fbpx
Wikipedia

Strangeness and quark–gluon plasma

In high-energy nuclear physics, strangeness production in relativistic heavy-ion collisions is a signature and diagnostic tool of quark–gluon plasma (QGP) formation and properties.[1] Unlike up and down quarks, from which everyday matter is made, heavier quark flavors such as strange and charm typically approach chemical equilibrium in a dynamic evolution process. QGP (also known as quark matter) is an interacting localized assembly of quarks and gluons at thermal (kinetic) and not necessarily chemical (abundance) equilibrium. The word plasma signals that color charged particles (quarks and/or gluons) are able to move in the volume occupied by the plasma. The abundance of strange quarks is formed in pair-production processes in collisions between constituents of the plasma, creating the chemical abundance equilibrium. The dominant mechanism of production involves gluons only present when matter has become a quark–gluon plasma. When quark–gluon plasma disassembles into hadrons in a breakup process, the high availability of strange antiquarks helps to produce antimatter containing multiple strange quarks, which is otherwise rarely made. Similar considerations are at present made for the heavier charm flavor, which is made at the beginning of the collision process in the first interactions and is only abundant in the high-energy environments of CERN's Large Hadron Collider.

Quark–gluon plasma in the early universe and in the laboratory edit

 
Collision between two highly-energetic nuclei create an extremely dense environment, in which quarks and gluons may interact as free particles for brief moments. The collisions happened at such extreme velocities that the nuclei are "pancaked" because of Lorentz contraction.

Free quarks probably existed in the extreme conditions of the very early universe until about 30 microseconds after the Big Bang,[2] in a very hot gas of free quarks, antiquarks and gluons. This gas is called quark–gluon plasma (QGP), since the quark-interaction charge (color charge) is mobile and quarks and gluons move around. This is possible because at a high temperature the early universe is in a different vacuum state, in which normal matter cannot exist but quarks and gluons can; they are deconfined (able to exist independently as separate unbound particles). In order to recreate this deconfined phase of matter in the laboratory it is necessary to exceed a minimum temperature, or its equivalent, a minimum energy density. Scientists achieve this using particle collisions at extremely high speeds, where the energy released in the collision can raise the subatomic particles' energies to an exceedingly high level, sufficient for them to briefly form a tiny amount of quark–gluon plasma that can be studied in laboratory experiments for little more than the time light needs to cross the QGP fireball, thus about 10−22 s. After this brief time the hot drop of quark plasma evaporates in a process called hadronization. This is so since practically all QGP components flow out at relativistic speed. In this way, it is possible to study conditions akin to those in the early Universe at the age of 10–40 microseconds.

Discovery of this new QGP state of matter has been announced both at CERN[3] and at Brookhaven National Laboratory (BNL).[4] Preparatory work, allowing for these discoveries, was carried out at the Joint Institute for Nuclear Research (JINR) and Lawrence Berkeley National Laboratory (LBNL) at the Bevalac.[5] New experimental facilities, FAIR at the GSI Helmholtz Centre for Heavy Ion Research (GSI) and NICA at JINR, are under construction. Strangeness as a signature of QGP was first explored in 1983.[6] Comprehensive experimental evidence about its properties is being assembled. Recent work by the ALICE collaboration[7] at CERN has opened a new path to study of QGP and strangeness production in very high energy pp collisions.

Strangeness in quark–gluon plasma edit

The diagnosis and the study of the properties of quark–gluon plasma can be undertaken using quarks not present in matter seen around us. The experimental and theoretical work relies on the idea of strangeness enhancement. This was the first observable of quark–gluon plasma proposed in 1980 by Johann Rafelski and Rolf Hagedorn.[8] Unlike the up and down quarks, strange quarks are not brought into the reaction by the colliding nuclei. Therefore, any strange quarks or antiquarks observed in experiments have been "freshly" made from the kinetic energy of colliding nuclei, with gluons being the catalyst.[9] Conveniently, the mass of strange quarks and antiquarks is equivalent to the temperature or energy at which protons, neutrons and other hadrons dissolve into quarks. This means that the abundance of strange quarks is sensitive to the conditions, structure and dynamics of the deconfined matter phase, and if their number is large it can be assumed that deconfinement conditions were reached. An even stronger signature of strangeness enhancement is the highly enhanced production of strange antibaryons.[10][11] An early comprehensive review of strangeness as a signature of QGP was presented by Koch, Müller and Rafelski,[12] which was recently updated.[13] The abundance of produced strange anti-baryons, and in particular anti-omega  , allowed to distinguish fully deconfined large QGP domain[14] from transient collective quark models such as the color rope model proposed by Biró, Nielsen and Knoll.[15] The relative abundance of   resolves[16] questions raised by the canonical model of strangeness enhancement.[17]

Equilibrium of strangeness in quark–gluon plasma edit

One cannot assume that under all conditions the yield of strange quarks is in thermal equilibrium. In general, the quark-flavor composition of the plasma varies during its ultra short lifetime as new flavors of quarks such as strangeness are cooked up inside. The up and down quarks from which normal matter is made are easily produced as quark–antiquark pairs in the hot fireball because they have small masses. On the other hand, the next lightest quark flavor—strange quarks—will reach its high quark–gluon plasma thermal abundance provided that there is enough time and that the temperature is high enough.[13] This work elaborated the kinetic theory of strangness production proposed by T. Biro and J. Zimanyi who demonstrated  that strange quarks could not be produced fast enough alone by quark-antiquark reactions.[18] A new mechanism operational alone in QGP was proposed.

Gluon fusion into strangeness edit

 
Feynman diagrams for the lowest order in strong coupling constant   strangeness production processes: gluon fusion, top, dominate the light quark based production.

Yield equilibration of strangeness yield in QGP is only possible due to a new process, gluon fusion, as shown by Rafelski and Müller.[9] The top section of the Feynman diagrams figure, shows the new gluon fusion processes: gluons are the wavy lines; strange quarks are the solid lines; time runs from left to right. The bottom section is the process where the heavier quark pair arises from the lighter pair of quarks shown as dashed lines. The gluon fusion process occurs almost ten times faster than the quark-based strangeness process, and allows achievement of the high thermal yield where the quark based process would fail to do so during the duration of the "micro-bang".[19]

The ratio of newly produced   pairs with the normalized light quark pairs  —the  Wroblewski ratio[20]—is considered a measure of efficacy of strangeness production. This ratio more than doubles in heavy ion collisions,[21] providing a model independent confirmation of a new mechanism of strangeness production operating in collisions that are producing QGP.

Regarding charm and bottom flavour:[22][23] the gluon collisions here are occurring within the thermal matter phase and thus are different from the high energy processes that can ensue in the early stages of the collisions when the nuclei crash into each other. The heavier, charm and bottom quarks are produced there dominantly. The study in relativistic nuclear (heavy ion) collisions of charmed and soon also bottom hadronic particle production—beside strangeness—will provide complementary and important confirmation of the mechanisms of formation, evolution and hadronization of quark–gluon plasma in the laboratory.[7]

Strangeness (and charm) hadronization edit

 
Illustration of the two step process of strange antibaryon production, a key signature of QGP: strangeness is produced inside the fireball and later on in an independent process at hadronization several (anti)strange quarks form (anti)baryons. The production of triple strange   and   is the strongest signature to date of QGP formation.

These newly cooked strange quarks find their way into a multitude of different final particles that emerge as the hot quark–gluon plasma fireball breaks up, see the scheme of different processes in figure. Given the ready supply of antiquarks in the "fireball", one also finds a multitude of antimatter particles containing more than one strange quark. On the other hand, in a system involving a cascade of nucleon–nucleon collisions, multi-strange antimatter are produced less frequently considering that several relatively improbable events must occur in the same collision process. For this reason one expects that the yield of multi-strange antimatter particles produced in the presence of quark matter is enhanced compared to conventional series of reactions.[24][25] Strange quarks also bind with the heavier charm and bottom quarks which also like to bind with each other. Thus, in the presence of a large number of these quarks, quite unusually abundant exotic particles can be produced; some of which have never been observed before. This should be the case in the forthcoming exploration at the new Large Hadron Collider at CERN of the particles that have charm and strange quarks, and even bottom quarks, as components.[26]

Strange hadron decay and observation edit

 
Universality of transverse mass spectra of strange baryons and antibaryons as measured by CERN-WA97 collaboration.[27] Collisions at 158 A GeV. These results demonstrate that all these particles are produced in explosively hadronizing fireball (of QGP) and do not undergo further interaction once produced. This key result shows therefore formation a new state of matter announced at CERN in February 2000.

Strange quarks are naturally radioactive and decay by weak interactions into lighter quarks on a timescale that is extremely long compared with the nuclear-collision times. This makes it relatively easy to detect strange particles through the tracks left by their decay products. Consider as an example the decay of a negatively charged   baryon (green in figure, dss), into a negative pion (
u
d) and a neutral   (uds) baryon. Subsequently, the   decays into a proton and another negative pion. In general this is the signature of the decay of a  . Although the negative   (sss) baryon has a similar final state decay topology, it can be clearly distinguished from the   because its decay products are different.

Measurement of abundant formation of   (uss/dss),   (sss) and especially their antiparticles is an important cornerstone of the claim that quark–gluon plasma has been formed.[27] This abundant formation is often presented in comparison with the scaled expectation from normal proton–proton collisions; however, such a comparison is not a necessary step in view of the large absolute yields which defy conventional model expectations.[12] The overall yield of strangeness is also larger than expected if the new form of matter has been achieved. However, considering that the light quarks are also produced in gluon fusion processes, one expects increased production of all hadrons. The study of the relative yields of strange and non strange particles provides information about the competition of these processes and thus the reaction mechanism of particle production.

