically called free fall even for the upward part of the trajectory Compare with Oberth effect The maximum speed in a flight is attained at the lowest altitude of this free fall trajectory both at the start and at the end of it If one s goal is simply to reach space for example in competing for the Ansari X Prize horizontal motion is not needed In this case the lowest required delta v to reach 100 km altitude is about 1 4 km s Moving slower with less free fall would require more delta v Compare this with orbital spaceflights a low Earth orbit LEO with an altitude of about 300 km needs a speed around 7 7 km s requiring a delta v of about 9 2 km s If there were no atmospheric drag the theoretical minimum delta v would be 8 1 km s to put a craft into a 300 km high orbit starting from a stationary point like the South Pole The theoretical minimum can be up to 0 46 km s less if launching eastward from near the equator For sub orbital spaceflights covering a horizontal distance the maximum speed and required delta v are in between those of a vertical flight and a LEO The maximum speed at the lower ends of the trajectory are now composed of a horizontal and a vertical component The higher the horizontal distance covered the greater the horizontal speed will be The vertical velocity will increase with distance for short distances but will decrease with distance at longer distances For the V 2 rocket just reaching space but with a range of about 330 km the maximum speed was 1 6 km s Scaled Composites SpaceShipTwo which is under development will have a similar free fall orbit but the announced maximum speed is 1 1 km s perhaps because of engine shut off at a higher altitude For larger ranges due to the elliptic orbit the maximum altitude can be much more than for a LEO On a 10 000 km intercontinental flight such as that of an intercontinental ballistic missile or possible future commercial spaceflight the maximum speed is about 7 km s and the maximum altitude may be more than 1300 km Any spaceflight that returns to the surface including sub orbital ones will undergo atmospheric reentry The speed at the start of the reentry is basically the maximum speed of the flight The aerodynamic heating caused will vary accordingly it is much less for a flight with a maximum speed of only 1 km s than for one with a maximum speed of 7 or 8 km s The minimum delta v and the corresponding maximum altitude for a given range can be calculated d assuming a spherical Earth of circumference 40000 km and neglecting the Earth s rotation and atmosphere Let 8 be half the angle that the projectile is to go around the Earth so in degrees it is 45 d 10000 km The minimum delta v trajectory corresponds to an ellipse with one focus at the centre of the Earth and the other at the point halfway between the launch point and the destination point somewhere inside the Earth This is the orbit that minimizes the semi major axis which is equal to the sum of the distances from a point on the orbit to the two foci Minimizing the semi major axis minimizes the specific orbital energy and thus the delta v which is the speed of launch Geometrical arguments lead then to the following with R being the radius of the Earth about 6370 km major axis 1 sin 8 R displaystyle text major axis 1 sin theta R minor axis R 2 sin 8 sin 2 8 R sin 8 semi major axis displaystyle text minor axis R sqrt 2 left sin theta sin 2 theta right sqrt R sin theta text semi major axis distance of apogee from centre of Earth R 2 1 sin 8 cos 8 displaystyle text distance of apogee from centre of Earth frac R 2 1 sin theta cos theta altitude of apogee above surface sin 8 2 sin 2 8 2 R 1 2 sin 8 p 4 1 2 R displaystyle text altitude of apogee above surface left frac sin theta 2 sin 2 frac theta 2 right R left frac 1 sqrt 2 sin left theta frac pi 4 right frac 1 2 right R Note that the altitude of apogee is maximized at about 1320 km for a trajectory going one quarter of the way around the Earth 10000 km Longer ranges will have lower apogees in the minimal delta v solution specific kinetic energy at launch m R m major axis m R sin 8 1 sin 8 displaystyle text specific kinetic energy at launch frac mu R frac mu text major axis frac mu R frac sin theta 1 sin theta D v speed at launch 2 m R sin 8 1 sin 8 2 g R sin 8 1 sin 8 displaystyle Delta v text speed at launch sqrt 2 frac mu R frac sin theta 1 sin theta sqrt 2gR frac sin theta 1 sin theta where g is the acceleration of gravity at the Earth s surface The Dv increases with range leveling off at 7 9 km s as the range approaches 20000 km halfway around the world The minimum delta v trajectory for going halfway around the world corresponds to a circular orbit just above the surface of course in reality it would have to be above the atmosphere See lower for the time of flight An intercontinental ballistic missile is defined as a missile that can hit a target at least 5500 km away and according to the above formula this requires an initial