fbpx
Wikipedia

Isotopes of strontium

The alkaline earth metal strontium (38Sr) has four stable, naturally occurring isotopes: 84Sr (0.56%), 86Sr (9.86%), 87Sr (7.0%) and 88Sr (82.58%). Its standard atomic weight is 87.62(1).

Isotopes of strontium (38Sr)
Main isotopes[1] Decay
abun­dance half-life (t1/2) mode pro­duct
82Sr synth 25.36 d ε 82Rb
83Sr synth 1.35 d ε 83Rb
β+ 83Rb
γ
84Sr 0.56% stable
85Sr synth 64.84 d ε 85Rb
γ
86Sr 9.86% stable
87Sr 7% stable
88Sr 82.6% stable
89Sr synth 50.52 d β 89Y
90Sr trace 28.90 y β 90Y
Standard atomic weight Ar°(Sr)

Only 87Sr is radiogenic; it is produced by decay from the radioactive alkali metal 87Rb, which has a half-life of 4.88 × 1010 years (i.e. more than three times longer than the current age of the universe). Thus, there are two sources of 87Sr in any material: primordial, formed during nucleosynthesis along with 84Sr, 86Sr and 88Sr; and that formed by radioactive decay of 87Rb. The ratio 87Sr/86Sr is the parameter typically reported in geologic investigations;[4] ratios in minerals and rocks have values ranging from about 0.7 to greater than 4.0 (see rubidium–strontium dating). Because strontium has an electron configuration similar to that of calcium, it readily substitutes for calcium in minerals.

In addition to the four stable isotopes, thirty-two unstable isotopes of strontium are known to exist, ranging from 73Sr to 108Sr. Radioactive isotopes of strontium primarily decay into the neighbouring elements yttrium (89Sr and heavier isotopes, via beta minus decay) and rubidium (85Sr, 83Sr and lighter isotopes, via positron emission or electron capture). The longest-lived of these isotopes, and the most relevantly studied, are 90Sr with a half-life of 28.9 years, 85Sr with a half-life of 64.853 days, and 89Sr (89Sr) with a half-life of 50.57 days. All other strontium isotopes have half-lives shorter than 50 days, most under 100 minutes.

Strontium-89 is an artificial radioisotope used in treatment of bone cancer;[5] this application utilizes its chemical similarity to calcium, which allows it to substitute calcium in bone structures. In circumstances where cancer patients have widespread and painful bony metastases, the administration of 89Sr results in the delivery of beta particles directly to the cancerous portions of the bone, where calcium turnover is greatest. Strontium-90 is a by-product of nuclear fission, present in nuclear fallout. The 1986 Chernobyl nuclear accident contaminated a vast area with 90Sr.[6] It causes health problems, as it substitutes for calcium in bone, preventing expulsion from the body. Because it is a long-lived high-energy beta emitter, it is used in SNAP (Systems for Nuclear Auxiliary Power) devices. These devices hold promise for use in spacecraft, remote weather stations, navigational buoys, etc., where a lightweight, long-lived, nuclear-electric power source is required.

In 2020, researchers have found that mirror nuclides 73Sr and 73Br were found to not behave identically to each other as expected.[7]