Systematics of strange matter and antimatter creation edit

 
Enhancement of antibaryon yield increases with number of newly made quarks (s, anti-s, anti-q) and the size of the colliding system represented by the number of nucleons "damaged=wounded" in the collision of relativistic heavy ions. SPS, RHIC, and ALICE results shown as function of participating nucleons scaled—this represents residual enhancement after removal of scaling with number of participant.

The work of Koch, Muller, Rafelski[12] predicts that in a quark–gluon plasma hadronization process the enhancement for each particle species increases with the strangeness content of the particle. The enhancements for particles carrying one, two and three strange or antistrange quarks were measured and this effect was demonstrated by the CERN WA97 experiment[28] in time for the CERN announcement in 2000[29] of a possible quark–gluon plasma formation in its experiments.[30] These results were elaborated by the successor collaboration NA57[31] as shown in the enhancement of antibaryon figure. The gradual rise of the enhancement as a function of the variable representing the amount of nuclear matter participating in the collisions, and thus as a function of the geometric centrality of nuclear collision strongly favors the quark–gluon plasma source over normal matter reactions.

A similar enhancement was obtained by the STAR experiment at the RHIC.[32] Here results obtained when two colliding systems at 100 A GeV in each beam are considered: in red the heavier gold–gold collisions and in blue the smaller copper–copper collisions. The energy at RHIC is 11 times greater in the CM frame of reference compared to the earlier CERN work. The important result is that enhancement observed by STAR also increases with the number of participating nucleons. We further note that for the most peripheral events at the smallest number of participants, copper and gold systems show, at the same number of participants, the same enhancement as expected.

Another remarkable feature of these results, comparing CERN and STAR, is that the enhancement is of similar magnitude for the vastly different collision energies available in the reaction. This near energy independence of the enhancement also agrees with the quark–gluon plasma approach regarding the mechanism of production of these particles and confirms that a quark–gluon plasma is created over a wide range of collision energies, very probably once a minimal energy threshold is exceeded.

ALICE: Resolution of remaining questions about strangeness as signature of quark–gluon plasma edit

 
LHC-ALICE results for   obtained in three different collision systems at highest available energy as a function of charged hadron multiplicity produced.[33][34][35]
 
Ratio to pion of integrated yields for   and  . The evolution with multiplicity at mid-rapidity,  , is reported for several systems and energies, including pp at   TeV, p-Pb at   TeV, and also the ALICE preliminary results for pp at   TeV, Xe–Xe at   TeV and Pb–Pb at   TeV are included for comparison. Error bars show the statistical uncertainty, whereas the empty boxes show the total systematic uncertainty.[36]

The very high precision of (strange) particle spectra and large transverse momentum coverage reported by the ALICE Collaboration at the Large Hadron Collider (LHC) allows in-depth exploration of lingering challenges, which always accompany new physics, and here in particular the questions surrounding strangeness signature. Among the most discussed challenges has been the question if the abundance of particles produced is enhanced or if the comparison base line is suppressed. Suppression is expected when an otherwise absent quantum number, such as strangeness, is rarely produced. This situation was recognized by Hagedorn in his early analysis of particle production[37] and solved by Rafelski and Danos.[38] In that work it was shown that even if just a few new pairs of strange particles were produced the effect disappears. However, the matter was revived by Hamieh et al.[17] who argued that is possible that small sub-volumes in QGP are of relevance. This argument can be resolved by exploring specific sensitive experimental signatures for example the ratio of double strange particles of different type, such yield of   ( ) compared to  ( ). The ALICE experiment obtained this ratio for several collision systems in a wide range of hadronization volumes as described by the total produced particle multiplicy. The results show that this ratio assumes the expected value for a large range volumes (two orders of magnitude). At small particle volume or multiplicity, the curve shows the expected reduction: The   ( ) must be smaller compared to  ( ) as the number of produced strange pairs decreases and thus it easier to make  ( ) compared to   ( ) that requires two pairs minimum to be made. However, we also see an increase at very high volume—this is an effect at the level of one to two standard deviations. Similar results were already recognized before by Petran et al.[16]

Another highly praised ALICE result[7] is the observation of same strangeness enhancement, not only on AA (nucleus–nucleus) but also in pA (proton–nucleus) and pp (proton–proton) collisions when the particle production yields are presented as a function of the multiplicity, which, as noted, corresponds to the available hadronization volume. ALICE results display a smooth volume dependence of total yield of all studied particles as function of volume, there is no additional "canonical" suppression.[17] This is so since the yield of strange pairs in QGP is sufficiently high and tracks well the expected abundance increase as the volume and lifespan of QGP increases. This increase is incompatible with the hypothesis that for all reaction volumes QGP is always in chemical (yield) equilibrium of strangeness. Instead, this confirms the theoretical kinetic model proposed by Rafelski and Müller.[9] The production of QGP in pp collisions was not expected by all, but should not be a surprise. The onset of deconfinement is naturally a function of both energy and collision system size. The fact that at extreme LHC energies we cross this boundary also in experiments with the smallest elementary collision systems, such as pp, confirms the unexpected strength of the processes leading to QGP formation. Onset of deconfinement in pp and other "small" system collisions remains an active research topic.

Beyond strangeness the great advantage offered by LHC energy range is the abundant production of charm and bottom flavor.[22] When QGP is formed, these quarks are embedded in a high density of strangeness present. This should lead to copious production of exotic heavy particles, for example
D
s
. Other heavy flavor particles, some which have not even been discovered at this time, are also likely to appear.[39][40]

S–S and S–W collisions at SPS-CERN with projectile energy 200 GeV per nucleon on fixed target edit

 
Illustration of self-analyzing strange hadron decay: a double strange   decays producing a   and invisible   which decays making a characteristic V-signature ( and p). This figure is created from actual picture taken at the NA35 CERN experiment. More details at page 28 in Letessier and Rafelski.[2]
 
Quantitative comparison of   yield created in S–S with that in up-scaled p–p (squares) collision as a function of rapidity. Collisions at 200 A GeV.[41]

Looking back to the beginning of the CERN heavy ion program one sees de facto announcements of quark–gluon plasma discoveries. The CERN-NA35[25] and CERN-WA85[42] experimental collaborations announced   formation in heavy ion reactions in May 1990 at the Quark Matter Conference, Menton, France. The data indicates a significant enhancement of the production of this antimatter particle comprising one antistrange quark as well as antiup and antidown quarks. All three constituents of the   particle are newly produced in the reaction. The WA85 results were in agreement with theoretical predictions.[12] In the published report, WA85 interpreted their results as QGP.[43] NA35 had large systematic errors in its data, which were improved in the following years. Moreover, the collaboration needed to evaluate the pp-background. These results are presented as function of the variable called rapidity which characterizes the speed of the source. The peak of emission indicates that the additionally formed antimatter particles do not originate from the colliding nuclei themselves, but from a source that moves at a speed corresponding to one-half of the rapidity of the incident nucleus that is a common center of momentum frame of reference source formed when both nuclei collide, that is, the hot quark–gluon plasma fireball.

Horn in K → π ratio and the onset of deconfinement edit

 
The ratio of mean multiplicities of positively charged kaons and pions as a function of collision energy in collisions of two lead nuclei and proton–proton interactions.

One of the most interesting questions is if there is a threshold in reaction energy and/or volume size which needs to be exceeded in order to form a domain in which quarks can move freely.[44] It is natural to expect that if such a threshold exists the particle yields/ratios we have shown above should indicate that.[45] One of the most accessible signatures would be the relative Kaon yield ratio.[46] A possible structure has been predicted,[47] and indeed, an unexpected structure is seen in the ratio of particles comprising the positive kaon K (comprising anti s-quarks and up-quark) and positive pion particles, seen in the figure (solid symbols). The rise and fall (square symbols) of the ratio has been reported by the CERN NA49.[48][49] The reason the negative kaon particles do not show this "horn" feature is that the s-quarks prefer to hadronize bound in the Lambda particle, where the counterpart structure is observed. Data point from BNL–RHIC–STAR (red stars) in figure agree with the CERN data.

In view of these results the objective of ongoing NA61/SHINE experiment at CERN SPS and the proposed low energy run at BNL RHIC where in particular the STAR detector can search for the onset of production of quark–gluon plasma as a function of energy in the domain where the horn maximum is seen, in order to improve the understanding of these results, and to record the behavior of other related quark–gluon plasma observables.

Outlook edit

The strangeness production and its diagnostic potential as a signature of quark–gluon plasma has been discussed for nearly 30 years. The theoretical work in this field today focuses on the interpretation of the overall particle production data and the derivation of the resulting properties of the bulk of quark–gluon plasma at the time of breakup.[33] The global description of all produced particles can be attempted based on the picture of hadronizing hot drop of quark–gluon plasma or, alternatively, on the picture of confined and equilibrated hadron matter. In both cases one describes the data within the statistical thermal production model, but considerable differences in detail differentiate the nature of the source of these particles. The experimental groups working in the field also like to develop their own data analysis models and the outside observer sees many different analysis results. There are as many as 10–15 different particles species that follow the pattern predicted for the QGP as function of reaction energy, reaction centrality, and strangeness content. At yet higher LHC energies saturation of strangeness yield and binding to heavy flavor open new experimental opportunities.