speed of 6 1 km s Increasing the speed to 7 9 km s to attain any point on Earth requires a considerably larger missile because the amount of fuel needed goes up exponentially with delta v see Rocket equation The initial direction of a minimum delta v trajectory points halfway between straight up and straight toward the destination point which is below the horizon Again this is the case if the Earth s rotation is ignored It is not exactly true for a rotating planet unless the launch takes place at a pole 6 Flight duration EditIn a vertical flight of not too high altitudes the time of the free fall is both for the upward and for the downward part the maximum speed divided by the acceleration of gravity so with a maximum speed of 1 km s together 3 minutes and 20 seconds The duration of the flight phases before and after the free fall can vary For an intercontinental flight the boost phase takes 3 to 5 minutes the free fall midcourse phase about 25 minutes For an ICBM the atmospheric reentry phase takes about 2 minutes this will be longer for any soft landing such as for a possible future commercial flight Sub orbital flights can last from just seconds to days Pioneer 1 was NASA s first space probe intended to reach the Moon A partial failure caused it to instead follow a sub orbital trajectory reentering the Earth s atmosphere 43 hours after launch To calculate the time of flight for a minimum delta v trajectory according to Kepler s third law the period for the entire orbit if it didn t go through the Earth would be period semi major axis R 3 2 period of low Earth orbit 1 sin 8 2 3 2 2 p R g displaystyle text period left frac text semi major axis R right frac 3 2 times text period of low Earth orbit left frac 1 sin theta 2 right frac 3 2 2 pi sqrt frac R g Using Kepler s second law we multiply this by the portion of the area of the ellipse swept by the line from the centre of the Earth to the projectile area fraction 1 p arcsin 2 sin 8 1 sin 8 2 cos 8 sin 8 p major axis minor axis displaystyle text area fraction frac 1 pi arcsin sqrt frac 2 sin theta 1 sin theta frac 2 cos theta sin theta pi text major axis minor axis time of flight 1 sin 8 2 3 2 arcsin 2 sin 8 1 sin 8 1 2 cos 8 sin 8 2 R g 1 sin 8 2 3 2 arccos cos 8 1 sin 8 1 2 cos 8 sin 8 2 R g displaystyle begin aligned text time of flight amp left left frac 1 sin theta 2 right frac 3 2 arcsin sqrt frac 2 sin theta 1 sin theta frac 1 2 cos theta sqrt sin theta right 2 sqrt frac R g amp left left frac 1 sin theta 2 right frac 3 2 arccos frac cos theta 1 sin theta frac 1 2 cos theta sqrt sin theta right 2 sqrt frac R g end aligned This gives about 32 minutes for going a quarter of the way around the Earth and 42 minutes for going halfway around For short distances this expression is asymptotic to 2 d g displaystyle sqrt 2d g From the form involving arccosine the derivative of the time of flight with respect to d or 8 goes to zero as d approaches 20000 km halfway around the world The derivative of Dv also goes to zero here So if d 19000 km the length of the minimum delta v trajectory will be about 19500 km but it will take only a few seconds less time than the trajectory for d 20000 km for which the trajectory is 20000 km long Flight profiles Edit Profile for the first crewed American sub orbital flight 1961 Launch rocket lifts the spacecraft for the first 2 22 minutes Dashed line zero gravity Science and Mechanics cover of November 1931 showing a proposed sub orbital spaceship that would reach an altitude 700 miles 1 100 km on its one hour trip from Berlin to New York While there are a great many possible sub orbital flight profiles it is expected that some will be more common than others The X 15 1958 1968 was launched to an altitude of 13 7 km by a B 52 mothership lifted itself to approximately 100 km and then glided to the ground Ballistic missiles Edit The first sub orbital vehicles which reached space were ballistic missiles The very first ballistic missile to reach space was the German V 2 the work of the scientists at Peenemunde on October 3 1942 which reached an altitude of 60 miles 97 km 7 Then in the late 1940s the US and USSR concurrently developed missiles all of which were based on the V 2 Rocket and then much longer range Intercontinental Ballistic Missiles ICBMs There are now many countries who possess ICBMs and even more with shorter range Intermediate Range Ballistic Missiles IRBMs Tourist flights Edit Sub orbital tourist flights will initially focus on attaining the altitude required to qualify as reaching space The flight path will be either vertical or very steep with the spacecraft landing back at its take off site The spacecraft will shut off its engines well before reaching maximum altitude and then coast up to its highest point During a few minutes from the point when the engines are shut off to the point where the atmosphere begins to slow down the downward acceleration the passengers will experience weightlessness