fbpx
Wikipedia

Steinitz's theorem

In polyhedral combinatorics, a branch of mathematics, Steinitz's theorem is a characterization of the undirected graphs formed by the edges and vertices of three-dimensional convex polyhedra: they are exactly the 3-vertex-connected planar graphs. That is, every convex polyhedron forms a 3-connected planar graph, and every 3-connected planar graph can be represented as the graph of a convex polyhedron. For this reason, the 3-connected planar graphs are also known as polyhedral graphs.[1]

This result provides a classification theorem for the three-dimensional convex polyhedra, something that is not known in higher dimensions.[2] It provides a complete and purely combinatorial description of the graphs of these polyhedra, allowing other results on them, such as Eberhard's theorem on the realization of polyhedra with given types of faces, to be proven more easily, without reference to the geometry of these shapes.[3] Additionally, it has been applied in graph drawing, as a way to construct three-dimensional visualizations of abstract graphs.[4] Branko Grünbaum has called this theorem "the most important and deepest known result on 3-polytopes."[5]

The theorem appears in a 1922 publication of Ernst Steinitz,[6] after whom it is named. It can be proven by mathematical induction (as Steinitz did), by finding the minimum-energy state of a two-dimensional spring system and lifting the result into three dimensions, or by using the circle packing theorem. Several extensions of the theorem are known, in which the polyhedron that realizes a given graph has additional constraints; for instance, every polyhedral graph is the graph of a convex polyhedron with integer coordinates, or the graph of a convex polyhedron all of whose edges are tangent to a common midsphere.

Definitions and statement of the theorem

 
Illuminating the skeleton of a convex polyhedron from a light source close to one of its faces causes its shadows to form a planar Schlegel diagram.

An undirected graph is a system of vertices and edges, each edge connecting two of the vertices. As is common in graph theory, for the purposes of Steinitz's theorem these graphs are restricted to being finite (the vertices and edges are finite sets) and simple (no two edges connect the same two vertices, and no edge connects a vertex to itself). From any polyhedron one can form a graph, by letting the vertices of the graph correspond to the vertices of the polyhedron and by connecting any two graph vertices by an edge whenever the corresponding two polyhedron vertices are the endpoints of an edge of the polyhedron. This graph is known as the skeleton of the polyhedron.[7]

A graph is planar if it can be drawn with its vertices as points in the Euclidean plane, and its edges as curves that connect these points, such that no two edge curves cross each other and such that the point representing a vertex lies on the curve representing an edge only when the vertex is an endpoint of the edge. By Fáry's theorem, every planar drawing can be straightened so that the curves representing the edges are line segments. A graph is 3-connected if it has more than three vertices and, after the removal of any two of its vertices, any other pair of vertices remain connected by a path. Steinitz's theorem states that these two conditions are both necessary and sufficient to characterize the skeletons of three-dimensional convex polyhedra: a given graph   is the graph of a convex three-dimensional polyhedron, if and only if   is planar and 3-vertex-connected.[5][8]

Proofs

 
Illustration of the proof of Balinski's theorem, showing the zero set of a linear function (blue) passing through two given vertices (yellow) and the simplex-method paths connecting the remaining graph (green)

One direction of Steinitz's theorem (the easier direction to prove) states that the graph of every convex polyhedron is planar and 3-connected. As shown in the illustration, planarity can be shown by using a Schlegel diagram: if one places a light source near one face of the polyhedron, and a plane on the other side, the shadows of the polyhedron edges will form a planar graph, embedded in such a way that the edges are straight line segments. The 3-connectivity of a polyhedral graph is a special case of Balinski's theorem that the graph of any  -dimensional convex polytope is  -connected. The connectivity of the graph of a polytope, after removing any   of its vertices, can be proven by choosing one more vertex  , finding a linear function that is zero on the resulting set of   vertices, and following the paths generated by the simplex method to connect every vertex to one of two extreme vertices of the linear function, with the chosen vertex   connected to both.[9]

The other, more difficult, direction of Steinitz's theorem states that every planar 3-connected graph is the graph of a convex polyhedron. There are three standard approaches for this part: proofs by induction, lifting two-dimensional Tutte embeddings into three dimensions using the Maxwell–Cremona correspondence, and methods using the circle packing theorem to generate a canonical polyhedron.

Induction

 
Δ-Y and Y-Δ transforms of a polyhedron

Although Steinitz's original proof was not expressed in terms of graph theory, it can be rewritten in those terms, and involves finding a sequence of Δ-Y and Y-Δ transforms that reduce any 3-connected planar graph to  , the graph of the tetrahedron. A Y-Δ transform removes a degree-three vertex from a graph, adding edges between all of its former neighbors if those edges did not already exist; the reverse transformation, a Δ-Y transform, removes the edges of a triangle from a graph and replaces them by a new degree-three vertex adjacent to the same three vertices. Once such a sequence is found, it can be reversed and converted into geometric operations that build up the desired polyhedron step by step starting from a tetrahedron. Each Y-Δ transform in the reversed sequence can be performed geometrically by slicing off a degree-three vertex from a polyhedron. A Δ-Y transform in the reversed sequence can be performed geometrically by removing a triangular face from a polyhedron and extending its neighboring faces until the point where they meet, but only when that triple intersection point of the three neighboring faces is on the far side of the removed face from the polyhedron. When the triple intersection point is not on the far side of this face, a projective transformation of the polyhedron suffices to move it to the correct side. Therefore, by induction on the number of Δ-Y and Y-Δ transforms needed to reduce a given graph to  , every polyhedral graph can be realized as a polyhedron.[5]

A later work by Epifanov strengthened Steinitz's proof that every polyhedral graph can be reduced to   by Δ-Y and Y-Δ transforms. Epifanov proved that if two vertices are specified in a planar graph, then the graph can be reduced to a single edge between those terminals by combining Δ-Y and Y-Δ transforms with series–parallel reductions.[10] Epifanov's proof was complicated and non-constructive, but it was simplified by Truemper using methods based on graph minors. Truemper observed that every grid graph is reducible by Δ-Y and Y-Δ transforms in this way, that this reducibility is preserved by graph minors, and that every planar graph is a minor of a grid graph.[11] This idea can be used to replace Steinitz's lemma that a reduction sequence exists. After this replacement, the rest of the proof can be carried out using induction in the same way as Steinitz's original proof.[8] For these proofs, carried out using any of the ways of finding sequences of Δ-Y and Y-Δ transforms, there exist polyhedral graphs that require a nonlinear number of steps. More precisely, every planar graph can be reduced using a number of steps at most proportional to  , and infinitely many graphs require a number of steps at least proportional to  , where   is the number of vertices in the graph.[12][13]

An alternative form of induction proof is based on removing edges (and compressing out the degree-two vertices that might be left after this removal) or contracting edges and forming a minor of the given planar graph. Any polyhedral graph can be reduced to   by a linear number of these operations, and again the operations can be reversed and the reversed operations performed geometrically, giving a polyhedral realization of the graph. However, while it is simpler to prove that a reduction sequence exists for this type of argument, and the reduction sequences are shorter, the geometric steps needed to reverse the sequence are more complicated.[14]

Lifting

 
Equilibrium stress on the graph of a cube
 
A frustum lifting the stressed drawing (with the same 2d positions) into 3d

If a graph is drawn in the plane with straight line edges, then an equilibrium stress is defined as an assignment of nonzero real numbers (weights) to the edges, with the property that each vertex is in the position given by the weighted average of its neighbors. According to the Maxwell–Cremona correspondence, an equilibrium stress can be lifted to a piecewise linear continuous three-dimensional surface such that the edges forming the boundaries between the flat parts of the surface project to the given drawing. The weight and length of each edge determines the difference in slopes of the surface on either side of the edge, and the condition that each vertex is in equilibrium with its neighbors is equivalent to the condition that these slope differences cause the surface to meet up with itself correctly in the neighborhood of the vertex. Positive weights translate to convex dihedral angles between two faces of the piecewise linear surface, and negative weights translate to concave dihedral angles. Conversely, every continuous piecewise-linear surface comes from an equilibrium stress in this way. If a finite planar graph is drawn and given an equilibrium stress in such a way that all interior edges of the drawing have positive weights, and all exterior edges have negative weights, then by translating this stress into a three-dimensional surface in this way, and then replacing the flat surface representing the exterior of the graph by its complement in the same plane, one obtains a convex polyhedron, with the additional property that its perpendicular projection onto the plane has no crossings.[15][16]