Conferences and meetings edit

Scientists studying strangeness as signature of quark gluon plasma present and discuss their results at specialized meetings. Well established is the series International Conference on Strangeness in Quark Matter, first organized in Tucson, Arizona, in 1995.[50][51] The latest edition, 10–15 June 2019, of the conference was held in Bari, Italy, attracting about 300 participants.[52][53] A more general venue is the Quark Matter conference, which last time took place from 3–9 September 2023 in Houston, USA, attracting about 800 participants.[54][55]

Further reading edit

  • Brief history of the search for critical structures in heavy-ion collisions, Marek Gazdzicki, Mark Gorenstein, Peter Seyboth, 2020.[5]
  • Discovery of quark–gluon plasma: strangeness diaries, Johann Rafelski, 2020.[33]
  • Four heavy-ion experiments at the CERN-SPS: A trip down memory lane, Emanuele Quercigh, 2012.[56]
  • On the history of multi-particle production in high energy collisions, Marek Gazdzicki, 2012.[57]
  • Strangeness and the quark–gluon plasma: thirty years of discovery, Berndt Müller, 2012.[58]

See also edit

References edit

  1. ^ Margetis, Spyridon; Safarík, Karel; Villalobos Baillie, Orlando (2000). "Strangeness Production in Heavy-Ion Collisions". Annual Review of Nuclear and Particle Science. 50 (1): 299–342. Bibcode:2000ARNPS..50..299S. doi:10.1146/annurev.nucl.50.1.299. ISSN 0163-8998.
  2. ^ a b J. Letessier; J. Rafelski (2002). Hadrons and Quark–Gluon Plasma. Cambridge University Press. ISBN 978-0-521-38536-7.
  3. ^ Abbott, Alison (2000). "CERN claims first experimental creation of quark–gluon plasma". Nature. 403 (6770): 581. Bibcode:2000Natur.403..581A. doi:10.1038/35001196. ISSN 0028-0836. PMID 10688162.
  4. ^ Jacak, Barbara; Steinberg, Peter (2010). "Creating the perfect liquid in heavy-ion collisions". Physics Today. 63 (5): 39–43. Bibcode:2010PhT....63e..39J. doi:10.1063/1.3431330. ISSN 0031-9228.
  5. ^ a b Gazdzicki, Marek; Gorenstein, Mark; Seyboth, Peter (2020-04-05). "Brief history of the search for critical structures in heavy-ion collisions". Acta Physica Polonica B. 51 (5): 1033. arXiv:2004.02255. Bibcode:2020AcPPB..51.1033G. doi:10.5506/APhysPolB.51.1033. S2CID 214802159.
  6. ^ Anikina, M.; Gaździcki, M.; Golokhvastov, A.; Goncharova, L.; Iovchev, K.; Khorozov, S.; Kuznetzova, E.; Lukstins, J.; Okonov, E.; Ostanievich, T.; Sidorin, S. (1983). "Λ Hyperons Produced in Central Nucleus–Nucleus Interactions at 4.5 GeV/ c Momentum per Incident Nucleon". Physical Review Letters. 50 (25): 1971–1974. Bibcode:1983PhRvL..50.1971A. doi:10.1103/PhysRevLett.50.1971. ISSN 0031-9007.
  7. ^ a b c ALICE Collaboration (2017). "Enhanced production of multi-strange hadrons in high-multiplicity proton–proton collisions". Nature Physics. 13 (6): 535–539. arXiv:1606.07424. Bibcode:2017NatPh..13..535A. doi:10.1038/nphys4111. ISSN 1745-2473.
  8. ^ J. Rafelski; R. Hagedorn (1981). "From Hadron Gas to Quark Matter II" (PDF). In H. Satz (ed.). Statistical mechanics of quarks and hadrons. North-Holland and Elsevier. pp. 253–272. ISBN 0-444-86227-7. CERN-TH-2969 (1980).
  9. ^ a b c Rafelski, Johann; Müller, Berndt (1982). "Strangeness Production in the Quark–Gluon Plasma". Physical Review Letters. 48 (16): 1066–1069. Bibcode:1982PhRvL..48.1066R. doi:10.1103/PhysRevLett.48.1066. ISSN 0031-9007. (Erratum: doi:10.1103/PhysRevLett.56.2334)
  10. ^ Rafelski, Johann (2015) [1980]. "Extreme states of nuclear matter – 1980: From: "Workshop on Future Relativistic Heavy Ion Experiments" held 7–10 October 1980 at: GSI, Darmstadt, Germany". The European Physical Journal A. 51 (9): 115. Bibcode:2015EPJA...51..115R. doi:10.1140/epja/i2015-15115-y. ISSN 1434-6001.
  11. ^ Rafelski, Johann (2015) [1983]. "Strangeness and phase changes in hot hadronic matter - 1983: From: "Sixth High Energy Heavy Ion Study" held 28 June - 1 July 1983 at: LBNL, Berkeley, CA, USA". The European Physical Journal A. 51 (9): 116. Bibcode:2015EPJA...51..116R. doi:10.1140/epja/i2015-15116-x. ISSN 1434-6001.
  12. ^ a b c d P. Koch; B. Müller; J. Rafelski (1986). "Strangeness in relativistic heavy ion collisions". Physics Reports. 142 (4): 167. Bibcode:1986PhR...142..167K. CiteSeerX 10.1.1.462.8703. doi:10.1016/0370-1573(86)90096-7.
  13. ^ a b Koch, Peter; Müller, Berndt; Rafelski, Johann (2017). "From strangeness enhancement to quark–gluon plasma discovery". International Journal of Modern Physics A. 32 (31): 1730024–272. arXiv:1708.08115. Bibcode:2017IJMPA..3230024K. doi:10.1142/S0217751X17300241. ISSN 0217-751X. S2CID 119421190.
  14. ^ Soff, S.; Bass, S.A.; Bleicher, M.; Bravina, L.; Gorenstein, M.; Zabrodin, E.; Stöcker, H.; Greiner, W. (1999). "Strangeness enhancement in heavy ion collisions – evidence for quark–gluon matter?". Physics Letters B. 471 (1): 89–96. arXiv:nucl-th/9907026. Bibcode:1999PhLB..471...89S. doi:10.1016/S0370-2693(99)01318-0. S2CID 16805966.
  15. ^ Biro, T.S.; Nielsen, H.B.; Knoll, J. (1984). "Colour rope model for extreme relativistic heavy ion collisions". Nuclear Physics B. 245: 449–468. Bibcode:1984NuPhB.245..449B. doi:10.1016/0550-3213(84)90441-3.
  16. ^ a b Petráň, Michal; Rafelski, Johann (2010). "Multistrange particle production and the statistical hadronization model". Physical Review C. 82 (1): 011901. arXiv:0912.1689. Bibcode:2010PhRvC..82a1901P. doi:10.1103/PhysRevC.82.011901. ISSN 0556-2813. S2CID 119179477.
  17. ^ a b c Hamieh, Salah; Redlich, Krzysztof; Tounsi, Ahmed (2000). "Canonical description of strangeness enhancement from p–A to Pb–Pb collisions". Physics Letters B. 486 (1–2): 61–66. arXiv:hep-ph/0006024. Bibcode:2000PhLB..486...61H. doi:10.1016/S0370-2693(00)00762-0. S2CID 8566125.
  18. ^ Biró, T.S.; Zimányi, J. (1982). "Quarkochemistry in relativistic heavy-ion collisions" (PDF). Physics Letters B. 113 (1): 6–10. Bibcode:1982PhLB..113....6B. doi:10.1016/0370-2693(82)90097-1.
  19. ^ Rafelski, Johann (1984). "Strangeness production in the quark gluon plasma". Nuclear Physics A. 418: 215–235. Bibcode:1984NuPhA.418..215R. doi:10.1016/0375-9474(84)90551-7.
  20. ^ Wroblewski, A. (1985). "On the strange quark suppression factor in high-energy collisions". Acta Phys. Polon. B. 16: 379–392.
  21. ^ Becattini, Francesco; Fries, Rainer J. (2010), Stock, R. (ed.), "The QCD Confinement Transition: Hadron Formation", Relativistic Heavy Ion Physics, vol. 23, Springer Berlin Heidelberg, pp. 208–239, arXiv:0907.1031, Bibcode:2010LanB...23..208B, doi:10.1007/978-3-642-01539-7_8, ISBN 978-3-642-01538-0, S2CID 14306761, retrieved 2020-04-20, Fig. 10
  22. ^ a b Dong, Xin; Lee, Yen-Jie; Rapp, Ralf (2019). "Open Heavy-Flavor Production in Heavy-Ion Collisions". Annual Review of Nuclear and Particle Science. 69 (1): 417–445. arXiv:1903.07709. Bibcode:2019ARNPS..69..417D. doi:10.1146/annurev-nucl-101918-023806. ISSN 0163-8998. S2CID 119328093.
  23. ^ Kluberg, Louis; Satz, Helmut (2010), Stock, R. (ed.), "Color deconfinement and charmonium production in nuclear collisions", Relativistic Heavy Ion Physics, vol. 23, Springer Berlin Heidelberg, pp. 373–423, arXiv:0901.3831, Bibcode:2010LanB...23..373K, doi:10.1007/978-3-642-01539-7_13, ISBN 978-3-642-01538-0, S2CID 13953895, retrieved 2020-04-20
  24. ^ Petran, Michal (2013). Strangeness and charm in quark–gluon hadronization (PhD). University of Arizona. arXiv:1311.6154.
  25. ^ a b R. Stock; NA35 Collaboration (1991). "Strangeness enhancement in central S + S collisions at 200 GeV/nucleon". Nuclear Physics A. 525: 221–226. Bibcode:1991NuPhA.525..221S. doi:10.1016/0375-9474(91)90328-4.{{cite journal}}: CS1 maint: numeric names: authors list (link)