List of isotopes edit

Nuclide
[n 1]
Z N Isotopic mass (Da)
[n 2][n 3]
Half-life
[n 4]
Decay
mode

[n 5]
Daughter
isotope

[n 6][n 7]
Spin and
parity
[n 8][n 4]
Natural abundance (mole fraction)
Excitation energy Normal proportion Range of variation
73Sr 38 35 72.96597(64)# >25 ms β+ (>99.9%) 73Rb 1/2−#
β+, p (<.1%) 72Kr
74Sr 38 36 73.95631(54)# 50# ms [>1.5 µs] β+ 74Rb 0+
75Sr 38 37 74.94995(24) 88(3) ms β+ (93.5%) 75Rb (3/2−)
β+, p (6.5%) 74Kr
76Sr 38 38 75.94177(4) 7.89(7) s β+ 76Rb 0+
77Sr 38 39 76.937945(10) 9.0(2) s β+ (99.75%) 77Rb 5/2+
β+, p (.25%) 76Kr
78Sr 38 40 77.932180(8) 159(8) s β+ 78Rb 0+
79Sr 38 41 78.929708(9) 2.25(10) min β+ 79Rb 3/2(−)
80Sr 38 42 79.924521(7) 106.3(15) min β+ 80Rb 0+
81Sr 38 43 80.923212(7) 22.3(4) min β+ 81Rb 1/2−
82Sr 38 44 81.918402(6) 25.36(3) d EC 82Rb 0+
83Sr 38 45 82.917557(11) 32.41(3) h β+ 83Rb 7/2+
83mSr 259.15(9) keV 4.95(12) s IT 83Sr 1/2−
84Sr 38 46 83.913425(3) Observationally Stable[n 9] 0+ 0.0056 0.0055–0.0058
85Sr 38 47 84.912933(3) 64.853(8) d EC 85Rb 9/2+
85mSr 238.66(6) keV 67.63(4) min IT (86.6%) 85Sr 1/2−
β+ (13.4%) 85Rb
86Sr 38 48 85.9092607309(91) Stable 0+ 0.0986 0.0975–0.0999
86mSr 2955.68(21) keV 455(7) ns 8+
87Sr[n 10] 38 49 86.9088774970(91) Stable 9/2+ 0.0700 0.0694–0.0714
87mSr 388.533(3) keV 2.815(12) h IT (99.7%) 87Sr 1/2−
EC (.3%) 87Rb
88Sr[n 11] 38 50 87.9056122571(97) Stable 0+ 0.8258 0.8229–0.8275
89Sr[n 11] 38 51 88.9074507(12) 50.57(3) d β 89Y 5/2+
90Sr[n 11] 38 52 89.907738(3) 28.90(3) y β 90Y 0+
91Sr 38 53 90.910203(5) 9.63(5) h β 91Y 5/2+
92Sr 38 54 91.911038(4) 2.66(4) h β 92Y 0+
93Sr 38 55 92.914026(8) 7.423(24) min β 93Y 5/2+
94Sr 38 56 93.915361(8) 75.3(2) s β 94Y 0+
95Sr 38 57 94.919359(8) 23.90(14) s β 95Y 1/2+
96Sr 38 58 95.921697(29) 1.07(1) s β 96Y 0+
97Sr 38 59 96.926153(21) 429(5) ms β (99.95%) 97Y 1/2+
β, n (.05%) 96Y
97m1Sr 308.13(11) keV 170(10) ns (7/2)+
97m2Sr 830.8(2) keV 255(10) ns (11/2−)#
98Sr 38 60 97.928453(28) 0.653(2) s β (99.75%) 98Y 0+
β, n (.25%) 97Y
99Sr 38 61 98.93324(9) 0.269(1) s β (99.9%) 99Y 3/2+
β, n (.1%) 98Y
100Sr 38 62 99.93535(14) 202(3) ms β (99.02%) 100Y 0+
β, n (.98%) 99Y
101Sr 38 63 100.94052(13) 118(3) ms β (97.63%) 101Y (5/2−)
β, n (2.37%) 100Y
102Sr 38 64 101.94302(12) 69(6) ms β (94.5%) 102Y 0+
β, n (5.5%) 101Y
103Sr 38 65 102.94895(54)# 50# ms [>300 ns] β 103Y
104Sr 38 66 103.95233(75)# 30# ms [>300 ns] β 104Y 0+
105Sr 38 67 104.95858(75)# 20# ms [>300 ns]
106Sr[8] 38 68
107Sr[8] 38 69
108Sr[9] 38 70
This table header & footer:
  1. ^ mSr – Excited nuclear isomer.
  2. ^ ( ) – Uncertainty (1σ) is given in concise form in parentheses after the corresponding last digits.
  3. ^ # – Atomic mass marked #: value and uncertainty derived not from purely experimental data, but at least partly from trends from the Mass Surface (TMS).
  4. ^ a b # – Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).
  5. ^ Modes of decay:
  6. ^ Bold italics symbol as daughter – Daughter product is nearly stable.
  7. ^ Bold symbol as daughter – Daughter product is stable.
  8. ^ ( ) spin value – Indicates spin with weak assignment arguments.
  9. ^ Believed to decay by β+β+ to 84Kr
  10. ^ Used in rubidium–strontium dating
  11. ^ a b c Fission product

