fbpx
Wikipedia

Adjacency matrix

In graph theory and computer science, an adjacency matrix is a square matrix used to represent a finite graph. The elements of the matrix indicate whether pairs of vertices are adjacent or not in the graph.

In the special case of a finite simple graph, the adjacency matrix is a (0,1)-matrix with zeros on its diagonal. If the graph is undirected (i.e. all of its edges are bidirectional), the adjacency matrix is symmetric. The relationship between a graph and the eigenvalues and eigenvectors of its adjacency matrix is studied in spectral graph theory.

The adjacency matrix of a graph should be distinguished from its incidence matrix, a different matrix representation whose elements indicate whether vertex–edge pairs are incident or not, and its degree matrix, which contains information about the degree of each vertex.

Definition edit

For a simple graph with vertex set U = {u1, …, un}, the adjacency matrix is a square n × n matrix A such that its element Aij is one when there is an edge from vertex ui to vertex uj, and zero when there is no edge.[1] The diagonal elements of the matrix are all zero, since edges from a vertex to itself (loops) are not allowed in simple graphs. It is also sometimes useful in algebraic graph theory to replace the nonzero elements with algebraic variables.[2] The same concept can be extended to multigraphs and graphs with loops by storing the number of edges between each two vertices in the corresponding matrix element, and by allowing nonzero diagonal elements. Loops may be counted either once (as a single edge) or twice (as two vertex-edge incidences), as long as a consistent convention is followed. Undirected graphs often use the latter convention of counting loops twice, whereas directed graphs typically use the former convention.

Of a bipartite graph edit

The adjacency matrix A of a bipartite graph whose two parts have r and s vertices can be written in the form

 

where B is an r × s matrix, and 0r,r and 0s,s represent the r × r and s × s zero matrices. In this case, the smaller matrix B uniquely represents the graph, and the remaining parts of A can be discarded as redundant. B is sometimes called the biadjacency matrix.

Formally, let G = (U, V, E) be a bipartite graph with parts U = {u1, ..., ur}, V = {v1, ..., vs} and edges E. The biadjacency matrix is the r × s 0–1 matrix B in which bi,j = 1 if and only if (ui, vj) ∈ E.

If G is a bipartite multigraph or weighted graph, then the elements bi,j are taken to be the number of edges between the vertices or the weight of the edge (ui, vj), respectively.

Variations edit

An (a, b, c)-adjacency matrix A of a simple graph has Ai,j = a if (i, j) is an edge, b if it is not, and c on the diagonal. The Seidel adjacency matrix is a (−1, 1, 0)-adjacency matrix. This matrix is used in studying strongly regular graphs and two-graphs.[3]

The distance matrix has in position (i, j) the distance between vertices vi and vj. The distance is the length of a shortest path connecting the vertices. Unless lengths of edges are explicitly provided, the length of a path is the number of edges in it. The distance matrix resembles a high power of the adjacency matrix, but instead of telling only whether or not two vertices are connected (i.e., the connection matrix, which contains boolean values), it gives the exact distance between them.

Examples edit

Undirected graphs edit

The convention followed here (for undirected graphs) is that each edge adds 1 to the appropriate cell in the matrix, and each loop adds 2.[4] This allows the degree of a vertex to be easily found by taking the sum of the values in either its respective row or column in the adjacency matrix.

Labeled graph Adjacency matrix
   


Coordinates are 1–6.

 


Nauru graph

 


Coordinates are 0–23.
White fields are zeros, colored fields are ones.

Directed graphs edit

The adjacency matrix of a directed graph can be asymmetric. One can define the adjacency matrix of a directed graph either such that

  1. a non-zero element Aij indicates an edge from i to j or
  2. it indicates an edge from j to i.

The former definition is commonly used in graph theory and social network analysis (e.g., sociology, political science, economics, psychology).[5] The latter is more common in other applied sciences (e.g., dynamical systems, physics, network science) where A is sometimes used to describe linear dynamics on graphs.[6]

Using the first definition, the in-degrees of a vertex can be computed by summing the entries of the corresponding column and the out-degree of vertex by summing the entries of the corresponding row. When using the second definition, the in-degree of a vertex is given by the corresponding row sum and the out-degree is given by the corresponding column sum.

Labeled graph Adjacency matrix
 


Directed Cayley graph of S4

 


Coordinates are 0–23.
As the graph is directed, the matrix is not necessarily symmetric.