  26. ^ Kuznetsova, I.; Rafelski, J. (2007). "Heavy flavor hadrons in statistical hadronization of strangeness-rich QGP". The European Physical Journal C. 51 (1): 113–133. arXiv:hep-ph/0607203. Bibcode:2007EPJC...51..113K. doi:10.1140/epjc/s10052-007-0268-9. ISSN 1434-6044. S2CID 18266326.
  27. ^ a b The WA97 Collaboration (2000). "Transverse mass spectra of strange and multi–strange particles in Pb–Pb collisions at 158 A GeV/c". The European Physical Journal C. 14 (4): 633–641. Bibcode:2000EPJC...14..633W. doi:10.1007/s100520000386. ISSN 1434-6044. S2CID 195312472.{{cite journal}}: CS1 maint: numeric names: authors list (link)
  28. ^ E. Andersen; WA97 Collaboration (1999). "Strangeness enhancement at mid-rapidity in Pb–Pb collisions at 158 A GeV/c". Physics Letters B. 449 (3–4): 401. Bibcode:1999PhLB..449..401W. doi:10.1016/S0370-2693(99)00140-9.{{cite journal}}: CS1 maint: numeric names: authors list (link)
  29. ^ "New State of Matter created at CERN". CERN. 10 February 2000. Retrieved 2020-04-24.
  30. ^ Heinz, Ulrich; Jacob, Maurice (2000-02-16). "Evidence for a New State of Matter: An Assessment of the Results from the CERN Lead Beam Programme". arXiv:nucl-th/0002042.
  31. ^ F. Antinori; NA57 Collaboration (2006). "Enhancement of hyperon production at central rapidity in 158 A GeV/c Pb+Pb collisions". Journal of Physics G. 32 (4): 427–442. arXiv:nucl-ex/0601021. Bibcode:2006JPhG...32..427N. doi:10.1088/0954-3899/32/4/003. S2CID 119102482.{{cite journal}}: CS1 maint: numeric names: authors list (link)
  32. ^ A.R. Timmins; STAR Collaboration (2009). "Overview of strangeness production at the STAR experiment". Journal of Physics G. 36 (6): 064006. arXiv:0812.4080. Bibcode:2009JPhG...36f4006T. doi:10.1088/0954-3899/36/6/064006. S2CID 12853074.
  33. ^ a b c Rafelski, Johann (2020). "Discovery of Quark–Gluon Plasma: Strangeness Diaries". The European Physical Journal Special Topics. 229 (1): 1–140. arXiv:1911.00831. Bibcode:2020EPJST.229....1R. doi:10.1140/epjst/e2019-900263-x. ISSN 1951-6355. S2CID 207869782.
  34. ^ Tripathy, Sushanta (2019). "Energy dependence of ϕ(1020) production at mid-rapidity in pp collisions with ALICE at the LHC". Nuclear Physics A. 982: 180–182. arXiv:1807.11186. Bibcode:2019NuPhA.982..180T. doi:10.1016/j.nuclphysa.2018.09.078. S2CID 119223653.
  35. ^ Tripathy, Sushanta (2019-07-01). "An insight into strangeness with $\phi$(1020) production in small to large collision systems with ALICE at the LHC". arXiv:1907.00842 [hep-ex].
  36. ^ Albuquerque, D.S.D. (2019). "Hadronic resonances, strange and multi-strange particle production in Xe–Xe and Pb–Pb collisions with ALICE at the LHC". Nuclear Physics A. 982: 823–826. arXiv:1807.08727. Bibcode:2019NuPhA.982..823A. doi:10.1016/j.nuclphysa.2018.08.033. S2CID 119404602.
  37. ^ Hagedorn, Rolf (1968). "Statistical thermodynamics of strong interactions at high energies – III : heavy pair(quark) production rates". Supplemento al Nuovo Cimento. 6: 311–354.
  38. ^ Rafelski, Johann; Danos, Michael (1980). "The importance of the reaction volume in hadronic collisions". Physics Letters B. 97 (2): 279–282. Bibcode:1980PhLB...97..279R. doi:10.1016/0370-2693(80)90601-2.
  39. ^ I. Kuznetsova; J. Rafelski (2007). "Heavy Flavor Hadrons in Statistical Hadronization of Strangeness-rich QGP". European Physical Journal C. 51 (1): 113–133. arXiv:hep-ph/0607203. Bibcode:2007EPJC...51..113K. doi:10.1140/epjc/s10052-007-0268-9. S2CID 18266326.
  40. ^ N. Armesto; et al. (2008). "Heavy-ion collisions at the LHC—Last call for predictions". Journal of Physics G. 35 (5): 054001. arXiv:0711.0974. doi:10.1088/0954-3899/35/5/054001. S2CID 118529585.
  41. ^ Foka, P. (1994). Study of strangness production in central nucleus–nucleus collisions at 200 GeV/nucleon by developing a new analysis method for the NA35 streamer chamber pictures. Thesis number 2723. Geneva: University of Geneva. The figure is a re-work of the original figure appearing on the top of page 271.
  42. ^ Abatzis, S.; Barnes, R.P.; Benayoun, M.; Beusch, W.; Bloodworth, I.J.; Bravar, A.; Carney, J.N.; Dufey, J.P.; Evans, D.; Fini, R.; French, B.R. (1991). "Λ and anti-Λ production in 32S+W and p+W interactions at 200 A GeV/c". Nuclear Physics A. 525: 445–448. Bibcode:1991NuPhA.525..445A. doi:10.1016/0375-9474(91)90361-9.
  43. ^ Abatzis, S.; Antinori, F.; Barnes, R.P.; Benayoun, M.; Beusch, W.; Bloodworth, I.J.; Bravar, A.; Carney, J.N.; de la Cruz, B.; Di Bari, D.; Dufey, J.P. (1991). "Ξ, Ξ+, Λ and Λ production in sulphur–tungsten interactions at 200 GeV/c per nucleon". Physics Letters B. 270 (1): 123–127. doi:10.1016/0370-2693(91)91548-A.
  44. ^ Gazdzicki, Marek; Gorenstein, Mark; Seyboth, Peter (2020). "Brief history of the search for critical structures in heavy-ion collisions". Acta Physica Polonica B. 51 (5): 1033. arXiv:2004.02255. Bibcode:2020AcPPB..51.1033G. doi:10.5506/APhysPolB.51.1033. S2CID 214802159.
  45. ^ Becattini, F. (2012). "Strangeness and onset of deconfinement". Physics of Atomic Nuclei. 75 (5): 646–649. Bibcode:2012PAN....75..646B. doi:10.1134/S106377881205002X. ISSN 1063-7788. S2CID 120504052.
  46. ^ N.K. Glendenning; J. Rafelski (1985). "Kaons and quark–gluon plasma". Physical Review C. 31 (3): 823–827. Bibcode:1985PhRvC..31..823G. doi:10.1103/PhysRevC.31.823. PMID 9952591. S2CID 26838236.
  47. ^ M. Gazdzicki; M.I. Gorenstein (1999). "On the Early Stage of Nucleus–Nucleus Collisions". Acta Physica Polonica B. 30 (9): 2705. arXiv:hep-ph/9803462. Bibcode:1999AcPPB..30.2705G.
  48. ^ M. Gazdzicki; NA49 Collaboration (2004). "Report from NA49". Journal of Physics G. 30 (8): S701–S708. arXiv:nucl-ex/0403023. Bibcode:2004JPhG...30S.701G. doi:10.1088/0954-3899/30/8/008. S2CID 119197566.{{cite journal}}: CS1 maint: numeric names: authors list (link)
  49. ^ C. Alt; NA49 Collaboration (2008). "Pion and kaon production in central Pb+Pb collisions at 20A and 30A GeV: Evidence for the onset of deconfinement". Physical Review C. 77 (2): 024903. arXiv:0710.0118. Bibcode:2008PhRvC..77b4903A. doi:10.1103/PhysRevC.77.024903. S2CID 118390736.{{cite journal}}: CS1 maint: numeric names: authors list (link)
  50. ^ Strangeness in hadronic matter : S'95, Tucson, AZ January 1995. Rafelski, Johann. New York: AIP Press. 1995. ISBN 1-56396-489-9. OCLC 32993061.{{cite book}}: CS1 maint: others (link)
  51. ^ "History – Strangeness in Quark Matter 2019". Retrieved 2020-05-01.
  52. ^ "Strangeness in Quark Matter 2019". Retrieved 2020-05-05.
  53. ^ "Quark-matter mysteries on the run in Bari". CERN Courier. 2019-09-11. Retrieved 2020-05-05.
  54. ^ "Quark Matter 2023 - the XXXth International Conference on Ultra-relativistic Nucleus–Nucleus Collisions". Indico. n.d. Retrieved 2023-12-14.
  55. ^ "Why hundreds of Sheldon Coopers are descending on Houston next week". Houston Public Media. 2023-09-01. Retrieved 2023-12-14.
  56. ^ Quercigh, E. (2012). "Four heavy-ion experiments at the CERN-SPS: A trip down memory lane". Acta Physica Polonica B. 43 (4): 771. doi:10.5506/APhysPolB.43.771. S2CID 126317771.
  57. ^ Gazdzicki, M. (2012). "On the history of multi-particle production in high energy collisions". Acta Physica Polonica B. 43 (4): 791. arXiv:1201.0485. Bibcode:2012arXiv1201.0485G. doi:10.5506/APhysPolB.43.791. ISSN 0587-4254. S2CID 118418649.
  58. ^ Müller, B. (2012). "Strangeness and the quark–gluon plasma: thirty years of discovery". Acta Physica Polonica B. 43 (4): 761. arXiv:1112.5382. doi:10.5506/APhysPolB.43.761. S2CID 119280137.