References edit

  1. ^ Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae.
  2. ^ "Standard Atomic Weights: Strontium". CIAAW. 1969.
  3. ^ Prohaska, Thomas; Irrgeher, Johanna; Benefield, Jacqueline; Böhlke, John K.; Chesson, Lesley A.; Coplen, Tyler B.; Ding, Tiping; Dunn, Philip J. H.; Gröning, Manfred; Holden, Norman E.; Meijer, Harro A. J. (2022-05-04). "Standard atomic weights of the elements 2021 (IUPAC Technical Report)". Pure and Applied Chemistry. doi:10.1515/pac-2019-0603. ISSN 1365-3075.
  4. ^ Dickin, Alan P. (2018). Radiogenic Isotope Geology (3 ed.). Cambridge: Cambridge University Press. ISBN 978-1-107-09944-9.
  5. ^ Reddy, Eashwer K.; Robinson, Ralph G.; Mansfield, Carl M. (January 1986). "Strontium 89 for Palliation of Bone Metastases". Journal of the National Medical Association. 78 (1): 27–32. ISSN 0027-9684. PMC 2571189. PMID 2419578.
  6. ^ Wilken, R.D.; Diehl, R. (1987). "Strontium-90 in environmental samples from Northern Germany before and after the Chernobyl accident". Radiochimica Acta. 41 (4): 157–162. doi:10.1524/ract.1987.41.4.157. S2CID 99369165.
  7. ^ "Discovery by UMass Lowell-led team challenges nuclear theory". Space Daily. Retrieved 2022-06-26.
  8. ^ a b Ohnishi, Tetsuya; Kubo, Toshiyuki; Kusaka, Kensuke; et al. (2010). "Identification of 45 New Neutron-Rich Isotopes Produced by In-Flight Fission of a 238U Beam at 345 MeV/nucleon". J. Phys. Soc. Jpn. 79 (7). Physical Society of Japan: 073201. arXiv:1006.0305. Bibcode:2010JPSJ...79g3201T. doi:10.1143/JPSJ.79.073201.
  9. ^ Sumikama, T.; et al. (2021). "Observation of new neutron-rich isotopes in the vicinity of 110Zr". Physical Review C. 103 (1): 014614. Bibcode:2021PhRvC.103a4614S. doi:10.1103/PhysRevC.103.014614. hdl:10261/260248. S2CID 234019083.
  • Isotope masses from:
    • Audi, Georges; Bersillon, Olivier; Blachot, Jean; Wapstra, Aaldert Hendrik (2003), "The NUBASE evaluation of nuclear and decay properties", Nuclear Physics A, 729: 3–128, Bibcode:2003NuPhA.729....3A, doi:10.1016/j.nuclphysa.2003.11.001
  • Isotopic compositions and standard atomic masses from:
    • de Laeter, John Robert; Böhlke, John Karl; De Bièvre, Paul; Hidaka, Hiroshi; Peiser, H. Steffen; Rosman, Kevin J. R.; Taylor, Philip D. P. (2003). "Atomic weights of the elements. Review 2000 (IUPAC Technical Report)". Pure and Applied Chemistry. 75 (6): 683–800. doi:10.1351/pac200375060683.
    • Wieser, Michael E. (2006). "Atomic weights of the elements 2005 (IUPAC Technical Report)". Pure and Applied Chemistry. 78 (11): 2051–2066. doi:10.1351/pac200678112051.
  • "News & Notices: Standard Atomic Weights Revised". International Union of Pure and Applied Chemistry. 19 October 2005.
  • Half-life, spin, and isomer data selected from the following sources.