Trivial graphs edit

The adjacency matrix of a complete graph contains all ones except along the diagonal where there are only zeros. The adjacency matrix of an empty graph is a zero matrix.

Properties edit

Spectrum edit

The adjacency matrix of an undirected simple graph is symmetric, and therefore has a complete set of real eigenvalues and an orthogonal eigenvector basis. The set of eigenvalues of a graph is the spectrum of the graph.[7] It is common to denote the eigenvalues by  

The greatest eigenvalue   is bounded above by the maximum degree. This can be seen as result of the Perron–Frobenius theorem, but it can be proved easily. Let v be one eigenvector associated to   and x the component in which v has maximum absolute value. Without loss of generality assume vx is positive since otherwise you simply take the eigenvector  , also associated to  . Then

 

For d-regular graphs, d is the first eigenvalue of A for the vector v = (1, …, 1) (it is easy to check that it is an eigenvalue and it is the maximum because of the above bound). The multiplicity of this eigenvalue is the number of connected components of G, in particular   for connected graphs. It can be shown that for each eigenvalue  , its opposite   is also an eigenvalue of A if G is a bipartite graph.[8] In particular −d is an eigenvalue of any d-regular bipartite graph.

The difference   is called the spectral gap and it is related to the expansion of G. It is also useful to introduce the spectral radius of   denoted by  . This number is bounded by  . This bound is tight in the Ramanujan graphs, which have applications in many areas.

Isomorphism and invariants edit

Suppose two directed or undirected graphs G1 and G2 with adjacency matrices A1 and A2 are given. G1 and G2 are isomorphic if and only if there exists a permutation matrix P such that

 

In particular, A1 and A2 are similar and therefore have the same minimal polynomial, characteristic polynomial, eigenvalues, determinant and trace. These can therefore serve as isomorphism invariants of graphs. However, two graphs may possess the same set of eigenvalues but not be isomorphic.[9] Such linear operators are said to be isospectral.

Matrix powers edit

If A is the adjacency matrix of the directed or undirected graph G, then the matrix An (i.e., the matrix product of n copies of A) has an interesting interpretation: the element (i, j) gives the number of (directed or undirected) walks of length n from vertex i to vertex j. If n is the smallest nonnegative integer, such that for some i, j, the element (i, j) of An is positive, then n is the distance between vertex i and vertex j. A great example of how this is useful is in counting the number of triangles in an undirected graph G, which is exactly the trace of A3 divided by 3 or 6 depending on whether the graph is directed or not. We divide by those values to compensate for the overcounting of each triangle. In an undirected graph, each triangle will be counted twice for all three nodes, because the path can be followed clockwise or counterclockwise : ijk or ikj. The adjacency matrix can be used to determine whether or not the graph is connected.

Data structures edit

The adjacency matrix may be used as a data structure for the representation of graphs in computer programs for manipulating graphs. The main alternative data structure, also in use for this application, is the adjacency list.[10][11]

The space needed to represent an adjacency matrix and the time needed to perform operations on them is dependent on the matrix representation chosen for the underlying matrix. Sparse matrix representations only store non-zero matrix entries and implicitly represent the zero entries. They can, for example, be used to represent sparse graphs without incurring the space overhead from storing the many zero entries in the adjacency matrix of the sparse graph. In the following section the adjacency matrix is assumed to be represented by an array data structure so that zero and non-zero entries are all directly represented in storage.

Because each entry in the adjacency matrix requires only one bit, it can be represented in a very compact way, occupying only |V |2 / 8 bytes to represent a directed graph, or (by using a packed triangular format and only storing the lower triangular part of the matrix) approximately |V |2 / 16 bytes to represent an undirected graph. Although slightly more succinct representations are possible, this method gets close to the information-theoretic lower bound for the minimum number of bits needed to represent all n-vertex graphs.[12] For storing graphs in text files, fewer bits per byte can be used to ensure that all bytes are text characters, for instance by using a Base64 representation.[13] Besides avoiding wasted space, this compactness encourages locality of reference. However, for a large sparse graph, adjacency lists require less storage space, because they do not waste any space representing edges that are not present.[11][14]

An alternative form of adjacency matrix (which, however, requires a larger amount of space) replaces the numbers in each element of the matrix with pointers to edge objects (when edges are present) or null pointers (when there is no edge).[14] It is also possible to store edge weights directly in the elements of an adjacency matrix.[11]