{{|}}

strangeness, quark, gluon, plasma, also, strangeness, high, energy, nuclear, physics, strangeness, production, relativistic, heavy, collisions, signature, diagnostic, tool, quark, gluon, plasma, formation, properties, unlike, down, quarks, from, which, everyda. See also Strangeness In high energy nuclear physics strangeness production in relativistic heavy ion collisions is a signature and diagnostic tool of quark gluon plasma QGP formation and properties 1 Unlike up and down quarks from which everyday matter is made heavier quark flavors such as strange and charm typically approach chemical equilibrium in a dynamic evolution process QGP also known as quark matter is an interacting localized assembly of quarks and gluons at thermal kinetic and not necessarily chemical abundance equilibrium The word plasma signals that color charged particles quarks and or gluons are able to move in the volume occupied by the plasma The abundance of strange quarks is formed in pair production processes in collisions between constituents of the plasma creating the chemical abundance equilibrium The dominant mechanism of production involves gluons only present when matter has become a quark gluon plasma When quark gluon plasma disassembles into hadrons in a breakup process the high availability of strange antiquarks helps to produce antimatter containing multiple strange quarks which is otherwise rarely made Similar considerations are at present made for the heavier charm flavor which is made at the beginning of the collision process in the first interactions and is only abundant in the high energy environments of CERN s Large Hadron Collider Contents 1 Quark gluon plasma in the early universe and in the laboratory 2 Strangeness in quark gluon plasma 3 Equilibrium of strangeness in quark gluon plasma 4 Gluon fusion into strangeness 5 Strangeness and charm hadronization 6 Strange hadron decay and observation 7 Systematics of strange matter and antimatter creation 8 ALICE Resolution of remaining questions about strangeness as signature of quark gluon plasma 9 S S and S W collisions at SPS CERN with projectile energy 200 GeV per nucleon on fixed target 10 Horn in K p ratio and the onset of deconfinement 11 Outlook 12 Conferences and meetings 13 Further reading 14 See also 15 ReferencesQuark gluon plasma in the early universe and in the laboratory edit nbsp Collision between two highly energetic nuclei create an extremely dense environment in which quarks and gluons may interact as free particles for brief moments The collisions happened at such extreme velocities that the nuclei are pancaked because of Lorentz contraction Free quarks probably existed in the extreme conditions of the very early universe until about 30 microseconds after the Big Bang 2 in a very hot gas of free quarks antiquarks and gluons This gas is called quark gluon plasma QGP since the quark interaction charge color charge is mobile and quarks and gluons move around This is possible because at a high temperature the early universe is in a different vacuum state in which normal matter cannot exist but quarks and gluons can they are deconfined able to exist independently as separate unbound particles In order to recreate this deconfined phase of matter in the laboratory it is necessary to exceed a minimum temperature or its equivalent a minimum energy density Scientists achieve this using particle collisions at extremely high speeds where the energy released in the collision can raise the subatomic particles energies to an exceedingly high level sufficient for them to briefly form a tiny amount of quark gluon plasma that can be studied in laboratory experiments for little more than the time light needs to cross the QGP fireball thus about 10 22 s After this brief time the hot drop of quark plasma evaporates in a process called hadronization This is so since practically all QGP components flow out at relativistic speed In this way it is possible to study conditions akin to those in the early Universe at the age of 10 40 microseconds Discovery of this new QGP state of matter has been announced both at CERN 3 and at Brookhaven National Laboratory BNL 4 Preparatory work allowing for these discoveries was carried out at the Joint Institute for Nuclear Research JINR and Lawrence Berkeley National Laboratory LBNL at the Bevalac 5 New experimental facilities FAIR at the GSI Helmholtz Centre for Heavy Ion Research GSI and NICA at JINR are under construction Strangeness as a signature of QGP was first explored in 1983 6 Comprehensive experimental evidence about its properties is being assembled Recent work by the ALICE collaboration 7 at CERN has opened a new path to study of QGP and strangeness production in very high energy pp collisions Strangeness in quark gluon plasma editThe diagnosis and the study of the properties of quark gluon plasma can be undertaken using quarks not present in matter seen around us The experimental and theoretical work relies on the idea of strangeness enhancement This was the first observable of quark gluon plasma proposed in 1980 by Johann Rafelski and Rolf Hagedorn 8 Unlike the up and down quarks strange quarks are not brought into the reaction by the colliding nuclei Therefore any strange quarks or antiquarks observed in experiments have been freshly made from the kinetic energy of colliding nuclei with gluons being the catalyst 9 Conveniently the mass of strange quarks and antiquarks is equivalent to the temperature or energy at which protons neutrons and other hadrons dissolve into quarks This means that the abundance of strange quarks is sensitive to the conditions structure and dynamics of the deconfined matter phase and if their number is large it can be assumed that deconfinement conditions were reached An even stronger signature of strangeness enhancement is the highly enhanced production of strange antibaryons 10 11 An early comprehensive review of strangeness as a signature of QGP was presented by Koch Muller and Rafelski 12 which was recently updated 13 The abundance of produced strange anti baryons and in particular anti omega W s s s displaystyle bar Omega bar s bar s bar s nbsp allowed to distinguish fully deconfined large QGP domain 14 from transient collective quark models such as the color rope model proposed by Biro Nielsen and Knoll 15 The relative abundance of ϕ s s 3 q s s displaystyle phi s bar s bar Xi bar q bar s bar s nbsp resolves 16 questions raised by the canonical model of strangeness enhancement 17 Equilibrium of strangeness in quark gluon plasma editOne cannot assume that under all conditions the yield of strange quarks is in thermal equilibrium In general the quark flavor composition of the plasma varies during its ultra short lifetime as new flavors of quarks such as strangeness are cooked up inside The up and down quarks from which normal matter is made are easily produced as quark antiquark pairs in the hot fireball because they have small masses On the other hand the next lightest quark flavor strange quarks will reach its high quark gluon plasma thermal abundance provided that there is enough time and that the temperature is high enough 13 This work elaborated the kinetic theory of strangness production proposed by T Biro and J Zimanyi who demonstrated that strange quarks could not be produced fast enough alone by quark antiquark reactions 18 A new mechanism operational alone in QGP was proposed Gluon fusion into strangeness edit nbsp Feynman diagrams for the lowest order in strong coupling constant a s displaystyle alpha s nbsp strangeness production processes gluon fusion top dominate the light quark based production Yield equilibration of strangeness yield in QGP is only possible due to a new process gluon fusion as shown by Rafelski and Muller 9 The top section of the Feynman diagrams figure shows the new gluon fusion processes gluons are the wavy lines strange quarks are the solid lines time runs from left to right The bottom section is the process where the heavier quark pair arises from the lighter pair of quarks shown as dashed lines The gluon fusion process occurs almost ten times faster than the quark based strangeness process and allows achievement of the high thermal yield where the quark based process would fail to do so during the duration of the micro bang 19 The ratio of newly produced s s displaystyle bar s s nbsp pairs with the normalized light quark pairs u u d d 2 displaystyle bar u u bar d d 2 nbsp the Wroblewski ratio 20 is considered a measure of efficacy of strangeness production This ratio more than doubles in heavy ion collisions 21 providing a model independent confirmation of a new mechanism of strangeness production operating in collisions that are producing QGP Regarding charm and bottom flavour 22 23 the gluon collisions here are occurring within the thermal matter phase and thus are different from the high energy processes that can ensue in the early stages of the collisions when the nuclei crash into each other The heavier charm and bottom quarks are produced there dominantly The study in relativistic nuclear heavy ion collisions of charmed and soon also bottom hadronic particle production beside strangeness will provide complementary and important confirmation of the mechanisms of formation evolution and hadronization of quark gluon plasma in the laboratory 7 Strangeness and charm hadronization edit nbsp Illustration of the two step process of strange antibaryon production a key signature of QGP strangeness is produced inside the fireball and later on in an independent process at hadronization several anti strange quarks form anti baryons The production of triple strange W displaystyle Omega nbsp and W displaystyle bar Omega nbsp is the strongest signature to date of QGP formation These newly cooked strange quarks find their way into a multitude of different final particles that emerge as the hot quark gluon