isotopes, strontium, this, article, needs, additional, citations, verification, please, help, improve, this, article, adding, citations, reliable, sources, unsourced, material, challenged, removed, find, sources, news, newspapers, books, scholar, jstor, 2018, . This article needs additional citations for verification Please help improve this article by adding citations to reliable sources Unsourced material may be challenged and removed Find sources Isotopes of strontium news newspapers books scholar JSTOR May 2018 Learn how and when to remove this message The alkaline earth metal strontium 38Sr has four stable naturally occurring isotopes 84Sr 0 56 86Sr 9 86 87Sr 7 0 and 88Sr 82 58 Its standard atomic weight is 87 62 1 Isotopes of strontium 38Sr Main isotopes 1 Decay abun dance half life t1 2 mode pro duct 82Sr synth 25 36 d e 82Rb 83Sr synth 1 35 d e 83Rb b 83Rb g 84Sr 0 56 stable 85Sr synth 64 84 d e 85Rb g 86Sr 9 86 stable 87Sr 7 stable 88Sr 82 6 stable 89Sr synth 50 52 d b 89Y 90Sr trace 28 90 y b 90YStandard atomic weight Ar Sr 87 62 0 01 2 87 62 0 01 abridged 3 viewtalkedit Only 87Sr is radiogenic it is produced by decay from the radioactive alkali metal 87Rb which has a half life of 4 88 1010 years i e more than three times longer than the current age of the universe Thus there are two sources of 87Sr in any material primordial formed during nucleosynthesis along with 84Sr 86Sr and 88Sr and that formed by radioactive decay of 87Rb The ratio 87Sr 86Sr is the parameter typically reported in geologic investigations 4 ratios in minerals and rocks have values ranging from about 0 7 to greater than 4 0 see rubidium strontium dating Because strontium has an electron configuration similar to that of calcium it readily substitutes for calcium in minerals In addition to the four stable isotopes thirty two unstable isotopes of strontium are known to exist ranging from 73Sr to 108Sr Radioactive isotopes of strontium primarily decay into the neighbouring elements yttrium 89Sr and heavier isotopes via beta minus decay and rubidium 85Sr 83Sr and lighter isotopes via positron emission or electron capture The longest lived of these isotopes and the most relevantly studied are 90Sr with a half life of 28 9 years 85Sr with a half life of 64 853 days and 89Sr 89Sr with a half life of 50 57 days All other strontium isotopes have half lives shorter than 50 days most under 100 minutes Strontium 89 is an artificial radioisotope used in treatment of bone cancer 5 this application utilizes its chemical similarity to calcium which allows it to substitute calcium in bone structures In circumstances where cancer patients have widespread and painful bony metastases the administration of 89Sr results in the delivery of beta particles directly to the cancerous portions of the bone where calcium turnover is greatest Strontium 90 is a by product of nuclear fission present in nuclear fallout The 1986 Chernobyl nuclear accident contaminated a vast area with 90Sr 6 It causes health problems as it substitutes for calcium in bone preventing expulsion from the body Because it is a long lived high energy beta emitter it is used in SNAP Systems for Nuclear Auxiliary Power devices These devices hold