Megaroc had been planned for sub orbital spaceflight by the British Interplanetary Society in the 1940s 8 9 In the autumn of 1945 the group M Tikhonravov K and N G Chernysheva at NII 4 rocket artillery Academy of Sciences technology on its own initiative the first stratospheric rocket project was developed by VR 190 for vertical flight two pilots to an altitude of 200 km based on captured German ballistic rocket V 2 10 In 2004 a number of companies worked on vehicles in this class as entrants to the Ansari X Prize competition The Scaled Composites SpaceShipOne was officially declared by Rick Searfoss to have won the competition on October 4 2004 after completing two flights within a two week period In 2005 Sir Richard Branson of the Virgin Group announced the creation of Virgin Galactic and his plans for a 9 seat capacity SpaceShipTwo named VSS Enterprise It has since been completed with eight seats one pilot one co pilot and six passengers and has taken part in captive carry tests and with the first mother ship WhiteKnightTwo or VMS Eve It has also completed solitary glides with the movable tail sections in both fixed and feathered configurations The hybrid rocket motor has been fired multiple times in ground based test stands and was fired in a powered flight for the second time on 5 September 2013 11 Four additional SpaceShipTwos have been ordered and will operate from the new Spaceport America Commercial flights carrying passengers were expected in 2014 but became cancelled due to the disaster during SS2 PF04 flight Branson stated w e are going to learn from what went wrong discover how we can improve safety and performance and then move forwards together 12 Scientific experiments Edit A major use of sub orbital vehicles today is as scientific sounding rockets Scientific sub orbital flights began in the 1920s when Robert H Goddard launched the first liquid fueled rockets however they did not reach space altitude In the late 1940s captured German V 2 ballistic missiles were converted into V 2 sounding rockets which helped lay the foundation for modern sounding rockets 13 Today there are dozens of different sounding rockets on the market from a variety of suppliers in various countries Typically researchers wish to conduct experiments in microgravity or above the atmosphere Sub orbital transportation Edit Research such as that done for the X 20 Dyna Soar project suggests that a semi ballistic sub orbital flight could travel from Europe to North America in less than an hour However the size of rocket relative to the payload necessary to achieve this is similar to an ICBM ICBMs have delta v s somewhat less than orbital and therefore would be somewhat cheaper than the costs for reaching orbit but the difference is not large 14 Thus due to the high cost this is likely to be initially limited to high value very high urgency cargo such as courier flights or as the ultimate business jet or possibly as an extreme sport or for military fast response opinion The SpaceLiner is a hypersonic suborbital spaceplane concept that could transport 50 passengers from Australia to Europe in 90 minutes or 100 passengers from Europe to California in 60 minutes 15 The main challenge lies in increasing the reliability of the different components particularly the engines in order to make their use for passenger transportation on a daily basis possible SpaceX is potentially considering using their Starship as a sub orbital point to point transport 16 Notable uncrewed sub orbital spaceflights EditThe first sub orbital space flight was on 20 June 1944 when MW 18014 a V 2 test rocket launched from Peenemunde in Germany and reached 176 kilometres altitude 17 Bumper 5 a two stage rocket launched from the White Sands Proving Grounds On 24 February 1949 the upper stage reached an altitude of 248 miles 399 km and a speed of 7 553 feet per second 2 302 m s Mach 6 8 18 Albert II a male rhesus macaque became the first mammal in space on 14 June 1949 in a sub orbital flight from Holloman Air Force Base in New Mexico to an altitude of 83 miles 134 km aboard a U S V 2 sounding rocket USSR Energia 15 May 1987 a Polyus payload which failed to reach orbit this was the most massive object launched into sub orbital spaceflight to date Crewed sub orbital spaceflights EditAbove 100 km 62 14 mi in altitude Date GMT Mission Crew Country Remarks1 1961 05 05 Mercury Redstone 3 Alan Shepard United States First crewed sub orbital spaceflight first American in space2 1961 07 21 Mercury Redstone 4 Virgil Grissom United States Second crewed sub orbital spaceflight second American in space3 1963 07 19 X 15 Flight 90 Joseph A Walker United States First winged craft in space4 1963 08 22 X 15 Flight 91 Joseph A Walker United States First person and spacecraft to make two flights into space5 1975 04 05 Soyuz 18a Vasili LazarevOleg Makarov Soviet Union Failed orbital launch Aborted after malfunction during stage separation6 2004 06 21 