plasma fireball breaks up see the scheme of different processes in figure Given the ready supply of antiquarks in the fireball one also finds a multitude of antimatter particles containing more than one strange quark On the other hand in a system involving a cascade of nucleon nucleon collisions multi strange antimatter are produced less frequently considering that several relatively improbable events must occur in the same collision process For this reason one expects that the yield of multi strange antimatter particles produced in the presence of quark matter is enhanced compared to conventional series of reactions 24 25 Strange quarks also bind with the heavier charm and bottom quarks which also like to bind with each other Thus in the presence of a large number of these quarks quite unusually abundant exotic particles can be produced some of which have never been observed before This should be the case in the forthcoming exploration at the new Large Hadron Collider at CERN of the particles that have charm and strange quarks and even bottom quarks as components 26 Strange hadron decay and observation edit nbsp Universality of transverse mass spectra of strange baryons and antibaryons as measured by CERN WA97 collaboration 27 Collisions at 158 A GeV These results demonstrate that all these particles are produced in explosively hadronizing fireball of QGP and do not undergo further interaction once produced This key result shows therefore formation a new state of matter announced at CERN in February 2000 Strange quarks are naturally radioactive and decay by weak interactions into lighter quarks on a timescale that is extremely long compared with the nuclear collision times This makes it relatively easy to detect strange particles through the tracks left by their decay products Consider as an example the decay of a negatively charged 3 displaystyle Xi nbsp baryon green in figure dss into a negative pion u d and a neutral L displaystyle Lambda nbsp uds baryon Subsequently the L displaystyle Lambda nbsp decays into a proton and another negative pion In general this is the signature of the decay of a 3 displaystyle Xi nbsp Although the negative W displaystyle Omega nbsp sss baryon has a similar final state decay topology it can be clearly distinguished from the 3 displaystyle Xi nbsp because its decay products are different Measurement of abundant formation of 3 displaystyle Xi nbsp uss dss W displaystyle Omega nbsp sss and especially their antiparticles is an important cornerstone of the claim that quark gluon plasma has been formed 27 This abundant formation is often presented in comparison with the scaled expectation from normal proton proton collisions however such a comparison is not a necessary step in view of the large absolute yields which defy conventional model expectations 12 The overall yield of strangeness is also larger than expected if the new form of matter has been achieved However considering that the light quarks are also produced in gluon fusion processes one expects increased production of all hadrons The study of the relative yields of strange and non strange particles provides information about the competition of these processes and thus the reaction mechanism of particle production Systematics of strange matter and antimatter creation edit nbsp Enhancement of antibaryon yield increases with number of newly made quarks s anti s anti q and the size of the colliding system represented by the number of nucleons damaged wounded in the collision of relativistic heavy ions SPS RHIC and ALICE results shown as function of participating nucleons scaled this represents residual enhancement after removal of scaling with number of participant The work of Koch Muller Rafelski 12 predicts that in a quark gluon plasma hadronization process the enhancement for each particle species increases with the strangeness content of the particle The enhancements for particles carrying one two and three strange or antistrange quarks were measured and this effect was demonstrated by the CERN WA97 experiment 28 in time for the CERN announcement in 2000 29 of a possible quark gluon plasma formation in its experiments 30 These results were elaborated by the successor collaboration NA57 31 as shown in the enhancement of antibaryon figure The gradual rise of the enhancement as a function of the variable representing the amount of nuclear matter participating in the collisions and thus as a function of the geometric centrality of nuclear collision strongly favors the quark gluon plasma source over normal matter reactions A similar enhancement was obtained by the STAR experiment at the RHIC 32 Here results obtained when two colliding systems at 100 A GeV in each beam are considered in red the heavier gold gold collisions and in blue the smaller copper copper collisions The energy at RHIC is 11 times greater in the CM frame of reference compared to the earlier CERN work The important result is that enhancement observed by STAR also increases with the number of participating nucleons We further note that for the most peripheral events at the smallest number of participants copper and gold systems show at the same number of participants the same enhancement as expected Another remarkable feature of these results comparing CERN and STAR is that the enhancement is of similar magnitude for the vastly different collision energies available in the reaction This near energy independence of the enhancement also agrees with the quark gluon plasma approach regarding the mechanism of production of these particles and confirms that a quark gluon plasma is created over a wide range of collision energies very probably once a minimal energy threshold is exceeded ALICE Resolution of remaining questions about strangeness as signature of quark gluon plasma edit nbsp LHC ALICE results for 3 3 ϕ displaystyle bar Xi Xi phi nbsp obtained in three different collision systems at highest available energy as a function of charged hadron multiplicity produced 33 34 35 nbsp Ratio to pion of integrated yields for p K s 0 L ϕ 3 displaystyle p K s 0 Lambda phi Xi nbsp and W displaystyle Omega nbsp The evolution with multiplicity at mid rapidity d N c h d h lt 0 5 displaystyle operatorname d N ch operatorname d eta lt 0 5 nbsp is reported for several systems and energies including pp at s 7 displaystyle sqrt s 7 nbsp TeV p Pb at s N N 5 02 displaystyle sqrt s operatorname N operatorname N 5 02 nbsp TeV and also the ALICE preliminary results for pp at s 13 displaystyle sqrt s 13 nbsp TeV Xe Xe at s N N 5 44 displaystyle sqrt s operatorname N operatorname N 5 44 nbsp TeV and Pb Pb at s N N 5 02 displaystyle sqrt s operatorname N operatorname N 5 02 nbsp TeV are included for comparison Error bars show the statistical uncertainty whereas the empty boxes show the total systematic uncertainty 36 The very high precision of strange particle spectra and large transverse momentum coverage reported by the ALICE Collaboration at the Large Hadron Collider LHC allows in depth exploration of lingering challenges which always accompany new physics and here in particular the questions surrounding strangeness signature Among the most discussed challenges has been the question if the abundance of particles produced is enhanced or if the comparison base line is suppressed Suppression is expected when an otherwise absent quantum number such as strangeness is rarely produced This situation was recognized by Hagedorn in his early analysis of particle production 37 and solved by Rafelski and Danos 38 In that work it was shown that even if just a few new pairs of strange particles were produced the effect disappears However the matter was revived by Hamieh et al 17 who argued that is possible that small sub volumes in QGP are of relevance This argument can be resolved by exploring specific sensitive experimental signatures for example the ratio of double strange particles of different type such yield of s s q displaystyle ssq nbsp 3 displaystyle Xi nbsp compared to s s displaystyle bar s s nbsp ϕ displaystyle phi nbsp The ALICE experiment obtained this ratio for several collision systems in a wide range of hadronization volumes as described by the total produced particle multiplicy The results show that this ratio assumes the expected value for a large range volumes two orders of magnitude At small particle volume or multiplicity the curve shows the expected reduction The s s q displaystyle ssq nbsp 3 displaystyle Xi nbsp must be smaller compared to s s displaystyle bar s s nbsp ϕ displaystyle phi nbsp as the number of produced strange pairs decreases and thus it easier to make s s displaystyle bar s s nbsp ϕ displaystyle phi nbsp compared to s s q displaystyle ssq nbsp 3 displaystyle Xi nbsp that requires two pairs minimum to be made However we also see an increase at very high volume this is an effect at the level of one to two standard deviations Similar results were already recognized before by Petran et al 16 Another highly praised ALICE result 7 is the observation of same strangeness enhancement not only on AA nucleus nucleus but also in pA proton nucleus and pp proton proton collisions when the particle production yields are presented as a function of the multiplicity which as noted corresponds to the available hadronization volume ALICE results display a smooth volume dependence of total yield of all studied particles as function of volume there is no additional canonical suppression 17 This is so since the yield of strange pairs in QGP is sufficiently high and tracks well the expected abundance increase as the volume and lifespan of QGP increases This increase is incompatible with the hypothesis that for all reaction volumes QGP is always in chemical yield equilibrium of strangeness Instead this confirms the theoretical kinetic model proposed by Rafelski and Muller 9 The production of QGP in pp collisions was