promise for use in spacecraft remote weather stations navigational buoys etc where a lightweight long lived nuclear electric power source is required In 2020 researchers have found that mirror nuclides 73Sr and 73Br were found to not behave identically to each other as expected 7 List of isotopes editNuclide n 1 Z N Isotopic mass Da n 2 n 3 Half life n 4 Decaymode n 5 Daughterisotope n 6 n 7 Spin andparity n 8 n 4 Natural abundance mole fraction Excitation energy Normal proportion Range of variation 73Sr 38 35 72 96597 64 gt 25 ms b gt 99 9 73Rb 1 2 b p lt 1 72Kr 74Sr 38 36 73 95631 54 50 ms gt 1 5 µs b 74Rb 0 75Sr 38 37 74 94995 24 88 3 ms b 93 5 75Rb 3 2 b p 6 5 74Kr 76Sr 38 38 75 94177 4 7 89 7 s b 76Rb 0 77Sr 38 39 76 937945 10 9 0 2 s b 99 75 77Rb 5 2 b p 25 76Kr 78Sr 38 40 77 932180 8 159 8 s b 78Rb 0 79Sr 38 41 78 929708 9 2 25 10 min b 79Rb 3 2 80Sr 38 42 79 924521 7 106 3 15 min b 80Rb 0 81Sr 38 43 80 923212 7 22 3 4 min b 81Rb 1 2 82Sr 38 44 81 918402 6 25 36 3 d EC 82Rb 0 83Sr 38 45 82 917557 11 32 41 3 h b 83Rb 7 2 83mSr 259 15 9 keV 4 95 12 s IT 83Sr 1 2 84Sr 38 46 83 913425 3 Observationally Stable n 9 0 0 0056 0 0055 0 0058 85Sr 38 47 84 912933 3 64 853 8 d EC 85Rb 9 2 85mSr 238 66 6 keV 67 63 4 min IT 86 6 85Sr 1 2 b 13 4 85Rb 86Sr 38 48 85 9092607309 91 Stable 0 0 0986 0 0975 0 0999 86mSr 2955 68 21 keV 455 7 ns 8 87Sr n 10 38 49 86 9088774970 91 Stable 9 2 0 0700 0 0694 0 0714 87mSr 388 533 3 keV 2 815 12 h IT 99 7 87Sr 1 2 EC 3 87Rb 88Sr n 11 38 50 87 9056122571 97 Stable 0 0 8258 0 8229 0 8275 89Sr n 11 38 51 88 9074507 12 50 57 3 d b 89Y 5 2 90Sr n 11 38 52 89 907738 3 28 90 3 y b 90Y 0 91Sr 38 53 90 910203 5 9 63 5 h b 91Y 5 2 92Sr 38 54 91 911038 4 2 66 4 h b 92Y 0 93Sr 38 55 92 914026 8 7 423 24 min b 93Y 5 2 94Sr 38 56 93 915361 8 75 3 2 s b 94Y 0 95Sr 38 57 94 919359 8 23 90 14 s b 95Y 1 2 96Sr 38 58 95 921697 29 1 07 1 s b 96Y 0 97Sr 38 59 96 926153 21 429 5 ms b 99 95 97Y 1 2 b n 05 96Y 97m1Sr 308 13 11 keV 170 10 ns 7 2 97m2Sr 830 8 2 keV 255 10 ns 11 2 98Sr 38 60 97 928453 28 0 653 2 s b 99 75 98Y 0 b n 25 97Y 99Sr 38 61 98 93324 9 0 269 1 s b 99 9 99Y 3 2 b n 1 98Y 100Sr 38 62 99 93535 14 202 3 ms b 99 02 100Y 0 b n 98 99Y 101Sr 38 63 100 94052 13 118 3 ms b 97 63 101Y 5 2 b n 2 37 100Y 102Sr 38 64 101 94302 12 69 6 ms b 94 5 102Y 0 b n 5 5 101Y 103Sr 38 65 102 94895 54 50 ms gt 300 ns b 103Y 104Sr 38 66 103 95233 75 30 ms gt 300 ns b 104Y 0 105Sr 38 67 104 95858 75 20 ms gt 300 ns 106Sr 8 38 68 107Sr 8 38 69 108Sr 9 38 70 This table header amp footer view mSr Excited nuclear isomer Uncertainty 1s is given in concise form in parentheses after the corresponding last digits Atomic mass marked value and uncertainty derived not from purely experimental data but at least partly from trends from the Mass Surface TMS a b Values marked are not purely derived from experimental data but at least partly from trends of neighboring nuclides TNN Modes of decay EC Electron capture IT Isomeric transition n Neutron emission p Proton emission Bold italics symbol as daughter Daughter product is nearly stable Bold symbol as daughter Daughter product is stable spin value Indicates spin with weak assignment arguments Believed to decay by b b to 84Kr