The Maxwell–Cremona correspondence has been used to obtain polyhedral realizations of polyhedral graphs by combining it with a planar graph drawing method of W. T. Tutte, the Tutte embedding. Tutte's method begins by fixing one face of a polyhedral graph into convex position in the plane. This face will become the outer face of a drawing of a graph. The method continues by setting up a system of linear equations in the vertex coordinates, according to which each remaining vertex should be placed at the average of its neighbors. Then as Tutte showed, this system of equations will have a unique solution in which each face of the graph is drawn as a convex polygon.[17] Intuitively, this solution describes the pattern that would be obtained by replacing the interior edges of the graph by ideal springs and letting them settle to their minimum-energy state.[18] The result is almost an equilibrium stress: if one assigns weight one to each interior edge, then each interior vertex of the drawing is in equilibrium. However, it is not always possible to assign negative numbers to the exterior edges so that they, too, are in equilibrium. Such an assignment is always possible when the outer face is a triangle, and so this method can be used to realize any polyhedral graph that has a triangular face. If a polyhedral graph does not contain a triangular face, its dual graph does contain a triangle and is also polyhedral, so one can realize the dual in this way and then realize the original graph as the polar polyhedron of the dual realization.[4][19] An alternative method for realizing polyhedra using liftings avoids duality by choosing any face with at most five vertices as the outer face. Every polyhedral graph has such a face, and by choosing the fixed shape of this face more carefully, the Tutte embedding of the rest of the graph can be lifted.[20]

Circle packing

 
A polyhedron realized from a circle packing on the blue midsphere. Each polyhedron vertex is represented in the packing by its horizon circle (red). Each face is represented by the circle made by its intersection with the sphere.

According to one variant of the circle packing theorem, for every polyhedral graph, there exists a system of circles in the plane or on any sphere, representing the vertices and faces of the graph, so that:

  • each two adjacent vertices of the graph are represented by tangent circles,
  • each two adjacent faces of the graph are represented by tangent circle,
  • each pair of a vertex and a face that it touches are represented by circles that cross at a right angle, and
  • all other pairs of circles are separated from each other.[21]

The same system of circles forms a representation of the dual graph by swapping the roles of circles that represent vertices, and circles that represent faces. From any such representation on a sphere, embedded into three-dimensional Euclidean space, one can form a convex polyhedron that is combinatorially equivalent to the given graph, as an intersection of half-spaces whose boundaries pass through the face circles. From each vertex of this polyhedron, the horizon on the sphere, seen from that vertex, is the circle that represents it. This horizon property determines the three-dimensional position of each vertex, and the polyhedron can be equivalently defined as the convex hull of the vertices, positioned in this way. The sphere becomes the midsphere of the realization: each edge of the polyhedron is tangent to the sphere, at a point where two tangent vertex circles cross two tangent face circles.[22]

Realizations with additional properties

Integer coordinates

It is possible to prove a stronger form of Steinitz's theorem, that any polyhedral graph can be realized by a convex polyhedron whose coordinates are integers.[23] For instance, Steinitz's original induction-based proof can be strengthened in this way. However, the integers that would result from Steinitz's construction are doubly exponential in the number of vertices of the given polyhedral graph. Writing down numbers of this magnitude in binary notation would require an exponential number of bits.[19] Geometrically, this means that some features of the polyhedron may have size doubly exponentially larger than others, making the realizations derived from this method problematic for applications in graph drawing.[4]

Subsequent researchers have found lifting-based realization algorithms that use only a linear number of bits per vertex.[20][24] It is also possible to relax the requirement that the coordinates be integers, and assign coordinates in such a way that the  -coordinates of the vertices are distinct integers in the range from 0 to   and the other two coordinates are real numbers in the unit interval, so that each edge has length at least one while the overall polyhedron has linear volume.[25][26] Some polyhedral graphs are known to be realizable on grids of only polynomial size; in particular this is true for the pyramids (realizations of wheel graphs), prisms (realizations of prism graphs), and stacked polyhedra (realizations of Apollonian networks).[27]

Another way of stating the existence of integer realizations is that every three-dimensional convex polyhedron has a combinatorially equivalent integer polyhedron.[23] For instance, the regular dodecahedron is not itself an integer polyhedron, because of its regular pentagon faces, but it can be realized as an equivalent integer pyritohedron.[20] This is not always possible in higher dimensions, where there exist polytopes (such as the ones constructed from the Perles configuration) that have no integer equivalent.[28]

Equal slopes

A Halin graph is a special case of a polyhedral graph, formed from a planar-embedded tree (with no degree-two vertices) by connecting the leaves of the tree into a cycle. For Halin graphs, one can choose polyhedral realizations of a special type: the outer cycle forms a horizontal convex base face, and every other face lies directly above the base face (as in the polyhedra realized through lifting), with all of these upper faces having the same slope. Polyhedral surfaces with equal-slope faces over any base polygon (not necessarily convex) can be constructed from the polygon's straight skeleton, and an equivalent way of describing this realization is that the two-dimensional projection of the tree onto the base face forms its straight skeleton. The proof of this result uses induction: any rooted tree may reduced to a smaller tree by removing the leaves from an internal node whose children are all leaves, the Halin graph formed from the smaller tree has a realization by the induction hypothesis, and it is possible to modify this realization in order to add any number of leaf children to the tree node whose children were removed.[29]

Specifying the shape of a face

In any polyhedron that represents a given polyhedral graph  , the faces of   are exactly the cycles in   that do not separate   into two components: that is, removing a facial cycle from   leaves the rest of   as a connected subgraph. Such cycles are called peripheral cycles. Thus, the combinatorial structure of the faces (but not their geometric shapes) is uniquely determined from the graph structure. Another strengthening of Steinitz's theorem, by Barnette and Grünbaum, states that for any polyhedral graph, any face of the graph, and any convex polygon representing that face, it is possible to find a polyhedral realization of the whole graph that has the specified shape for the designated face. This is related to a theorem of Tutte, that any polyhedral graph can be drawn in the plane with all faces convex and any specified shape for its outer face. However, the planar graph drawings produced by Tutte's method do not necessarily lift to convex polyhedra. Instead, Barnette and Grünbaum prove this result using an inductive method.[30] It is also always possible, given a polyhedral graph   and an arbitrary cycle   in  , to find a realization for which   forms the silhouette of the realization under parallel projection.[31]

Tangent spheres

The realization of polyhedra using the circle packing theorem provides another strengthening of Steinitz's theorem: every 3-connected planar graph may be represented as a convex polyhedron in such a way that all of its edges are tangent to the same unit sphere, the midsphere of the polyhedron.[22] By performing a carefully chosen Möbius transformation of a circle packing before transforming it into a polyhedron, it is possible to find a polyhedral realization that realizes all the symmetries of the underlying graph, in the sense that every graph automorphism is a symmetry of the polyhedral realization.[32][33] More generally, if   is a polyhedral graph and   is any smooth three-dimensional convex body, it is possible to find a polyhedral representation of   in which all edges are tangent to  .[34]

Circle packing methods can also be used to characterize the graphs of polyhedra that have a circumsphere through all their vertices, or an insphere tangent to all of their faces. (The polyhedra with a circumsphere are also significant in hyperbolic geometry as the ideal polyhedra.) In both cases, the existence of a sphere is equivalent to the solvability of a system of linear inequalities on positive real variables associated with each edge of the graph. In the case of the insphere, these variables must sum to exactly one on each face cycle of the graph, and to more than one on each non-face cycle. Dually, for the circumsphere, the variables must sum to one at each vertex, and more than one across each cut with two or more vertices on each side of the cut. Although there may be exponentially many linear inequalities to satisfy, a solution (if one exists) can be found in polynomial time using the ellipsoid method. The values of the variables from a solution determine the angles between pairs of circles in a circle packing whose corresponding polyhedron has the desired relation to its sphere.[35][36]

Related results

 
The graphs of three-dimensional non-convex polyhedra might not be connected (left), and even for topologically spherical polyhedra whose faces are simple polygons these graphs might not be 3-connected (right).[37]

In any dimension higher than three, the algorithmic Steinitz problem consists of determining whether a given lattice is the face lattice of a convex polytope. It is unlikely to have polynomial time complexity, as it is NP-hard and more strongly complete for the existential theory of the reals, even for four-dimensional polytopes, by Richter-Gebert's universality theorem.[38] Here, the existential theory of the reals is a class of computational problems that can be formulated in terms of finding real variables that satisfy a given system of polynomial equations and inequalities. For the algorithmic Steinitz problem, the variables of such a problem can be the vertex coordinates of a polytope, and the equations and inequalities can be used to specify the flatness of each face in the given face lattice and the convexity of each angle between faces. Completeness means that every other problem in this class can be transformed into an equivalent instance of the algorithmic Steinitz problem, in polynomial time. The existence of such a transformation implies that, if the algorithmic Steinitz problem has a polynomial time solution, then so does every problem in the existential theory of the reals, and every problem in NP.[39] However, because a given graph may correspond to more than one face lattice, it is difficult to extend this completeness result to the problem of recognizing the graphs of 4-polytopes. Determining the computational complexity of this graph recognition problem remains open.[40]