not expected by all but should not be a surprise The onset of deconfinement is naturally a function of both energy and collision system size The fact that at extreme LHC energies we cross this boundary also in experiments with the smallest elementary collision systems such as pp confirms the unexpected strength of the processes leading to QGP formation Onset of deconfinement in pp and other small system collisions remains an active research topic Beyond strangeness the great advantage offered by LHC energy range is the abundant production of charm and bottom flavor 22 When QGP is formed these quarks are embedded in a high density of strangeness present This should lead to copious production of exotic heavy particles for example Ds Other heavy flavor particles some which have not even been discovered at this time are also likely to appear 39 40 S S and S W collisions at SPS CERN with projectile energy 200 GeV per nucleon on fixed target edit nbsp Illustration of self analyzing strange hadron decay a double strange 3 displaystyle Xi nbsp decays producing a p displaystyle pi nbsp and invisible L displaystyle Lambda nbsp which decays making a characteristic V signature p displaystyle pi nbsp and p This figure is created from actual picture taken at the NA35 CERN experiment More details at page 28 in Letessier and Rafelski 2 nbsp Quantitative comparison of L displaystyle bar Lambda nbsp yield created in S S with that in up scaled p p squares collision as a function of rapidity Collisions at 200 A GeV 41 Looking back to the beginning of the CERN heavy ion program one sees de facto announcements of quark gluon plasma discoveries The CERN NA35 25 and CERN WA85 42 experimental collaborations announced L displaystyle bar Lambda nbsp formation in heavy ion reactions in May 1990 at the Quark Matter Conference Menton France The data indicates a significant enhancement of the production of this antimatter particle comprising one antistrange quark as well as antiup and antidown quarks All three constituents of the L displaystyle bar Lambda nbsp particle are newly produced in the reaction The WA85 results were in agreement with theoretical predictions 12 In the published report WA85 interpreted their results as QGP 43 NA35 had large systematic errors in its data which were improved in the following years Moreover the collaboration needed to evaluate the pp background These results are presented as function of the variable called rapidity which characterizes the speed of the source The peak of emission indicates that the additionally formed antimatter particles do not originate from the colliding nuclei themselves but from a source that moves at a speed corresponding to one half of the rapidity of the incident nucleus that is a common center of momentum frame of reference source formed when both nuclei collide that is the hot quark gluon plasma fireball Horn in K p ratio and the onset of deconfinement editSee also Onset of deconfinement nbsp The ratio of mean multiplicities of positively charged kaons and pions as a function of collision energy in collisions of two lead nuclei and proton proton interactions One of the most interesting questions is if there is a threshold in reaction energy and or volume size which needs to be exceeded in order to form a domain in which quarks can move freely 44 It is natural to expect that if such a threshold exists the particle yields ratios we have shown above should indicate that 45 One of the most accessible signatures would be the relative Kaon yield ratio 46 A possible structure has been predicted 47 and indeed an unexpected structure is seen in the ratio of particles comprising the positive kaon K comprising anti s quarks and up quark and positive pion particles seen in the figure solid symbols The rise and fall square symbols of the ratio has been reported by the CERN NA49 48 49 The reason the negative kaon particles do not show this horn feature is that the s quarks prefer to hadronize bound in the Lambda particle where the counterpart structure is observed Data point from BNL RHIC STAR red stars in figure agree with the CERN data In view of these results the objective of ongoing NA61 SHINE experiment at CERN SPS and the proposed low energy run at BNL RHIC where in particular the STAR detector can search for the onset of production of quark gluon plasma as a function of energy in the domain where the horn maximum is seen in order to improve the understanding of these results and to record the behavior of other related quark gluon plasma observables Outlook editThe strangeness production and its diagnostic potential as a signature of quark gluon plasma has been discussed for nearly 30 years The theoretical work in this field today focuses on the interpretation of the overall particle production data and the derivation of the resulting properties of the bulk of quark gluon plasma at the time of breakup 33 The global description of all produced particles can be attempted based on the picture of hadronizing hot drop of quark gluon plasma or alternatively on the picture of confined and equilibrated hadron matter In both cases one describes the data within the statistical thermal production model but considerable differences in detail differentiate the nature of the source of these particles The experimental groups working in the field also like to develop their own data analysis models and the outside observer sees many different analysis results There are as many as 10 15 different particles species that follow the pattern predicted for the QGP as function of reaction energy reaction centrality and strangeness content At yet higher LHC energies saturation of strangeness yield and binding to heavy flavor open new experimental opportunities Conferences and meetings editScientists studying strangeness as signature of quark gluon plasma present and discuss their results at specialized meetings Well established is the series International Conference on Strangeness in Quark Matter first organized in Tucson Arizona in 1995 50 51 The latest edition 10 15 June 2019 of the conference was held in Bari Italy attracting about 300 participants 52 53 A more general venue is the Quark Matter conference which last time took place from 3 9 September 2023 in Houston USA attracting about 800 participants 54 55 Further reading editBrief history of the search for critical structures in heavy ion collisions Marek Gazdzicki Mark Gorenstein Peter Seyboth 2020 5 Discovery of quark gluon plasma strangeness diaries Johann Rafelski 2020 33 Four heavy ion experiments at the CERN SPS A trip down memory lane Emanuele Quercigh 2012 56 On the history of multi particle production in high energy collisions Marek Gazdzicki 2012 57 Strangeness and the quark gluon plasma thirty years of discovery Berndt Muller 2012 58 See also editQuark gluon plasma Quark matter Hadronization Strangelet Strange particleReferences edit Margetis Spyridon Safarik Karel Villalobos Baillie Orlando 2000 Strangeness Production in Heavy Ion Collisions Annual Review of Nuclear and Particle Science 50 1 299 342 Bibcode 2000ARNPS 50 299S doi 10 1146 annurev nucl 50 1 299 ISSN 0163 8998 a b J Letessier J Rafelski 2002 Hadrons and Quark Gluon Plasma Cambridge University Press ISBN 978 0 521 38536 7 Abbott Alison 2000 CERN claims first experimental creation of quark gluon plasma Nature 403 6770 581 Bibcode 2000Natur 403 581A doi 10 1038 35001196 ISSN 0028 0836 PMID 10688162 Jacak Barbara Steinberg Peter 2010 Creating the perfect liquid in heavy ion collisions Physics Today 63 5 39 43 Bibcode 2010PhT 63e 39J doi 10 1063 1 3431330 ISSN 0031 9228 a b Gazdzicki Marek Gorenstein Mark Seyboth Peter 2020 04 05 Brief history of the search for critical structures in heavy ion collisions Acta Physica Polonica B 51 5 1033 arXiv 2004 02255 Bibcode 2020AcPPB 51 1033G doi 10 5506 APhysPolB 51 1033 S2CID 214802159 Anikina M Gazdzicki M Golokhvastov A Goncharova L Iovchev K Khorozov S Kuznetzova E Lukstins J Okonov E Ostanievich T Sidorin S 1983 L Hyperons Produced in Central Nucleus Nucleus Interactions at 4 5 GeV c Momentum per Incident Nucleon Physical Review Letters 50 25 1971 1974 Bibcode 1983PhRvL 50 1971A doi 10 1103 PhysRevLett 50 1971 ISSN 0031 9007 a b c ALICE Collaboration 2017 Enhanced production of multi strange hadrons in high multiplicity proton proton collisions Nature Physics 13 6 535 539 arXiv 1606 07424 Bibcode 2017NatPh 13 535A doi 10 1038 nphys4111 ISSN 1745 2473 J Rafelski R Hagedorn 1981 From Hadron Gas to Quark Matter II PDF In H Satz ed Statistical mechanics of quarks and hadrons North Holland and Elsevier pp 253 272 ISBN 0 444 86227 7 CERN TH 2969 1980 a b c Rafelski Johann Muller Berndt 1982 Strangeness Production in the Quark Gluon Plasma Physical Review Letters 48 16 1066 1069 Bibcode 1982PhRvL 48 1066R doi 10 1103 PhysRevLett 48 1066 ISSN 0031 9007 Erratum doi 10 1103 PhysRevLett 56 2334 Rafelski Johann 2015 1980 Extreme states of nuclear matter 1980 From Workshop on Future Relativistic Heavy Ion Experiments held 7 10 October 1980 at GSI Darmstadt Germany The European Physical Journal A 51 9 115 Bibcode 2015EPJA 51 115R doi 10 1140 epja i2015 15115 y ISSN 1434 6001 Rafelski Johann 2015 1983 Strangeness and phase changes in hot hadronic matter 1983 From Sixth High Energy Heavy Ion Study held 28 June 1 July 1983 at LBNL Berkeley CA USA The European Physical Journal A 51 9 116 Bibcode 2015EPJA 51 116R doi 10 1140 epja i2015 15116 x ISSN 1434 6001 a b c d P Koch B Muller J Rafelski 1986 Strangeness in relativistic heavy ion collisions Physics Reports 142 4 167 Bibcode 1986PhR 142 167K CiteSeerX 10 1 1 462 8703 doi 10 1016 0370 1573 86 90096 7 a b Koch Peter Muller Berndt Rafelski Johann 2017 From strangeness enhancement to quark gluon plasma discovery International Journal of Modern Physics A 32 31 1730024 272 arXiv 1708 08115 Bibcode 2017IJMPA 3230024K doi 10 1142 S0217751X17300241 ISSN 