SpaceShipOne flight 15P Mike Melvill United States First commercial spaceflight7 2004 09 29 SpaceShipOne flight 16P Mike Melvill United States First of two flights to win Ansari X Prize8 2004 10 04 SpaceShipOne flight 17P Brian Binnie United States Second X Prize flight clinching award9 2021 07 20 Blue Origin NS 16 Jeff BezosMark BezosWally FunkOliver Daemen United States First crewed Blue Origin flight10 2021 10 13 Blue Origin NS 18 Audrey PowersChris BoshuizenGlen de VriesWilliam Shatner United States Second crewed Blue Origin flight11 2021 12 11 Blue Origin NS 19 Laura Shepard Churchley Michael StrahanDylan TaylorEvan DickLane BessCameron Bess United States Third crewed Blue Origin flight12 2022 03 31 Blue Origin NS 20 Marty Allen Sharon HagleMarc HagleJim KitchenGeorge NieldGary Lai United States Fourth crewed Blue Origin flight13 2022 06 04 Blue Origin NS 21 Evan DickKatya EchazarretaHamish HardingVictor Correa HespanhaJaison RobinsonVictor Vescovo United States Fifth crewed Blue Origin flight14 2022 08 04 Blue Origin NS 22 Coby CottonMario FerreiraVanessa O BrienClint Kelly IIISara SabrySteve Young United States Sixth crewed Blue Origin flight Timeline of Space Ship One Space Ship Two CSXT and New Shepard sub orbital flights Where booster and capsule achieved different altitudes the higher is plotted In the SVG file hover over a point to show details Future of crewed sub orbital spaceflight EditPrivate companies such as Virgin Galactic Armadillo Aerospace reinvented as Exos Aerospace Airbus 19 Blue Origin and Masten Space Systems are taking an interest in sub orbital spaceflight due in part to ventures like the Ansari X Prize NASA and others are experimenting with scramjet based hypersonic aircraft which may well be used with flight profiles that qualify as sub orbital spaceflight Non profit entities like ARCASPACE and Copenhagen Suborbitals also attempt rocket based launches See also Edit Spaceflight portalCanadian Arrow CORONA DH 1 rocket Interorbital Systems Land of the Giants List of rocket launch sites Lunar Lander Challenge McDonnell Douglas DC X Office of Commercial Space Transportation Project Morpheus NASA program to continue developing ALHAT and Q landers Quad rocket Reusable Vehicle Testing program by JAXA Rocketplane XP Spaceport SpaceX reusable launch system development program Supersonic transport XCOR LynxReferences Edit Foust Jeff 20 July 2021 Blue Origin launches Bezos on first crewed New Shepard flight SpaceNews Retrieved 20 Jul 2021 Martlet Archived from the original on 2010 09 26 100 km Altitude Boundary for Astronautics Federation Aeronautique Internationale Archived from the original on 2011 08 09 Retrieved 2017 09 14 Whelan Mary 5 June 2013 X 15 Space Pioneers Now Honored as Astronauts nasa gov Archived from the original on 11 June 2017 Retrieved 4 May 2018 85 U S Statement Definition and Delimitation of Outer Space And The Character And Utilization Of The Geostationary Orbit Legal Subcommittee of the United Nations Committee on the Peaceful Uses of Outer Space at its 40th Session in Vienna from April state gov Retrieved 4 May 2018 Blanco Philip September 2020 Modeling ICBM Trajectories Around a Rotating Globe with Systems Tool Kit The Physics Teacher 58 7 494 496 Bibcode 2019PhTea 58 494B doi 10 1119 10 0002070 S2CID 225017449 Germany s V 2 Rocket Kennedy Gregory P Hollingham Richard How a Nazi rocket could have put a Briton in space bbc com Archived from the original on 14 November 2016 Retrieved 4 May 2018 Megaroc www bis space com Archived from the original on 30 October 2016 Retrieved 4 May 2018 Anatoli I Kiselev Alexander A Medvedev Valery A Menshikov December 2012 Astronautics Summary and Prospects Translated by V Sherbakov N Novichkov A Nechaev Springer Science amp Business Media pp 1 2 ISBN 9783709106488 Scaled Composites Projects Test Logs for SpaceShipTwo Archived from the original on 2013 08 16 Retrieved 2013 08 14 Branson on Virgin Galactic crash Space is hard but worth it CNET Retrieved August 1 2015 ch2 history nasa gov Archived from the original on 2015 11 29 Retrieved 2015 11 28 The Space Review Point to point suborbital transportation sounds good on paper but www thespacereview com Archived from the original on 1 August 2017 Retrieved 4 May 2018 Sippel M 2010 Promising roadmap alternatives for the SpaceLiner PDF Acta Astronautica 66 11 12 1652 1658 Bibcode 2010AcAau 66 1652S doi 10 1016 j actaastro 2010 01 020 Ralph Eric 30 May 2019 SpaceX CEO Elon Musk wants to use Starships as Earth to Earth transports Teslarati Retrieved 31 May 2019 Walter Dornberger Moewig Berlin 1984 ISBN 3 8118 4341 9 Bumper Project White Sands Missile Range Archived from the original on 2008 01 10 Amos Jonathan 3 June 2014 Airbus drops model space jet BBC News Archived from the original on 4 May 2018 Retrieved 4 May 2018 Retrieved from https en wikipedia org w index php title Sub orbital spaceflight amp oldid 1137638855, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.