Besides the space tradeoff, the different data structures also facilitate different operations. Finding all vertices adjacent to a given vertex in an adjacency list is as simple as reading the list, and takes time proportional to the number of neighbors. With an adjacency matrix, an entire row must instead be scanned, which takes a larger amount of time, proportional to the number of vertices in the whole graph. On the other hand, testing whether there is an edge between two given vertices can be determined at once with an adjacency matrix, while requiring time proportional to the minimum degree of the two vertices with the adjacency list.[11][14]

See also edit

References edit

  1. ^ Biggs, Norman (1993), Algebraic Graph Theory, Cambridge Mathematical Library (2nd ed.), Cambridge University Press, Definition 2.1, p. 7.
  2. ^ Harary, Frank (1962), "The determinant of the adjacency matrix of a graph", SIAM Review, 4 (3): 202–210, Bibcode:1962SIAMR...4..202H, doi:10.1137/1004057, MR 0144330.
  3. ^ Seidel, J. J. (1968). "Strongly Regular Graphs with (−1, 1, 0) Adjacency Matrix Having Eigenvalue 3". Lin. Alg. Appl. 1 (2): 281–298. doi:10.1016/0024-3795(68)90008-6.
  4. ^ Shum, Kenneth; Blake, Ian (2003-12-18). "Expander graphs and codes". Volume 68 of DIMACS series in discrete mathematics and theoretical computer science. Algebraic Coding Theory and Information Theory: DIMACS Workshop, Algebraic Coding Theory and Information Theory. American Mathematical Society. p. 63. ISBN 9780821871102.
  5. ^ Borgatti, Steve; Everett, Martin; Johnson, Jeffrey (2018), Analyzing Social Networks (2nd ed.), SAGE, p. 20
  6. ^ Newman, Mark (2018), Networks (2nd ed.), Oxford University Press, p. 110
  7. ^ Biggs (1993), Chapter 2 ("The spectrum of a graph"), pp. 7–13.
  8. ^ Brouwer, Andries E.; Haemers, Willem H. (2012), "1.3.6 Bipartite graphs", Spectra of Graphs, Universitext, New York: Springer, pp. 6–7, doi:10.1007/978-1-4614-1939-6, ISBN 978-1-4614-1938-9, MR 2882891
  9. ^ Godsil, Chris; Royle, Gordon Algebraic Graph Theory, Springer (2001), ISBN 0-387-95241-1, p.164
  10. ^ Goodrich & Tamassia (2015), p. 361: "There are two data structures that people often use to represent graphs, the adjacency list and the adjacency matrix."
  11. ^ a b c d Cormen, Thomas H.; Leiserson, Charles E.; Rivest, Ronald L.; Stein, Clifford (2001), "Section 22.1: Representations of graphs", Introduction to Algorithms (Second ed.), MIT Press and McGraw-Hill, pp. 527–531, ISBN 0-262-03293-7.
  12. ^ Turán, György (1984), "On the succinct representation of graphs", Discrete Applied Mathematics, 8 (3): 289–294, doi:10.1016/0166-218X(84)90126-4, MR 0749658.
  13. ^ McKay, Brendan, Description of graph6 and sparse6 encodings, from the original on 2001-04-30, retrieved 2012-02-10.
  14. ^ a b c Goodrich, Michael T.; Tamassia, Roberto (2015), Algorithm Design and Applications, Wiley, p. 363.

External links edit

  • Weisstein, Eric W. "Adjacency matrix". MathWorld.
  • Fluffschack — an educational Java web start game demonstrating the relationship between adjacency matrices and graphs.
  • Open Data Structures - Section 12.1 - AdjacencyMatrix: Representing a Graph by a Matrix, Pat Morin
  •  : Application of the adjacency matrices to the computation generating series of walks.