Researchers have also found graph-theoretic characterizations of the graphs of certain special classes of three-dimensional non-convex polyhedra[37][41] and four-dimensional convex polytopes.[40][42][43] However, in both cases, the general problem remains unsolved. Indeed, even the problem of determining which complete graphs are the graphs of non-convex polyhedra (other than   for the tetrahedron and   for the Császár polyhedron) remains unsolved.[44]

Eberhard's theorem partially characterizes the multisets of polygons that can be combined to form the faces of a convex polyhedron. It can be proven by forming a 3-connected planar graph with the given set of polygon faces, and then applying Steinitz's theorem to find a polyhedral realization of that graph.[3]

László Lovász has shown a correspondence between polyhedral representations of graphs and matrices realizing the Colin de Verdière graph invariants of the same graphs. The Colin de Verdière invariant is the maximum corank of a weighted adjacency matrix of the graph, under some additional conditions that are irrelevant for polyhedral graphs. These are square symmetric matrices indexed by the vertices, with the weight of vertex   in the diagonal coefficient   and with the weight of edge   in the off-diagonal coefficients   and  . When vertices   and   are not adjacent, the coefficient   is required to be zero. This invariant is at most three if and only if the graph is a planar graph. As Lovász shows, when the graph is polyhedral, a representation of it as a polyhedron can be obtained by finding a weighted adjacency matrix of corank three, finding three vectors forming a basis for its nullspace, using the coefficients of these vectors as coordinates for the vertices of a polyhedron, and scaling these vertices appropriately.[45]

History

The history of Steinitz's theorem is described by Grünbaum (2007),[46] who notes its first appearance in a cryptic form in a publication of Ernst Steinitz, originally written in 1916.[6] Steinitz provided more details in later lecture notes, published after his 1928 death. Although modern treatments of Steinitz's theorem state it as a graph-theoretic characterization of polyhedra, Steinitz did not use the language of graphs.[46] The graph-theoretic formulation of the theorem was introduced in the early 1960s by Branko Grünbaum and Theodore Motzkin, with its proof also converted to graph theory in Grünbaum's 1967 text Convex Polytopes.[46] The work of Epifanov on Δ-Y and Y-Δ transforms, strengthening Steinitz's proof, was motivated by other problems than the characterization of polyhedra. Truemper (1989) credits Grünbaum with observing the relevance of this work for Steinitz's theorem.[11]

The Maxwell–Cremona correspondence between stress diagrams and polyhedral liftings was developed in a series of papers by James Clerk Maxwell from 1864 to 1870, based on earlier work of Pierre Varignon, William Rankine, and others, and was popularized in the late 19th century by Luigi Cremona.[47] The observation that this correspondence can be used with the Tutte embedding to prove Steinitz's theorem comes from Eades & Garvan (1995);[4] see also Richter-Gebert (1996).[38]

The circle packing theorem was proved by Paul Koebe in 1936[48][49] and (independently) by E. M. Andreev in 1970;[49][50] it was popularized in the mid-1980s by William Thurston, who (despite citing Koebe and Andreev) is often credited as one of its discoverers.[49] Andreev's version of the theorem was already formulated as a Steinitz-like characterization for certain polyhedra in hyperbolic space,[50] and the use of circle packing to realize polyhedra with midspheres comes from the work of Thurston.[51] The problem of characterizing polyhedra with inscribed or circumscribed spheres, eventually solved using a method based on circle packing realizations, goes back to unpublished work of René Descartes circa 1630[52] and to Jakob Steiner in 1832;[35][53] the first examples of polyhedra that have no realization with a circumsphere or insphere were given by Steinitz in 1928.[35][54]