0217 751X S2CID 119421190 Soff S Bass S A Bleicher M Bravina L Gorenstein M Zabrodin E Stocker H Greiner W 1999 Strangeness enhancement in heavy ion collisions evidence for quark gluon matter Physics Letters B 471 1 89 96 arXiv nucl th 9907026 Bibcode 1999PhLB 471 89S doi 10 1016 S0370 2693 99 01318 0 S2CID 16805966 Biro T S Nielsen H B Knoll J 1984 Colour rope model for extreme relativistic heavy ion collisions Nuclear Physics B 245 449 468 Bibcode 1984NuPhB 245 449B doi 10 1016 0550 3213 84 90441 3 a b Petran Michal Rafelski Johann 2010 Multistrange particle production and the statistical hadronization model Physical Review C 82 1 011901 arXiv 0912 1689 Bibcode 2010PhRvC 82a1901P doi 10 1103 PhysRevC 82 011901 ISSN 0556 2813 S2CID 119179477 a b c Hamieh Salah Redlich Krzysztof Tounsi Ahmed 2000 Canonical description of strangeness enhancement from p A to Pb Pb collisions Physics Letters B 486 1 2 61 66 arXiv hep ph 0006024 Bibcode 2000PhLB 486 61H doi 10 1016 S0370 2693 00 00762 0 S2CID 8566125 Biro T S Zimanyi J 1982 Quarkochemistry in relativistic heavy ion collisions PDF Physics Letters B 113 1 6 10 Bibcode 1982PhLB 113 6B doi 10 1016 0370 2693 82 90097 1 Rafelski Johann 1984 Strangeness production in the quark gluon plasma Nuclear Physics A 418 215 235 Bibcode 1984NuPhA 418 215R doi 10 1016 0375 9474 84 90551 7 Wroblewski A 1985 On the strange quark suppression factor in high energy collisions Acta Phys Polon B 16 379 392 Becattini Francesco Fries Rainer J 2010 Stock R ed The QCD Confinement Transition Hadron Formation Relativistic Heavy Ion Physics vol 23 Springer Berlin Heidelberg pp 208 239 arXiv 0907 1031 Bibcode 2010LanB 23 208B doi 10 1007 978 3 642 01539 7 8 ISBN 978 3 642 01538 0 S2CID 14306761 retrieved 2020 04 20 Fig 10 a b Dong Xin Lee Yen Jie Rapp Ralf 2019 Open Heavy Flavor Production in Heavy Ion Collisions Annual Review of Nuclear and Particle Science 69 1 417 445 arXiv 1903 07709 Bibcode 2019ARNPS 69 417D doi 10 1146 annurev nucl 101918 023806 ISSN 0163 8998 S2CID 119328093 Kluberg Louis Satz Helmut 2010 Stock R ed Color deconfinement and charmonium production in nuclear collisions Relativistic Heavy Ion Physics vol 23 Springer Berlin Heidelberg pp 373 423 arXiv 0901 3831 Bibcode 2010LanB 23 373K doi 10 1007 978 3 642 01539 7 13 ISBN 978 3 642 01538 0 S2CID 13953895 retrieved 2020 04 20 Petran Michal 2013 Strangeness and charm in quark gluon hadronization PhD University of Arizona arXiv 1311 6154 a b R Stock NA35 Collaboration 1991 Strangeness enhancement in central S S collisions at 200 GeV nucleon Nuclear Physics A 525 221 226 Bibcode 1991NuPhA 525 221S doi 10 1016 0375 9474 91 90328 4 a href Template Cite journal html title Template Cite journal cite journal a CS1 maint numeric names authors list link Kuznetsova I Rafelski J 2007 Heavy flavor hadrons in statistical hadronization of strangeness rich QGP The European Physical Journal C 51 1 113 133 arXiv hep ph 0607203 Bibcode 2007EPJC 51 113K doi 10 1140 epjc s10052 007 0268 9 ISSN 1434 6044 S2CID 18266326 a b The WA97 Collaboration 2000 Transverse mass spectra of strange and multi strange particles in Pb Pb collisions at 158 A GeV c The European Physical Journal C 14 4 633 641 Bibcode 2000EPJC 14 633W doi 10 1007 s100520000386 ISSN 1434 6044 S2CID 195312472 a href Template Cite journal html title Template Cite journal cite journal a CS1 maint numeric names authors list link E Andersen WA97 Collaboration 1999 Strangeness enhancement at mid rapidity in Pb Pb collisions at 158 A GeV c Physics Letters B 449 3 4 401 Bibcode 1999PhLB 449 401W doi 10 1016 S0370 2693 99 00140 9 a href Template Cite journal html title Template Cite journal cite journal a CS1 maint numeric names authors list link New State of Matter created at CERN CERN 10 February 2000 Retrieved 2020 04 24 Heinz Ulrich Jacob Maurice 2000 02 16 Evidence for a New State of Matter An Assessment of the Results from the CERN Lead Beam Programme arXiv nucl th 0002042 F Antinori NA57 Collaboration 2006 Enhancement of hyperon production at central rapidity in 158 A GeV c Pb Pb collisions Journal of Physics G 32 4 427 442 arXiv nucl ex 0601021 Bibcode 2006JPhG 32 427N doi 10 1088 0954 3899 32 4 003 S2CID 119102482 a href Template Cite journal html title Template Cite journal cite journal a CS1 maint numeric names authors list link A R Timmins STAR Collaboration 2009 Overview of strangeness production at the STAR experiment Journal of Physics G 36 6 064006 arXiv 0812 4080 Bibcode 2009JPhG 36f4006T doi 10 1088 0954 3899 36 6 064006 S2CID 12853074 a b c Rafelski Johann 2020 Discovery of Quark Gluon Plasma Strangeness Diaries The European Physical Journal Special Topics 229 1 1 140 arXiv 1911 00831 Bibcode 2020EPJST 229 1R doi 10 1140 epjst e2019 900263 x ISSN 1951 6355 S2CID 207869782 Tripathy Sushanta 2019 Energy dependence of ϕ 1020 production at mid rapidity in pp collisions with ALICE at the LHC Nuclear Physics A 982 180 182 arXiv 1807 11186 Bibcode 2019NuPhA 982 180T doi 10 1016 j nuclphysa 2018 09 078 S2CID 119223653 Tripathy Sushanta 2019 07 01 An insight into strangeness with phi 1020 production in small to large collision systems with ALICE at the LHC arXiv 1907 00842 hep ex Albuquerque D S D 2019 Hadronic resonances strange and multi strange particle production in Xe Xe and Pb Pb collisions with ALICE at the LHC Nuclear Physics A 982 823 826 arXiv 1807 08727 Bibcode 2019NuPhA 982 823A doi 10 1016 j nuclphysa 2018 08 033 S2CID 119404602 Hagedorn Rolf 1968 Statistical thermodynamics of strong interactions at high energies III heavy pair quark production rates Supplemento al Nuovo Cimento 6 311 354 Rafelski Johann Danos Michael 1980 The importance of the reaction volume in hadronic collisions Physics Letters B 97 2 279 282 Bibcode 1980PhLB 97 279R doi 10 1016 0370 2693 80 90601 2 I Kuznetsova J Rafelski 2007 Heavy Flavor Hadrons in Statistical Hadronization of Strangeness rich QGP European Physical Journal C 51 1 113 133 arXiv hep ph 0607203 Bibcode 2007EPJC 51 113K doi 10 1140 epjc s10052 007 0268 9 S2CID 18266326 N Armesto et al 2008 Heavy ion collisions at the LHC Last call for predictions Journal of Physics G 35 5 054001 arXiv 0711 0974 doi 10 1088 0954 3899 35 5 054001 S2CID 118529585 Foka P 1994 Study of strangness production in central nucleus nucleus collisions at 200 GeV nucleon by developing a new analysis method for the NA35 streamer chamber pictures Thesis number 2723 Geneva University of Geneva The figure is a re work of the original figure appearing on the top of page 271 Abatzis S Barnes R P Benayoun M Beusch W Bloodworth I J Bravar A Carney J N Dufey J P Evans D Fini R French B R 1991 L and anti L production in 32S W and p W interactions at 200 A GeV c Nuclear Physics A 525 445 448 Bibcode 1991NuPhA 525 445A doi 10 1016 0375 9474 91 90361 9 Abatzis S Antinori F Barnes R P Benayoun M Beusch W Bloodworth I J Bravar A Carney J N de la Cruz B Di Bari D Dufey J P 1991 3 3 L and L production in sulphur tungsten interactions at 200 GeV c per nucleon Physics Letters B 270 1 123 127 doi 10 1016 0370 2693 91 91548 A Gazdzicki Marek Gorenstein Mark Seyboth Peter 2020 Brief history of the search for critical structures in heavy ion collisions Acta Physica Polonica B 51 5 1033 arXiv 2004 02255 Bibcode 2020AcPPB 51 1033G doi 10 5506 APhysPolB 51 1033 S2CID 214802159 Becattini F 2012 Strangeness and onset of deconfinement Physics of Atomic Nuclei 75 5 646 649 Bibcode 2012PAN 75 646B doi 10 1134 S106377881205002X ISSN 1063 7788 S2CID 120504052 N K Glendenning J Rafelski 1985 Kaons and quark gluon plasma Physical Review C 31 3 823 827 Bibcode 1985PhRvC 31 823G doi 10 1103 PhysRevC 31 823 PMID 9952591 S2CID 26838236 M Gazdzicki M I Gorenstein 1999 On the Early Stage of Nucleus Nucleus Collisions Acta Physica Polonica B 30 9 2705 arXiv hep ph 9803462 Bibcode 1999AcPPB 30 2705G M Gazdzicki NA49 Collaboration 2004 Report from NA49 Journal of Physics G 30 8 S701 S708 arXiv nucl ex 0403023 Bibcode 2004JPhG 30S 701G doi 10 1088 0954 3899 30 8 008 S2CID 119197566 a href Template Cite journal html title Template Cite journal cite journal a CS1 maint numeric names authors list link C Alt NA49 Collaboration 2008 Pion and kaon production in central Pb Pb collisions at 20A and 30A GeV Evidence for the onset of deconfinement Physical Review C 77 2 024903 arXiv 0710 0118 Bibcode 2008PhRvC 77b4903A doi 10 1103 PhysRevC 77 024903 S2CID 118390736 a href Template Cite journal html title Template Cite journal cite journal a CS1 maint numeric names authors list link Strangeness in hadronic matter S 95 Tucson AZ January 1995 Rafelski Johann New York AIP Press 1995 ISBN 1 56396 489 9 OCLC 32993061 a href Template Cite book html title Template Cite book cite book a CS1 maint others link History Strangeness in Quark Matter 2019 Retrieved 2020 05 01 Strangeness in Quark Matter 2019 Retrieved 2020 05 05 Quark matter mysteries on the run in Bari CERN Courier 2019 09 11 Retrieved 2020 05 05 Quark Matter 2023 the XXXth International Conference on Ultra relativistic Nucleus Nucleus Collisions Indico n d Retrieved 2023 12 14 Why hundreds of Sheldon Coopers are descending on Houston next week Houston Public Media 2023 09 01 Retrieved 2023 12 14 Quercigh E 2012 Four heavy ion experiments at the CERN SPS A trip down memory lane Acta Physica Polonica B 43 4 771 doi 10 5506 APhysPolB 43 771 S2CID 126317771 Gazdzicki M 2012 On the history of multi particle production in high energy collisions Acta Physica Polonica B 43 4 791 arXiv 1201 0485 Bibcode 2012arXiv1201 0485G doi 10 5506 APhysPolB 43 791 ISSN 0587 4254 S2CID 118418649 Muller B 2012 Strangeness and the quark gluon plasma thirty years of discovery Acta Physica Polonica B 43 4 761 arXiv 1112 5382 doi 10 5506 APhysPolB 43 761 S2CID 119280137 Retrieved from https en wikipedia org w index php title Strangeness and quark gluon plasma amp oldid 1191467674, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.