adjacency, matrix, graph, theory, computer, science, adjacency, matrix, square, matrix, used, represent, finite, graph, elements, matrix, indicate, whether, pairs, vertices, adjacent, graph, special, case, finite, simple, graph, adjacency, matrix, matrix, with. In graph theory and computer science an adjacency matrix is a square matrix used to represent a finite graph The elements of the matrix indicate whether pairs of vertices are adjacent or not in the graph In the special case of a finite simple graph the adjacency matrix is a 0 1 matrix with zeros on its diagonal If the graph is undirected i e all of its edges are bidirectional the adjacency matrix is symmetric The relationship between a graph and the eigenvalues and eigenvectors of its adjacency matrix is studied in spectral graph theory The adjacency matrix of a graph should be distinguished from its incidence matrix a different matrix representation whose elements indicate whether vertex edge pairs are incident or not and its degree matrix which contains information about the degree of each vertex Contents 1 Definition 1 1 Of a bipartite graph 1 2 Variations 2 Examples 2 1 Undirected graphs 2 2 Directed graphs 2 3 Trivial graphs 3 Properties 3 1 Spectrum 3 2 Isomorphism and invariants 3 3 Matrix powers 4 Data structures 5 See also 6 References 7 External linksDefinition editFor a simple graph with vertex set U u1 un the adjacency matrix is a square n n matrix A such that its element Aij is one when there is an edge from vertex ui to vertex uj and zero when there is no edge 1 The diagonal elements of the matrix are all zero since edges from a vertex to itself loops are not allowed in simple graphs It is also sometimes useful in algebraic graph theory to replace the nonzero elements with algebraic variables 2 The same concept can be extended to multigraphs and graphs with loops by storing the number of edges between each two vertices in the corresponding matrix element and by allowing nonzero diagonal elements Loops may be counted either once as a single edge or twice as two vertex edge incidences as long as a consistent convention is followed Undirected graphs often use the latter convention of counting loops twice whereas directed graphs typically use the former convention Of a bipartite graph edit The adjacency matrix A of a bipartite graph whose two parts have r and s vertices can be written in the form A 0 r r B B T 0 s s displaystyle A begin pmatrix 0 r r amp B B mathsf T amp 0 s s end pmatrix nbsp where B is an r s matrix and 0r r and 0s s represent the r r and s s zero matrices In this case the smaller matrix B uniquely represents the graph and the remaining parts of A can be discarded as redundant B is sometimes called the biadjacency matrix Formally let G U V E be a bipartite graph with parts U u1 ur V v1 vs and edges E The biadjacency matrix is the r s 0 1 matrix B in which bi j 1 if and only if ui vj E If G is a bipartite multigraph or weighted graph then the elements bi j are taken to be the number of edges between the vertices or the weight of the edge ui vj respectively Variations edit An a b c adjacency matrix A of a simple graph has Ai j a if i j is an edge b if it is not and c on the diagonal The Seidel adjacency matrix is a 1 1 0 adjacency matrix This matrix is used in studying strongly regular graphs and two graphs 3 The distance matrix has in position i j the distance between vertices vi and vj The distance is the length of a shortest path connecting the vertices Unless lengths of edges are explicitly provided the length of a path is the number of edges in it The distance matrix resembles a high power of the adjacency matrix but instead of telling only whether or not two vertices are connected i e the connection matrix which contains boolean values it gives the exact distance between them Examples editUndirected graphs edit The convention followed here for undirected graphs is that each edge adds 1 to the appropriate cell in the matrix and each loop adds 2 4 This allows the degree of a vertex to be easily found by taking the sum of the values in either its respective row or column in the adjacency matrix Labeled graph Adjacency matrix nbsp 2 1 0 0 1 0 1 0 1 0 1 0 0 1 0 1 0 0 0 0 1 0 1 1 1 1 0 1 0 0 0 0 0 1 0 0 displaystyle begin pmatrix 2 amp 1 amp 0 amp 0 amp 1 amp 0 1 amp 0 amp 1 amp 0 amp 1 amp 0 0 amp 1 amp 0 amp 1 amp 0 amp 0 0 amp 0 amp 1 amp 0 amp 1 amp 1 1 amp 1 amp 0 amp 1 amp 0 amp 0 0 amp 0 amp 0 amp 1 amp 0 amp 0 end pmatrix nbsp Coordinates are 1 6 nbsp Nauru graph nbsp Coordinates are 0 23 White fields are zeros colored fields are ones Directed graphs edit The adjacency matrix of a directed graph can be asymmetric One can define the adjacency matrix of a directed graph either such that a non zero element Aij indicates an edge from i to j or it indicates an edge from j to i The former definition is commonly used in graph theory and social network analysis e g