References

  1. ^ Weisstein, Eric W., "Polyhedral graph", MathWorld
  2. ^ Sturmfels, Bernd (1987), "Boundary complexes of convex polytopes cannot be characterized locally", Journal of the London Mathematical Society, Second Series, 35 (2): 314–326, CiteSeerX 10.1.1.106.3222, doi:10.1112/jlms/s2-35.2.314, MR 0881520
  3. ^ a b Malkevitch, Joseph, "Techniques for proving combinatorial theorems about 3-polytopes", Geometric Structures (course notes), City University of New York
  4. ^ a b c d Eades, Peter; Garvan, Patrick (1995), "Drawing stressed planar graphs in three dimensions", in Brandenburg, Franz-Josef (ed.), Graph Drawing, Symposium on Graph Drawing, GD '95, Passau, Germany, September 20-22, 1995, Proceedings, Lecture Notes in Computer Science, vol. 1027, Springer, pp. 212–223, doi:10.1007/BFb0021805, MR 1400675
  5. ^ a b c Grünbaum, Branko (2003), "13.1 Steinitz's theorem", Convex Polytopes, Graduate Texts in Mathematics, vol. 221 (2nd ed.), Springer-Verlag, pp. 235–244, ISBN 0-387-40409-0
  6. ^ a b Steinitz, Ernst (1922), "IIIAB12: Polyeder und Raumeinteilungen", Encyclopädie der mathematischen Wissenschaften (in German), vol. Band 3 (Geometries), pp. 1–139, Abgeschlossen am 31. August 1916
  7. ^ More technically, this graph is the 1-skeleton; see Grünbaum (2003), p. 138, and Ziegler (1995), p. 64.
  8. ^ a b Ziegler, Günter M. (1995), "Chapter 4: Steinitz' Theorem for 3-Polytopes", Lectures on Polytopes, Graduate Texts in Mathematics, vol. 152, Springer-Verlag, pp. 103–126, ISBN 0-387-94365-X
  9. ^ Balinski, M. L. (1961), "On the graph structure of convex polyhedra in n-space", Pacific Journal of Mathematics, 11 (2): 431–434, doi:10.2140/pjm.1961.11.431, MR 0126765
  10. ^ Epifanov, G. V. (1966), "Reduction of a plane graph to an edge by star-triangle transformations", Doklady Akademii Nauk SSSR (in Russian), 166: 19–22, MR 0201337, Zbl 0149.21301
  11. ^ a b Truemper, K. (1989), "On the delta-wye reduction for planar graphs", Journal of Graph Theory, 13 (2): 141–148, doi:10.1002/jgt.3190130202, MR 0994737
  12. ^ Aranguri, Santiago; Chang, Hsien-Chih; Fridman, Dylan (2022), "Untangling planar graphs and curves by staying positive", Proceedings of the 2022 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), SIAM, pp. 211–225, doi:10.1137/1.9781611977073.11, MR 4415048
  13. ^ Chang, Hsien-Chih; Erickson, Jeff (2017), "Untangling planar curves", Discrete & Computational Geometry, 58 (4): 889–920, arXiv:1702.00146, doi:10.1007/s00454-017-9907-6, MR 3717242
  14. ^ Barnette, David W.; Grünbaum, Branko (1969), "On Steinitz's theorem concerning convex 3-polytopes and on some properties of planar graphs", in Chartrand, G.; Kapoor, S. F. (eds.), The Many Facets of Graph Theory: Proceedings of the Conference held at Western Michigan University, Kalamazoo, MI., October 31 – November 2, 1968, Lecture Notes in Mathematics, vol. 110, Springer, pp. 27–40, doi:10.1007/BFb0060102, MR 0250916
  15. ^ Maxwell, J. Clerk (1864), "On reciprocal figures and diagrams of forces", Philosophical Magazine, 4th Series, 27 (182): 250–261, doi:10.1080/14786446408643663
  16. ^ Whiteley, Walter (1982), "Motions and stresses of projected polyhedra", Structural Topology, 7: 13–38, hdl:2099/989, MR 0721947
  17. ^ Tutte, W. T. (1963), "How to draw a graph", Proceedings of the London Mathematical Society, 13: 743–767, doi:10.1112/plms/s3-13.1.743, MR 0158387
  18. ^ Brandes, Ulrik (2001), "Drawing on physical analogies", in Kaufmann, Michael; Wagner, Dorothea (eds.), Drawing Graphs: Methods and Models, Lecture Notes in Computer Science, vol. 2025, Berlin: Springer, pp. 71–86, CiteSeerX 10.1.1.9.5023, doi:10.1007/3-540-44969-8_4, MR 1880146
  19. ^ a b Onn, Shmuel; Sturmfels, Bernd (1994), "A quantitative Steinitz' theorem", Beiträge zur Algebra und Geometrie, 35 (1): 125–129, MR 1287206
  20. ^ a b c Ribó Mor, Ares; Rote, Günter; Schulz, André (2011), "Small grid embeddings of 3-polytopes", Discrete & Computational Geometry, 45 (1): 65–87, arXiv:0908.0488, doi:10.1007/s00454-010-9301-0, MR 2765520, S2CID 10141034
  21. ^ Brightwell, Graham R.; Scheinerman, Edward R. (1993), "Representations of planar graphs", SIAM Journal on Discrete Mathematics, 6 (2): 214–229, doi:10.1137/0406017, MR 1215229
  22. ^ a b Ziegler, Günter M. (2007), "Convex polytopes: extremal constructions and f-vector shapes. Section 1.3: Steinitz's theorem via circle packings", in Miller, Ezra; Reiner, Victor; Sturmfels, Bernd (eds.), Geometric Combinatorics, IAS/Park City Mathematics Series, vol. 13, American Mathematical Society, pp. 628–642, ISBN 978-0-8218-3736-8
  23. ^ a b Grünbaum (2003), theorem 13.2.3, p. 244, states this in an equivalent form where the coordinates are rational numbers.
  24. ^ Buchin, Kevin; Schulz, André (2010), "On the number of spanning trees a planar graph can have", in de Berg, Mark; Meyer, Ulrich (eds.), Algorithms - ESA 2010, 18th Annual European Symposium, Liverpool, UK, September 6-8, 2010, Proceedings, Part I, Lecture Notes in Computer Science, vol. 6346, Springer, pp. 110–121, CiteSeerX 10.1.1.746.942, doi:10.1007/978-3-642-15775-2_10, ISBN 978-3-642-15774-5, MR 2762847, S2CID 42211547
  25. ^ Chrobak, Marek; Goodrich, Michael T.; Tamassia, Roberto (1996), "Convex drawings of graphs in two and three dimensions", Proceedings of the 12th ACM Symposium on Computational Geometry (SoCG '96), ACM, pp. 319–328, doi:10.1145/237218.237401, S2CID 1015103
  26. ^ Schulz, André (2011), "Drawing 3-polytopes with good vertex resolution", Journal of Graph Algorithms and Applications, 15 (1): 33–52, doi:10.7155/jgaa.00216, MR 2776000
  27. ^ Demaine, Erik D.; Schulz, André (2017), "Embedding stacked polytopes on a polynomial-size grid", Discrete & Computational Geometry, 57 (4): 782–809, arXiv:1403.7980, doi:10.1007/s00454-017-9887-6, MR 3639604, S2CID 104867
  28. ^ Grünbaum (2003), p. 96a.
  29. ^ Aichholzer, Oswin; Cheng, Howard; Devadoss, Satyan L.; Hackl, Thomas; Huber, Stefan; Li, Brian; Risteski, Andrej (2012), "What makes a Tree a Straight Skeleton?" (PDF), Proceedings of the 24th Canadian Conference on Computational Geometry (CCCG'12)
  30. ^ Barnette, David W.; Grünbaum, Branko (1970), "Preassigning the shape of a face", Pacific Journal of Mathematics, 32 (2): 299–306, doi:10.2140/pjm.1970.32.299, MR 0259744
  31. ^ Barnette, David W. (1970), "Projections of 3-polytopes", Israel Journal of Mathematics, 8 (3): 304–308, doi:10.1007/BF02771563, MR 0262923, S2CID 120791830
  32. ^ Hart, George W. (1997), "Calculating canonical polyhedra", Mathematica in Education and Research, 6 (3): 5–10
  33. ^ Bern, Marshall W.; Eppstein, David (2001), "Optimal Möbius transformations for information visualization and meshing", in Dehne, Frank K. H. A.; Sack, Jörg-Rüdiger; Tamassia, Roberto (eds.), Algorithms and Data Structures, 7th International Workshop, WADS 2001, Providence, RI, USA, August 8-10, 2001, Proceedings, Lecture Notes in Computer Science, vol. 2125, Springer, pp. 14–25, arXiv:cs/0101006, doi:10.1007/3-540-44634-6_3, S2CID 3266233
  34. ^ Schramm, Oded (1992), "How to cage an egg", Inventiones Mathematicae, 107 (3): 543–560, Bibcode:1992InMat.107..543S, doi:10.1007/BF01231901, MR 1150601, S2CID 189830473
  35. ^ a b c Rivin, Igor (1996), "A characterization of ideal polyhedra in hyperbolic 3-space", Annals of Mathematics, Second Series, 143 (1): 51–70, doi:10.2307/2118652, JSTOR 2118652, MR 1370757
  36. ^ Dillencourt, Michael B.; Smith, Warren D. (1996), "Graph-theoretical conditions for inscribability and Delaunay realizability", Discrete Mathematics, 161 (1–3): 63–77, doi:10.1016/0012-365X(95)00276-3, MR 1420521, S2CID 16382428
  37. ^ a b Eppstein, David; Mumford, Elena (2014), "Steinitz theorems for simple orthogonal polyhedra", Journal of Computational Geometry, 5 (1): 179–244, doi:10.20382/jocg.v5i1a10, MR 3259910, S2CID 8531578
  38. ^ a b Richter-Gebert, Jürgen (1996), Realization Spaces of Polytopes, Lecture Notes in Mathematics, vol. 1643, Springer-Verlag, CiteSeerX 10.1.1.2.3495, doi:10.1007/BFb0093761, ISBN 978-3-540-62084-6, MR 1482230
  39. ^ Schaefer, Marcus (2013), "Realizability of graphs and linkages", in Pach, János (ed.), Thirty Essays on Geometric Graph Theory, New York: Springer, pp. 461–482, CiteSeerX 10.1.1.220.9651, doi:10.1007/978-1-4614-0110-0_24, MR 3205168
  40. ^ a b Eppstein, David (2020), "Treetopes and their graphs", Discrete & Computational Geometry, 64 (2): 259–289, arXiv:1510.03152, doi:10.1007/s00454-020-00177-0, MR 4131546, S2CID 213885326
  41. ^ Hong, Seok-Hee; Nagamochi, Hiroshi (2011), "Extending Steinitz's theorem to upward star-shaped polyhedra and spherical polyhedra", Algorithmica, 61 (4): 1022–1076, doi:10.1007/s00453-011-9570-x, MR 2852056, S2CID 12622357
  42. ^ Blind, Roswitha; Mani-Levitska, Peter (1987), "Puzzles and polytope isomorphisms", Aequationes Mathematicae, 34 (2–3): 287–297, doi:10.1007/BF01830678, MR 0921106, S2CID 120222616
  43. ^ Kalai, Gil (1988), "A simple way to tell a simple polytope from its graph", Journal of Combinatorial Theory, Series A, 49 (2): 381–383, doi:10.1016/0097-3165(88)90064-7, MR 0964396
  44. ^ Ziegler, Günter M. (2008), "Polyhedral surfaces of high genus", Discrete Differential Geometry, Oberwolfach Seminars, vol. 38, Springer, pp. 191–213, arXiv:math/0412093, doi:10.1007/978-3-7643-8621-4_10, ISBN 978-3-7643-8620-7, MR 2405667, S2CID 15911143
  45. ^ Lovász, László (2001), "Steinitz representations of polyhedra and the Colin de Verdière number", Journal of Combinatorial Theory, Series B, 82 (2): 223–236, doi:10.1006/jctb.2000.2027, MR 1842113
  46. ^ a b c Grünbaum, Branko (2007), "Graphs of polyhedra; polyhedra as graphs", Discrete Mathematics, 307 (3–5): 445–463, doi:10.1016/j.disc.2005.09.037, hdl:1773/2276, MR 2287486
  47. ^ Erickson, Jeff; Lin, Patrick (2020), "A toroidal Maxwell–Cremona-Delaunay correspondence", in Cabello, Sergio; Chen, Danny Z. (eds.), 36th International Symposium on Computational Geometry (SoCG 2020), Leibniz International Proceedings in Informatics (LIPIcs), vol. 164, Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-Zentrum für Informatik, pp. 40:1–40:17, arXiv:2003.10057, doi:10.4230/LIPIcs.SoCG.2020.40, ISBN 978-3-95977-143-6, S2CID 209514295
  48. ^ Koebe, Paul (1936), "Kontaktprobleme der Konformen Abbildung", Berichte über die Verhandlungen der Sächsischen Akademie der Wissenschaften zu Leipzig: Mathematisch-Physische Klasse (in German), 88: 141–164
  49. ^ a b c Stephenson, Kenneth (2003), "Circle packing: a mathematical tale" (PDF), Notices of the American Mathematical Society, 50 (11): 1376–1388, CiteSeerX 10.1.1.101.5592, MR 2011604
  50. ^ a b Andreev, E. M. (1970), "Convex polyhedra in Lobačevskiĭ spaces", Matematicheskii Sbornik, 81 (123): 445–478, MR 0259734
  51. ^ Schramm, Oded (1991), "Existence and uniqueness of packings with specified combinatorics", Israel Journal of Mathematics, 73 (3): 321–341, doi:10.1007/BF02773845, MR 1135221, S2CID 121855202; see discussion following Corollary 3.8, p. 329
  52. ^ Federico, Pasquale Joseph (1982), Descartes on Polyhedra: A Study of the "De solidorum elementis", Sources in the History of Mathematics and Physical Sciences, vol. 4, Springer, p. 52
  53. ^ Steiner, Jakob (1832), "Question 77", Systematische Entwicklung der Abhängigkeit geometrischer Gestalten von einander (in German), Berlin: G. Fincke, p. 316
  54. ^ Steinitz, Ernst (1928), "Über isoperimetrische Probleme bei konvexen Polyedern", Journal für die Reine und Angewandte Mathematik (in German), 1928 (159): 133–143, doi:10.1515/crll.1928.159.133, MR 1581158, S2CID 199546274