Used in rubidium strontium dating a b c Fission productReferences edit Kondev F G Wang M Huang W J Naimi S Audi G 2021 The NUBASE2020 evaluation of nuclear properties PDF Chinese Physics C 45 3 030001 doi 10 1088 1674 1137 abddae Standard Atomic Weights Strontium CIAAW 1969 Prohaska Thomas Irrgeher Johanna Benefield Jacqueline Bohlke John K Chesson Lesley A Coplen Tyler B Ding Tiping Dunn Philip J H Groning Manfred Holden Norman E Meijer Harro A J 2022 05 04 Standard atomic weights of the elements 2021 IUPAC Technical Report Pure and Applied Chemistry doi 10 1515 pac 2019 0603 ISSN 1365 3075 Dickin Alan P 2018 Radiogenic Isotope Geology 3 ed Cambridge Cambridge University Press ISBN 978 1 107 09944 9 Reddy Eashwer K Robinson Ralph G Mansfield Carl M January 1986 Strontium 89 for Palliation of Bone Metastases Journal of the National Medical Association 78 1 27 32 ISSN 0027 9684 PMC 2571189 PMID 2419578 Wilken R D Diehl R 1987 Strontium 90 in environmental samples from Northern Germany before and after the Chernobyl accident Radiochimica Acta 41 4 157 162 doi 10 1524 ract 1987 41 4 157 S2CID 99369165 Discovery by UMass Lowell led team challenges nuclear theory Space Daily Retrieved 2022 06 26 a b Ohnishi Tetsuya Kubo Toshiyuki Kusaka Kensuke et al 2010 Identification of 45 New Neutron Rich Isotopes Produced by In Flight Fission of a 238U Beam at 345 MeV nucleon J Phys Soc Jpn 79 7 Physical Society of Japan 073201 arXiv 1006 0305 Bibcode 2010JPSJ 79g3201T doi 10 1143 JPSJ 79 073201 Sumikama T et al 2021 Observation of new neutron rich isotopes in the vicinity of 110Zr Physical Review C 103 1 014614 Bibcode 2021PhRvC 103a4614S doi 10 1103 PhysRevC 103 014614 hdl 10261 260248 S2CID 234019083 Isotope masses from Audi Georges Bersillon Olivier Blachot Jean Wapstra Aaldert Hendrik 2003 The NUBASE evaluation of nuclear and decay properties Nuclear Physics A 729 3 128 Bibcode 2003NuPhA 729 3A doi 10 1016 j nuclphysa 2003 11 001 Isotopic compositions and standard atomic masses from de Laeter John Robert Bohlke John Karl De Bievre Paul Hidaka Hiroshi Peiser H Steffen Rosman Kevin J R Taylor Philip D P 2003 Atomic weights of the elements Review 2000 IUPAC Technical Report Pure and Applied Chemistry 75 6 683 800 doi 10 1351 pac200375060683 Wieser Michael E 2006 Atomic weights of the elements 2005 IUPAC Technical Report Pure and Applied Chemistry 78 11 2051 2066 doi 10 1351 pac200678112051 News amp Notices Standard Atomic Weights Revised International Union of Pure and Applied Chemistry 19 October 2005 Half life spin and isomer data selected from the following sources Audi Georges Bersillon Olivier Blachot Jean Wapstra Aaldert Hendrik 2003 The NUBASE evaluation of nuclear and decay properties Nuclear Physics A 729 3 128 Bibcode 2003NuPhA 729 3A doi 10 1016 j nuclphysa 2003 11 001 National Nuclear Data Center NuDat 2 x database Brookhaven National Laboratory Holden Norman E 2004 11 Table of the Isotopes In Lide David R ed CRC Handbook of Chemistry and Physics 85th ed Boca Raton Florida CRC Press ISBN 978 0 8493 0485 9 Retrieved from https en wikipedia org w index php title Isotopes of strontium amp oldid 1204797131 Strontium 84, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.