sociology political science economics psychology 5 The latter is more common in other applied sciences e g dynamical systems physics network science where A is sometimes used to describe linear dynamics on graphs 6 Using the first definition the in degrees of a vertex can be computed by summing the entries of the corresponding column and the out degree of vertex by summing the entries of the corresponding row When using the second definition the in degree of a vertex is given by the corresponding row sum and the out degree is given by the corresponding column sum Labeled graph Adjacency matrix nbsp Directed Cayley graph of S4 nbsp Coordinates are 0 23 As the graph is directed the matrix is not necessarily symmetric Trivial graphs edit The adjacency matrix of a complete graph contains all ones except along the diagonal where there are only zeros The adjacency matrix of an empty graph is a zero matrix Properties editSpectrum edit The adjacency matrix of an undirected simple graph is symmetric and therefore has a complete set of real eigenvalues and an orthogonal eigenvector basis The set of eigenvalues of a graph is the spectrum of the graph 7 It is common to denote the eigenvalues by l 1 l 2 l n displaystyle lambda 1 geq lambda 2 geq cdots geq lambda n nbsp The greatest eigenvalue l 1 displaystyle lambda 1 nbsp is bounded above by the maximum degree This can be seen as result of the Perron Frobenius theorem but it can be proved easily Let v be one eigenvector associated to l 1 displaystyle lambda 1 nbsp and x the component in which v has maximum absolute value Without loss of generality assume vx is positive since otherwise you simply take the eigenvector v displaystyle v nbsp also associated to l 1 displaystyle lambda 1 nbsp Then l 1 v x A v x y 1 n A x y v y y 1 n A x y v x v x deg x displaystyle lambda 1 v x Av x sum y 1 n A x y v y leq sum y 1 n A x y v x v x deg x nbsp For d regular graphs d is the first eigenvalue of A for the vector v 1 1 it is easy to check that it is an eigenvalue and it is the maximum because of the above bound The multiplicity of this eigenvalue is the number of connected components of G in particular l 1 gt l 2 displaystyle lambda 1 gt lambda 2 nbsp for connected graphs It can be shown that for each eigenvalue l i displaystyle lambda i nbsp its opposite l i l n 1 i displaystyle lambda i lambda n 1 i nbsp is also an eigenvalue of A if G is a bipartite graph 8 In particular d is an eigenvalue of any d regular bipartite graph The difference l 1 l 2 displaystyle lambda 1 lambda 2 nbsp is called the spectral gap and it is related to the expansion of G It is also useful to introduce the spectral radius of A displaystyle A nbsp denoted by l G max l i lt d l i displaystyle lambda G max left lambda i right lt d lambda i nbsp This number is bounded by l G 2 d 1 o 1 displaystyle lambda G geq 2 sqrt d 1 o 1 nbsp This bound is tight in the Ramanujan graphs which have applications in many areas Isomorphism and invariants edit Suppose two directed or undirected graphs G1 and G2 with adjacency matrices A1 and A2 are given G1 and G2 are isomorphic if and only if there exists a permutation matrix P such that P A 1 P 1 A 2 displaystyle PA 1 P 1 A 2 nbsp In particular A1 and A2 are similar and therefore have the same minimal polynomial characteristic polynomial eigenvalues determinant and trace These can therefore serve as isomorphism invariants of graphs However two graphs may possess the same set of eigenvalues but not be isomorphic 9 Such linear operators are said to be isospectral Matrix powers edit If A is the adjacency matrix of the directed or undirected graph G then the matrix An i e the matrix product of n copies of A has an interesting interpretation the element i j gives the number of directed or undirected walks of length n from vertex i to vertex j If n is the smallest nonnegative integer such that for some i j the element i j of An is positive then n is the distance between vertex i and vertex j A great example of how this is useful is in counting the number of triangles in an undirected graph G which is exactly the trace of A3 divided by 3 or 6 depending on whether the graph is directed or not We divide by those values to compensate for the overcounting of each triangle In an undirected graph each triangle will be counted twice for all three nodes because the path can be followed clockwise or counterclockwise ijk or ikj The adjacency matrix can be used to determine whether or not the graph is connected Data structures editThe adjacency matrix may be used as a data structure for the representation of graphs in computer programs for manipulating graphs The main alternative data structure also in use for this application is the adjacency list 10 11 The space needed to represent an adjacency matrix and the time needed to perform operations on them is dependent on the matrix representation chosen for the underlying matrix Sparse matrix