steinitz, theorem, this, article, about, theorem, graphs, polyhedra, other, uses, disambiguation, polyhedral, combinatorics, branch, mathematics, characterization, undirected, graphs, formed, edges, vertices, three, dimensional, convex, polyhedra, they, exactl. This article is about the theorem on graphs of polyhedra For other uses see Steinitz s theorem disambiguation In polyhedral combinatorics a branch of mathematics Steinitz s theorem is a characterization of the undirected graphs formed by the edges and vertices of three dimensional convex polyhedra they are exactly the 3 vertex connected planar graphs That is every convex polyhedron forms a 3 connected planar graph and every 3 connected planar graph can be represented as the graph of a convex polyhedron For this reason the 3 connected planar graphs are also known as polyhedral graphs 1 This result provides a classification theorem for the three dimensional convex polyhedra something that is not known in higher dimensions 2 It provides a complete and purely combinatorial description of the graphs of these polyhedra allowing other results on them such as Eberhard s theorem on the realization of polyhedra with given types of faces to be proven more easily without reference to the geometry of these shapes 3 Additionally it has been applied in graph drawing as a way to construct three dimensional visualizations of abstract graphs 4 Branko Grunbaum has called this theorem the most important and deepest known result on 3 polytopes 5 The theorem appears in a 1922 publication of Ernst Steinitz 6 after whom it is named It can be proven by mathematical induction as Steinitz did by finding the minimum energy state of a two dimensional spring system and lifting the result into three dimensions or by using the circle packing theorem Several extensions of the theorem are known in which the polyhedron that realizes a given graph has additional constraints for instance every polyhedral graph is the graph of a convex polyhedron with integer coordinates or the graph of a convex polyhedron all of whose edges are tangent to a common midsphere Contents 1 Definitions and statement of the theorem 2 Proofs 2 1 Induction 2 2 Lifting 2 3 Circle packing 3 Realizations with additional properties 3 1 Integer coordinates 3 2 Equal slopes 3 3 Specifying the shape of a face 3 4 Tangent spheres 4 Related results 5 History 6 ReferencesDefinitions and statement of the theorem Edit Illuminating the skeleton of a convex polyhedron from a light source close to one of its faces causes its shadows to form a planar Schlegel diagram An undirected graph is a system of vertices and edges each edge connecting two of the vertices As is common in graph theory for the purposes of Steinitz s theorem these graphs are restricted to being finite the vertices and edges are finite sets and simple no two edges connect the same two vertices and no edge connects a vertex to itself From any polyhedron one can form a graph by letting the vertices of the graph correspond to the vertices of the polyhedron and by connecting any two graph vertices by an edge whenever the corresponding two polyhedron vertices are the endpoints of an edge of the polyhedron This graph is known as the skeleton of the polyhedron 7 A graph is planar if it can be drawn with its vertices as points in the Euclidean plane and its edges as curves that connect these points such that no two edge curves cross each other and such that the point representing a vertex lies on the curve representing an edge only when the vertex is an endpoint of the edge By Fary s theorem every planar drawing can be straightened so that the curves representing the edges are line segments A graph is 3 connected if it has more than three vertices and after the removal of any two of its vertices any other pair of vertices remain connected by a path Steinitz s theorem states that these two conditions are both necessary and sufficient to characterize the skeletons of three dimensional convex polyhedra a given graph G displaystyle G is the graph of a convex three dimensional polyhedron if and only if G displaystyle G is planar and 3 vertex connected 5 8 Proofs Edit Illustration of the proof of Balinski s theorem showing the zero set of a linear function blue passing through two given vertices yellow and the simplex method paths connecting the remaining graph green One direction of Steinitz s theorem the easier direction to prove states that the graph of every convex polyhedron is planar and 3 connected As shown in the illustration planarity can be shown by using a Schlegel diagram if one places a light source near one face of the polyhedron and a plane on the other side the shadows of the polyhedron edges will form a planar graph embedded in such a way that the edges are straight line segments The 3 connectivity of a polyhedral graph is a special case of Balinski s theorem that the graph of any k displaystyle k dimensional convex polytope is k displaystyle k connected The connectivity of the graph of a polytope after removing any k 1 displaystyle k 1 of its vertices can be proven by choosing one more vertex v displaystyle v finding a linear function that is zero on the resulting set of k displaystyle k vertices and following the paths generated by the simplex method to connect every vertex to one of two extreme vertices of the linear function with the chosen vertex v displaystyle v connected to both 9 The other more difficult direction of Steinitz s theorem states that every planar 3 connected graph is the graph of a convex polyhedron There are three standard approaches for this part proofs by induction lifting two dimensional Tutte embeddings into three dimensions using the Maxwell Cremona correspondence and methods using the circle packing theorem to generate a canonical polyhedron Induction Edit D Y and Y D transforms of a polyhedron Although Steinitz s original proof was not expressed in terms of graph theory it can be rewritten in those terms and involves finding a sequence of D Y and Y D transforms that reduce any 3 connected planar graph to K 4 displaystyle K 4 the graph of the tetrahedron A Y D transform removes a degree three vertex from a graph adding edges between all of its former neighbors if those edges did not already exist the reverse transformation a D Y transform removes the edges of a triangle from a graph and replaces them by a new degree three vertex adjacent to the same three vertices Once such a sequence is found it can be reversed and converted into geometric operations that build up the desired polyhedron step by step starting from a tetrahedron Each Y D transform in the reversed sequence can be performed geometrically by slicing off a degree three vertex from a polyhedron A D Y transform in the reversed sequence can be performed geometrically by removing a triangular face from a polyhedron and extending its neighboring faces until the point where they meet but only when that triple intersection point of the three neighboring faces is on the far side of the removed face from the polyhedron When the triple intersection point is not on the far side of this face a projective transformation of the polyhedron suffices to move it to the correct side Therefore by induction on the number of D Y and Y D transforms needed to reduce a given graph to K 4 displaystyle K 4 every polyhedral graph can be realized as a polyhedron 5 A later work by Epifanov strengthened Steinitz s proof that every polyhedral graph can be reduced to K 4 displaystyle K 4 by D Y and Y D transforms Epifanov proved that if two vertices are specified in a planar graph then the graph can be reduced to a single edge between those terminals by combining D Y and Y D transforms with series parallel reductions 10 Epifanov s proof was complicated and non constructive but it was simplified by Truemper using methods based on graph minors Truemper observed that every grid graph is reducible by D Y and Y D transforms in this way that this reducibility is preserved by graph minors and that every planar graph is a minor of a grid graph 11 This idea can be used to replace Steinitz s lemma that a reduction sequence exists After this replacement the rest of the proof can be carried out using induction in the same way as Steinitz s original proof 8 For these proofs carried out using any of the ways of finding sequences of D Y and Y D transforms there exist polyhedral graphs that require a nonlinear number of steps More precisely every planar graph can be reduced using a number of steps at most proportional to n 3 2 displaystyle n 3 2 and infinitely many graphs require a number of steps at least proportional to n 3 2 displaystyle n 3 2 where n displaystyle n is the number of vertices in the graph 12 13 An alternative form of induction proof is based on removing edges and compressing out the degree two vertices that might be left after this removal or contracting edges and forming a minor of the given planar graph Any polyhedral graph can be reduced to K 4 displaystyle K 4 by a linear number of these operations and again the operations can be reversed and the reversed operations performed geometrically giving a polyhedral realization of the graph However while it is simpler to prove that a reduction sequence exists for this type of argument and the reduction sequences are shorter the geometric steps needed to reverse the sequence are more complicated 14 Lifting Edit Equilibrium stress on the graph of a cube A frustum lifting the stressed drawing with the same 2d positions into 3d If a graph is drawn in the plane with straight line edges then an equilibrium stress is defined as an assignment of nonzero real numbers weights to the edges with the property that each vertex is in the position given by the weighted average of its neighbors According to the Maxwell Cremona correspondence an equilibrium stress can be lifted to a piecewise linear continuous three dimensional surface such that the edges forming the boundaries between the flat parts of the surface project to the given drawing The weight and length of each edge determines the difference in slopes of the surface on either side of the edge and the condition that each vertex is in equilibrium with its neighbors is equivalent to the condition that these slope differences cause the surface to meet up with itself correctly in the neighborhood of the vertex Positive weights translate to convex dihedral angles between two faces of the piecewise linear surface and negative weights translate to concave dihedral angles Conversely every continuous piecewise linear surface comes from an equilibrium stress in this way If a finite planar graph is drawn and given an equilibrium stress in such a way that all interior edges of the drawing have positive weights and all exterior edges have negative weights then by translating this stress into a three dimensional surface in this way and then replacing the flat surface representing the exterior of the graph by its complement in the same plane one obtains a convex polyhedron with the additional property that its perpendicular projection onto the plane has no crossings 15 16 The Maxwell Cremona correspondence has been used to obtain polyhedral realizations of polyhedral graphs by combining it with a planar graph drawing method of W T Tutte the Tutte embedding Tutte s method begins by fixing one face of a polyhedral graph into convex position in the plane This face will become the outer face of a drawing of a graph The method continues by setting up a system of linear equations in the vertex coordinates according to which each remaining vertex should be placed at the average of its neighbors Then as Tutte showed this system of equations will have a unique solution in which each face of the graph is drawn as a convex polygon 17 Intuitively this solution describes the pattern that would be obtained by replacing the interior edges of the graph by ideal springs and letting them settle to their minimum energy state 18 The result is almost an equilibrium stress if one assigns weight one to each interior edge then each interior vertex of the drawing is in equilibrium However it is not always possible to assign negative numbers to the exterior edges so that they too are in equilibrium Such an assignment is always possible when the outer face is a triangle and so this method can be used to realize any polyhedral graph that has a triangular face If a polyhedral graph does not contain a triangular face its dual graph does contain a triangle and is also polyhedral so one can realize the dual in this way and then realize the original graph as the polar polyhedron of the dual realization 4 19 An alternative method for realizing polyhedra using liftings avoids duality by choosing any face with at most five vertices as the outer face Every polyhedral graph has such a face and by choosing the fixed shape of this face more carefully the Tutte embedding of the rest of the graph can be lifted 20 Circle packing Edit A polyhedron realized from a circle packing on the blue midsphere Each polyhedron vertex is represented in the packing by its horizon circle red Each face is represented by the circle made by its intersection with the sphere According to one variant of the circle packing theorem for every polyhedral graph there exists a system of circles in the plane or on any sphere representing the vertices and faces of the graph so that each two adjacent vertices of the graph are represented by tangent circles each two adjacent faces of the graph are represented by tangent circle each pair of a vertex and a face that it touches are represented by circles that cross at a right angle and all other pairs of circles are separated from each other 21 The same system of circles forms a representation of the dual graph by swapping the roles of circles that represent vertices and circles that represent faces From any such representation on a sphere embedded into three dimensional Euclidean space one can form a convex polyhedron that is combinatorially equivalent to the given graph as an intersection of half spaces whose boundaries pass through the face circles From each vertex of this polyhedron the horizon on the sphere seen from that vertex is the circle that represents it This horizon property determines the three dimensional position of each vertex and the polyhedron can be equivalently defined as the convex hull of the vertices positioned in this way The sphere becomes the midsphere of the realization each edge of the polyhedron is tangent to the sphere at a point where two tangent vertex circles cross two tangent face circles 22 Realizations with additional properties EditInteger coordinates Edit It is possible to prove a stronger form of Steinitz s theorem that any polyhedral graph can be realized by a convex polyhedron whose coordinates are integers 23 For instance Steinitz s original induction based proof can be strengthened in this way However the integers that would result from Steinitz s construction are doubly exponential in the number of vertices of the given polyhedral graph Writing down numbers of this magnitude in binary notation would require an exponential number of bits 19 Geometrically this means that some features of the polyhedron may have size doubly exponentially larger than others making the realizations derived from this method problematic for applications in graph drawing 4 Subsequent researchers have found lifting based realization algorithms that use only a linear number of bits per vertex 20 24 It is also possible to relax the requirement that the coordinates be integers and assign coordinates in such a way that the x displaystyle x coordinates of the vertices are distinct integers in the range from 0 to 2 n 4 displaystyle 2n 4 and the other two coordinates are real numbers in the unit interval so that each edge has length at least one while the overall polyhedron has linear volume 25 26 Some polyhedral graphs are known to be realizable on grids of only polynomial size in particular this is true for the pyramids realizations of wheel graphs prisms realizations of prism graphs and stacked polyhedra realizations of Apollonian networks 27 Another way of stating the existence of integer realizations is that every three dimensional convex polyhedron has a combinatorially equivalent integer polyhedron 23 For instance the regular dodecahedron is not itself an integer polyhedron because of its regular pentagon faces but it can be realized as an equivalent integer pyritohedron 20 This is not always possible in higher dimensions where there exist polytopes such as the ones constructed from the Perles configuration that have no integer equivalent 28 Equal slopes Edit A Halin graph is a special case of a polyhedral graph formed from a planar embedded tree with no degree two vertices by connecting the leaves of the tree into a cycle For Halin graphs one can choose polyhedral realizations of a special type the outer cycle forms a horizontal convex base face and every other face lies directly above the base face as in the polyhedra realized through lifting with all of these upper faces having the same slope Polyhedral surfaces with equal slope faces over any base polygon not necessarily convex can be constructed from the polygon s straight skeleton and an equivalent way of describing this realization is that the two dimensional projection of the tree onto the base face forms its straight skeleton The proof of this result uses induction any rooted tree may reduced to a smaller tree by removing the leaves from an internal node whose children are all leaves the Halin graph formed from the smaller tree has a realization by the induction hypothesis and it is possible to modify this realization in order to add any number of leaf children to the tree node whose children were removed 29 Specifying the shape of a face Edit In any polyhedron that represents a given polyhedral graph G displaystyle G the faces of G displaystyle G are exactly the cycles in G displaystyle G that do not separate G displaystyle G into two components that is removing a facial cycle from G displaystyle G leaves the rest of G displaystyle G as a connected subgraph Such cycles are called peripheral cycles Thus the combinatorial structure of the faces but not their geometric shapes is uniquely determined from the graph structure Another strengthening of Steinitz s theorem by Barnette and Grunbaum states that for any polyhedral graph any face of the graph and any convex polygon representing that face it is possible to find a polyhedral realization of the whole graph that has the specified shape for the designated face This is related to a theorem of Tutte that any polyhedral graph can be drawn in the plane