representations only store non zero matrix entries and implicitly represent the zero entries They can for example be used to represent sparse graphs without incurring the space overhead from storing the many zero entries in the adjacency matrix of the sparse graph In the following section the adjacency matrix is assumed to be represented by an array data structure so that zero and non zero entries are all directly represented in storage Because each entry in the adjacency matrix requires only one bit it can be represented in a very compact way occupying only V 2 8 bytes to represent a directed graph or by using a packed triangular format and only storing the lower triangular part of the matrix approximately V 2 16 bytes to represent an undirected graph Although slightly more succinct representations are possible this method gets close to the information theoretic lower bound for the minimum number of bits needed to represent all n vertex graphs 12 For storing graphs in text files fewer bits per byte can be used to ensure that all bytes are text characters for instance by using a Base64 representation 13 Besides avoiding wasted space this compactness encourages locality of reference However for a large sparse graph adjacency lists require less storage space because they do not waste any space representing edges that are not present 11 14 An alternative form of adjacency matrix which however requires a larger amount of space replaces the numbers in each element of the matrix with pointers to edge objects when edges are present or null pointers when there is no edge 14 It is also possible to store edge weights directly in the elements of an adjacency matrix 11 Besides the space tradeoff the different data structures also facilitate different operations Finding all vertices adjacent to a given vertex in an adjacency list is as simple as reading the list and takes time proportional to the number of neighbors With an adjacency matrix an entire row must instead be scanned which takes a larger amount of time proportional to the number of vertices in the whole graph On the other hand testing whether there is an edge between two given vertices can be determined at once with an adjacency matrix while requiring time proportional to the minimum degree of the two vertices with the adjacency list 11 14 See also editLaplacian matrix Self similarity matrixReferences edit Biggs Norman 1993 Algebraic Graph Theory Cambridge Mathematical Library 2nd ed Cambridge University Press Definition 2 1 p 7 Harary Frank 1962 The determinant of the adjacency matrix of a graph SIAM Review 4 3 202 210 Bibcode 1962SIAMR 4 202H doi 10 1137 1004057 MR 0144330 Seidel J J 1968 Strongly Regular Graphs with 1 1 0 Adjacency Matrix Having Eigenvalue 3 Lin Alg Appl 1 2 281 298 doi 10 1016 0024 3795 68 90008 6 Shum Kenneth Blake Ian 2003 12 18 Expander graphs and codes Volume 68 of DIMACS series in discrete mathematics and theoretical computer science Algebraic Coding Theory and Information Theory DIMACS Workshop Algebraic Coding Theory and Information Theory American Mathematical Society p 63 ISBN 9780821871102 Borgatti Steve Everett Martin Johnson Jeffrey 2018 Analyzing Social Networks 2nd ed SAGE p 20 Newman Mark 2018 Networks 2nd ed Oxford University Press p 110 Biggs 1993 Chapter 2 The spectrum of a graph pp 7 13 Brouwer Andries E Haemers Willem H 2012 1 3 6 Bipartite graphs Spectra of Graphs Universitext New York Springer pp 6 7 doi 10 1007 978 1 4614 1939 6 ISBN 978 1 4614 1938 9 MR 2882891 Godsil Chris Royle Gordon Algebraic Graph Theory Springer 2001 ISBN 0 387 95241 1 p 164 Goodrich amp Tamassia 2015 p 361 There are two data structures that people often use to represent graphs the adjacency list and the adjacency matrix a b c d Cormen Thomas H Leiserson Charles E Rivest Ronald L Stein Clifford 2001 Section 22 1 Representations of graphs Introduction to Algorithms Second ed MIT Press and McGraw Hill pp 527 531 ISBN 0 262 03293 7 Turan Gyorgy 1984 On the succinct representation of graphs Discrete Applied Mathematics 8 3 289 294 doi 10 1016 0166 218X 84 90126 4 MR 0749658 McKay Brendan Description of graph6 and sparse6 encodings archived from the original on 2001 04 30 retrieved 2012 02 10 a b c Goodrich Michael T Tamassia Roberto 2015 Algorithm Design and Applications Wiley p 363 External links edit nbsp Wikimedia Commons has media related to Adjacency matrices of graphs Weisstein Eric W Adjacency matrix MathWorld Fluffschack an educational Java web start game demonstrating the relationship between adjacency matrices and graphs Open Data Structures Section 12 1 AdjacencyMatrix Representing a Graph by a Matrix Pat Morin Cafe math Adjacency Matrices of Graphs Application of the adjacency matrices to the computation generating series of walks Retrieved from https en wikipedia org w index php title Adjacency matrix amp oldid 1197586184, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.