with all faces convex and any specified shape for its outer face However the planar graph drawings produced by Tutte s method do not necessarily lift to convex polyhedra Instead Barnette and Grunbaum prove this result using an inductive method 30 It is also always possible given a polyhedral graph G displaystyle G and an arbitrary cycle C displaystyle C in G displaystyle G to find a realization for which C displaystyle C forms the silhouette of the realization under parallel projection 31 Tangent spheres Edit The realization of polyhedra using the circle packing theorem provides another strengthening of Steinitz s theorem every 3 connected planar graph may be represented as a convex polyhedron in such a way that all of its edges are tangent to the same unit sphere the midsphere of the polyhedron 22 By performing a carefully chosen Mobius transformation of a circle packing before transforming it into a polyhedron it is possible to find a polyhedral realization that realizes all the symmetries of the underlying graph in the sense that every graph automorphism is a symmetry of the polyhedral realization 32 33 More generally if G displaystyle G is a polyhedral graph and K displaystyle K is any smooth three dimensional convex body it is possible to find a polyhedral representation of G displaystyle G in which all edges are tangent to K displaystyle K 34 Circle packing methods can also be used to characterize the graphs of polyhedra that have a circumsphere through all their vertices or an insphere tangent to all of their faces The polyhedra with a circumsphere are also significant in hyperbolic geometry as the ideal polyhedra In both cases the existence of a sphere is equivalent to the solvability of a system of linear inequalities on positive real variables associated with each edge of the graph In the case of the insphere these variables must sum to exactly one on each face cycle of the graph and to more than one on each non face cycle Dually for the circumsphere the variables must sum to one at each vertex and more than one across each cut with two or more vertices on each side of the cut Although there may be exponentially many linear inequalities to satisfy a solution if one exists can be found in polynomial time using the ellipsoid method The values of the variables from a solution determine the angles between pairs of circles in a circle packing whose corresponding polyhedron has the desired relation to its sphere 35 36 Related results Edit The graphs of three dimensional non convex polyhedra might not be connected left and even for topologically spherical polyhedra whose faces are simple polygons these graphs might not be 3 connected right 37 In any dimension higher than three the algorithmic Steinitz problem consists of determining whether a given lattice is the face lattice of a convex polytope It is unlikely to have polynomial time complexity as it is NP hard and more strongly complete for the existential theory of the reals even for four dimensional polytopes by Richter Gebert s universality theorem 38 Here the existential theory of the reals is a class of computational problems that can be formulated in terms of finding real variables that satisfy a given system of polynomial equations and inequalities For the algorithmic Steinitz problem the variables of such a problem can be the vertex coordinates of a polytope and the equations and inequalities can be used to specify the flatness of each face in the given face lattice and the convexity of each angle between faces Completeness means that every other problem in this class can be transformed into an equivalent instance of the algorithmic Steinitz problem in polynomial time The existence of such a transformation implies that if the algorithmic Steinitz problem has a polynomial time solution then so does every problem in the existential theory of the reals and every problem in NP 39 However because a given graph may correspond to more than one face lattice it is difficult to extend this completeness result to the problem of recognizing the graphs of 4 polytopes Determining the computational complexity of this graph recognition problem remains open 40 Researchers have also found graph theoretic characterizations of the graphs of certain special classes of three dimensional non convex polyhedra 37 41 and four dimensional convex polytopes 40 42 43 However in both cases the general problem remains unsolved Indeed even the problem of determining which complete graphs are the graphs of non convex polyhedra other than K 4 displaystyle K 4 for the tetrahedron and K 7 displaystyle K 7 for the Csaszar polyhedron remains unsolved 44 Eberhard s theorem partially characterizes the multisets of polygons that can be combined to form the faces of a convex polyhedron It can be proven by forming a 3 connected planar graph with the given set of polygon faces and then applying Steinitz s theorem to find a polyhedral realization of that graph 3 Laszlo Lovasz has shown a correspondence between polyhedral representations of graphs and matrices realizing the Colin de Verdiere graph invariants of the same graphs The Colin de Verdiere invariant is the maximum corank of a weighted adjacency matrix of the graph under some additional conditions that are irrelevant for polyhedral graphs These are square symmetric matrices indexed by the vertices with the weight of vertex i displaystyle i in the diagonal coefficient M i i displaystyle M i i and with the weight of edge i j displaystyle i j in the off diagonal coefficients M i j displaystyle M i j and M j i displaystyle M j i When vertices i displaystyle i and j displaystyle j are not adjacent the coefficient M i j displaystyle M i j is required to be zero This invariant is at most three if and only if the graph is a planar graph As Lovasz shows when the graph is polyhedral a representation of it as a polyhedron can be obtained by finding a weighted adjacency matrix of corank three finding three vectors forming a basis for its nullspace using the coefficients of these vectors as coordinates for the vertices of a polyhedron and scaling these vertices appropriately 45 History EditThe history of Steinitz s theorem is described by Grunbaum 2007 46 who notes its first appearance in a cryptic form in a publication of Ernst Steinitz originally written in 1916 6 Steinitz provided more details in later lecture notes published after his 1928 death Although modern treatments of Steinitz s theorem state it as a graph theoretic characterization of polyhedra Steinitz did not use the language of graphs 46 The graph theoretic formulation of the theorem was introduced in the early 1960s by Branko Grunbaum and Theodore Motzkin with its proof also converted to graph theory in Grunbaum s 1967 text Convex Polytopes 46 The work of Epifanov on D Y and Y D transforms strengthening Steinitz s proof was motivated by other problems than the characterization of polyhedra Truemper 1989 credits Grunbaum with observing the relevance of this work for Steinitz s theorem 11 The Maxwell Cremona correspondence between stress diagrams and polyhedral liftings was developed in a series of papers by James Clerk Maxwell from 1864 to 1870 based on earlier work of Pierre Varignon William Rankine and others and was popularized in the late 19th century by Luigi Cremona 47 The observation that this correspondence can be used with the Tutte embedding to prove Steinitz s theorem comes from Eades amp Garvan 1995 4 see also Richter Gebert 1996 38 The circle packing theorem was proved by Paul Koebe in 1936 48 49 and independently by E M Andreev in 1970 49 50 it was popularized in the mid 1980s by William Thurston who despite citing Koebe and Andreev is often credited as one of its discoverers 49 Andreev s version of the theorem was already formulated as a Steinitz like characterization for certain polyhedra in hyperbolic space 50 and the use of circle packing to realize polyhedra with midspheres comes from the work of Thurston 51 The problem of characterizing polyhedra with inscribed or circumscribed spheres eventually solved using a method based on circle packing realizations goes back to unpublished work of Rene Descartes circa 1630 52 and to Jakob Steiner in 1832 35 53 the first examples of polyhedra that have no realization with a circumsphere or insphere were given by Steinitz in 1928 35 54 References Edit Weisstein Eric W Polyhedral graph MathWorld Sturmfels Bernd 1987 Boundary complexes of convex polytopes cannot be characterized locally Journal of the London Mathematical Society Second Series 35 2 314 326 CiteSeerX 10 1 1 106 3222 doi 10 1112 jlms s2 35 2 314 MR 0881520 a b Malkevitch Joseph Techniques for proving combinatorial theorems about 3 polytopes Geometric Structures course notes City University of New York a b c d Eades Peter Garvan Patrick 1995 Drawing stressed planar graphs in three dimensions in Brandenburg Franz Josef ed Graph Drawing Symposium on Graph Drawing GD 95 Passau Germany September 20 22 1995 Proceedings Lecture Notes in Computer Science vol 1027 Springer pp 212 223 doi 10 1007 BFb0021805 MR 1400675 a b c Grunbaum Branko 2003 13 1 Steinitz s theorem Convex Polytopes Graduate Texts in Mathematics vol 221 2nd ed Springer Verlag pp 235 244 ISBN 0 387 40409 0 a b Steinitz Ernst 1922 IIIAB12 Polyeder und Raumeinteilungen Encyclopadie der mathematischen Wissenschaften in German vol Band 3 Geometries pp 1 139 Abgeschlossen am 31 August 1916 More technically this graph is the 1 skeleton see Grunbaum 2003 p 138 and Ziegler 1995 p 64 a b Ziegler Gunter M 1995 Chapter 4 Steinitz Theorem for 3 Polytopes Lectures on Polytopes Graduate Texts in Mathematics vol 152 Springer Verlag pp 103 126 ISBN 0 387 94365 X Balinski M L 1961 On the graph structure of convex polyhedra in n space Pacific Journal of Mathematics 11 2 431 434 doi 10 2140 pjm 1961 11 431 MR 0126765 Epifanov G V 1966 Reduction of a plane graph to an edge by star triangle transformations Doklady Akademii Nauk SSSR in Russian 166 19 22 MR 0201337 Zbl 0149 21301 a b Truemper K 1989 On the delta wye reduction for planar graphs Journal of Graph Theory 13 2 141 148 doi 10 1002 jgt 3190130202 MR 0994737 Aranguri Santiago Chang Hsien Chih Fridman Dylan 2022 Untangling planar graphs and curves by staying positive Proceedings of the 2022 Annual ACM SIAM Symposium on Discrete Algorithms SODA SIAM pp 211 225 doi 10 1137 1 9781611977073 11 MR 4415048 Chang Hsien Chih Erickson Jeff 2017 Untangling planar curves Discrete amp Computational Geometry 58 4 889 920 arXiv 1702 00146 doi 10 1007 s00454 017 9907 6 MR 3717242 Barnette David W Grunbaum Branko 1969 On Steinitz s theorem concerning convex 3 polytopes and on some properties of planar graphs in Chartrand G Kapoor S F eds The Many Facets of Graph Theory Proceedings of the Conference held at Western Michigan University Kalamazoo MI October 31 November 2 1968 Lecture Notes in Mathematics vol 110 Springer pp 27 40 doi 10 1007 BFb0060102 MR 0250916 Maxwell J Clerk 1864 On reciprocal figures and diagrams of forces Philosophical Magazine 4th Series 27 182 250 261 doi 10 1080 14786446408643663 Whiteley Walter 1982 Motions and stresses of projected polyhedra Structural Topology 7 13 38 hdl 2099 989 MR 0721947 Tutte W T 1963 How to draw a graph Proceedings of the London Mathematical Society 13 743 767 doi 10 1112 plms s3 13 1 743 MR 0158387 Brandes Ulrik 2001 Drawing on physical analogies in Kaufmann Michael Wagner Dorothea eds Drawing Graphs Methods and Models Lecture Notes in Computer Science vol 2025 Berlin Springer pp 71 86 CiteSeerX 10 1 1 9 5023 doi 10 1007 3 540 44969 8 4 MR 1880146 a b Onn Shmuel Sturmfels Bernd 1994 A quantitative Steinitz theorem Beitrage zur Algebra und Geometrie 35 1 125 129 MR 1287206 a b c Ribo Mor Ares Rote Gunter Schulz Andre 2011 Small grid embeddings of 3 polytopes Discrete amp Computational Geometry 45 1 65 87 arXiv 0908 0488 doi 10 1007 s00454 010 9301 0 MR 2765520 S2CID 10141034 Brightwell Graham R Scheinerman Edward R 1993 Representations of planar graphs SIAM Journal on Discrete Mathematics 6 2 214 229 doi 10 1137 0406017 MR 1215229 a b Ziegler Gunter M 2007 Convex polytopes extremal constructions and f vector shapes Section 1 3 Steinitz s theorem via circle packings in Miller Ezra Reiner Victor Sturmfels Bernd eds Geometric Combinatorics IAS Park City Mathematics Series vol 13 American Mathematical Society pp 628 642 ISBN 978 0 8218 3736 8 a b Grunbaum 2003 theorem 13 2 3 p 244 states this in an equivalent form where the coordinates are rational numbers Buchin Kevin Schulz Andre 2010 On the number of spanning trees a planar graph can have in de Berg Mark Meyer Ulrich eds Algorithms ESA 2010 18th Annual European Symposium Liverpool UK September 6 8 2010 Proceedings Part I Lecture Notes in Computer Science vol 6346 Springer pp 110 121 CiteSeerX 10 1 1 746 942 doi 10 1007 978 3 642 15775 2 10 ISBN 978 3 642 15774 5 MR 2762847 S2CID 42211547 Chrobak Marek Goodrich Michael T Tamassia Roberto 1996 Convex drawings of graphs in two and three dimensions Proceedings of the 12th ACM Symposium on Computational Geometry SoCG 96 ACM pp 319 328 doi 10 1145 237218 237401 S2CID 1015103 Schulz Andre 2011 Drawing 3 polytopes with good vertex resolution Journal of Graph Algorithms and Applications 15 1 33 52 doi 10 7155 jgaa 00216 MR 2776000 Demaine Erik D Schulz Andre 2017 Embedding stacked polytopes on a polynomial size grid Discrete amp Computational Geometry 57 4 782 809 arXiv 1403 7980 doi 10 1007 s00454 017 9887 6 MR 3639604 S2CID 104867 Grunbaum 2003 p 96a Aichholzer Oswin Cheng Howard Devadoss Satyan L Hackl Thomas Huber Stefan Li Brian Risteski Andrej 2012 What makes a Tree a Straight Skeleton PDF Proceedings of the 24th Canadian Conference on Computational Geometry CCCG 12 Barnette David W Grunbaum Branko 1970 Preassigning the shape of a face Pacific Journal of Mathematics 32 2 299 306 doi 10 2140 pjm 1970 32 299 MR 0259744 Barnette David W 1970 Projections of 3 polytopes Israel Journal of Mathematics 8 3 304 308 doi 10 1007 BF02771563 MR 0262923 S2CID 120791830 Hart George W 1997 Calculating canonical polyhedra Mathematica in Education and Research 6 3 5 10 Bern Marshall W Eppstein David 2001 Optimal Mobius transformations for information visualization and meshing in Dehne Frank K H A Sack Jorg Rudiger Tamassia Roberto eds Algorithms and Data Structures 7th International Workshop WADS 2001 Providence RI USA August 8 10 2001 Proceedings Lecture Notes in Computer Science vol 2125 Springer pp 14 25 arXiv cs 0101006 doi 10 1007 3 540 44634 6 3 S2CID 3266233 Schramm Oded 1992 How to cage an egg Inventiones Mathematicae 107 3 543 560 Bibcode 1992InMat 107 543S doi 10 1007 BF01231901 MR 1150601 S2CID 189830473 a b c Rivin Igor 1996 A characterization of ideal polyhedra in hyperbolic 3 space Annals of Mathematics Second Series 143 1 51 70 doi 10 2307 2118652 JSTOR 2118652 MR 1370757 Dillencourt Michael B Smith Warren D 1996 Graph theoretical conditions for inscribability and Delaunay realizability Discrete Mathematics 161 1 3 63 77 doi 10 1016 0012 365X 95 00276 3 MR 1420521 S2CID 16382428 a b Eppstein David Mumford Elena 2014 Steinitz theorems for simple orthogonal polyhedra Journal of Computational Geometry 5 1 179 244 doi 10 20382 jocg v5i1a10 MR 3259910 S2CID 8531578 a b Richter Gebert Jurgen 1996 Realization Spaces of Polytopes Lecture Notes in Mathematics vol 1643 Springer Verlag CiteSeerX 10 1 1 2 3495 doi 10 1007 BFb0093761 ISBN 978 3 540 62084 6 MR 1482230 Schaefer Marcus 2013 Realizability of graphs and linkages in Pach Janos ed Thirty Essays on Geometric Graph Theory New York Springer pp 461 482 CiteSeerX 10 1 1 220 9651 doi 10 1007 978 1 4614 0110 0 24 MR 3205168 a b Eppstein David 2020 Treetopes and their graphs Discrete amp Computational Geometry 64 2 259 289 arXiv 1510 03152 doi 10 1007 s00454 020 00177 0 MR 4131546 S2CID 213885326 Hong Seok Hee Nagamochi Hiroshi 2011 Extending Steinitz s theorem to upward star shaped polyhedra and spherical polyhedra Algorithmica 61 4 1022 1076 doi 10 1007 s00453 011 9570 x MR 2852056 S2CID 12622357 Blind Roswitha Mani Levitska Peter 1987 Puzzles and polytope isomorphisms Aequationes Mathematicae 34 2 3 287 297 doi 10 1007 BF01830678 MR 0921106 S2CID 120222616 Kalai Gil 1988 A simple way to tell a simple polytope from its graph Journal of Combinatorial Theory Series A 49 2 381 383 doi 10 1016 0097 3165 88 90064 7 MR 0964396 Ziegler Gunter M 2008 Polyhedral surfaces of high genus Discrete Differential Geometry Oberwolfach Seminars vol 38 Springer pp 191 213 arXiv math 0412093 doi 10 1007 978 3 7643 8621 4 10 ISBN 978 3 7643 8620 7 MR 2405667 S2CID 15911143 Lovasz Laszlo 2001 Steinitz representations of polyhedra and the Colin de Verdiere number Journal of Combinatorial Theory Series B 82 2 223 236 doi 10 1006 jctb 2000 2027 MR 1842113 a b c Grunbaum Branko 2007 Graphs of polyhedra polyhedra as graphs Discrete Mathematics 307 3 5 445 463 doi 10 1016 j disc 2005 09 037 hdl 1773 2276 MR 2287486 Erickson Jeff Lin Patrick 2020 A toroidal Maxwell Cremona Delaunay correspondence in Cabello Sergio Chen Danny Z eds 36th International Symposium on Computational Geometry SoCG 2020 Leibniz International Proceedings in Informatics LIPIcs vol 164 Dagstuhl Germany Schloss Dagstuhl Leibniz Zentrum fur Informatik pp 40 1 40 17 arXiv 2003 10057 doi 10 4230 LIPIcs SoCG 2020 40 ISBN 978 3 95977 143 6 S2CID 209514295 Koebe Paul 1936 Kontaktprobleme der Konformen Abbildung Berichte uber die Verhandlungen der Sachsischen Akademie der Wissenschaften zu Leipzig Mathematisch Physische Klasse in German 88 141 164 a b c Stephenson Kenneth 2003 Circle packing a mathematical tale PDF Notices of the American Mathematical Society 50 11 1376 1388 CiteSeerX 10 1 1 101 5592 MR 2011604 a b Andreev E M 1970 Convex polyhedra in Lobacevskiĭ spaces Matematicheskii Sbornik 81 123 445 478 MR 0259734 Schramm Oded 1991 Existence and uniqueness of packings with specified combinatorics Israel Journal of Mathematics 73 3 321 341 doi 10 1007 BF02773845 MR 1135221 S2CID 121855202 see discussion following Corollary 3 8 p 329 Federico Pasquale Joseph 1982 Descartes on Polyhedra A Study of the De solidorum elementis Sources in the History of Mathematics and Physical Sciences vol 4 Springer p 52 Steiner Jakob 1832 Question 77 Systematische Entwicklung der Abhangigkeit geometrischer Gestalten von einander in German Berlin G Fincke p 316 Steinitz Ernst 1928 Uber isoperimetrische Probleme bei konvexen Polyedern Journal fur die Reine und Angewandte Mathematik in German 1928 159 133 143 doi 10 1515 crll 1928 159 133 MR 1581158 S2CID 199546274 Retrieved from https en wikipedia org w index php title Steinitz 27s theorem amp oldid 1145889549, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.