fbpx
Wikipedia

Southwest Indian Ridge

The Southwest Indian Ridge (SWIR) is a mid-ocean ridge located along the floors of the south-west Indian Ocean and south-east Atlantic Ocean. A divergent tectonic plate boundary separating the Somali Plate to the north from the Antarctic Plate to the south, the SWIR is characterised by ultra-slow spreading rates (only exceeding those of the Gakkel Ridge in the Arctic) combined with a fast lengthening of its axis between the two flanking triple junctions, Rodrigues (20°30′S 70°00′E / 20.500°S 70.000°E / -20.500; 70.000) in the Indian Ocean and Bouvet (54°17′S 1°5′W / 54.283°S 1.083°W / -54.283; -1.083) in the Atlantic Ocean.[2]

Approximate surface projection on southern oceans of Southwest Indian Ridge (white) and fracture zones (shades of orange). Click to expand map to obtain interactive details.
Separating the African (or Nubian-Somali plates) and Antarctic plates, the Southwest Indian Ridge (SWIR) stretches 7,700 km (4,800 mi) from the Atlantic Ocean to the Indian Ocean. With an average spreading rate of 14–15 millimetres per year (0.55–0.59 in/year), the SWIR is one of the slowest-spreading mid-ocean ridges on Earth. Characterised by numerous large transform offsets, most of the SWIR is highly segmented and oblique relative to the spreading direction.[1]

Geological setting edit

 
Topography of the SWIR. White dots are hotspots, dashed lines are fracture zones.

Spreading rates edit

The spreading rate along the SWIR varies: the transition between slow (30 mm/yr) and ultra-slow (15 mm/yr) spreading occur at magnetic anomaly C6C (ca. 24 Ma). This occurs between 54°–67°E, the deepest, and perhaps coldest and most melt-poor, part of Earth's mid-ocean ridge system. Crustal thickness decreases quickly as spreading rates drop below c. 20 mm/yr and in the SWIR there is an absence of volcanic activity along 100 km (62 mi) stretches of ridge axis.[3]

Along large sections, the SWIR runs obliquely relative to the spreading direction, typically about 60°. Because obliquity increases ridge length while decreasing mantle upwelling rates, the SWIR is transitional between slow and ultra-slow ridges. The slow-spreading sections of the SWIR have magmatic segments linked by transform faults, while the ultra-slow sections lack such transforms and have magmatic segments linked by amagmatic troughs.[4]

Diffuse plate boundaries edit

Spreading in the SWIR is slow, but the plate boundary is intersected by the much slower but more diffuse NubianSomalian boundary.[5] The variation in spreading rates indicate the SWIR is not a spreading centre between two rigid plates, but that the previously assumed single African Plate north of the SWIR is in fact divided into three plates: the Nubian, Lwandle, and Somalian plates.[6]

The location on the SWIR of this "diffuse" triple junction between the Nubian, Somali, and Antarctic plates has been estimated to between 26°E and 32°E or just west of the Andrew Bain transform fault. This diffuse triple junction forms the southern end of the East African Rift system.[7]

In situ Jurassic rocks edit

180 Ma-old rocks, dated from zircons in diorite and gabbro, were dredged from a location 60 km (37 mi) south of the SWIR in 2010.[8] This age is comparable to that of the break-up of Gondwana, the opening of the Indian Ocean, and emplacement of the Karoo Large Igneous Province (179-183 Ma) — in sharp contrast the Neogene age of the ocean floor near the SWIR. It can be assumed the rocks were deposited near the SWIR by an external force, such as an ice-rafting or a tsunami, but the SWIR is located far away from any continental margin and rocks of similar age have been reported from the Mid-Atlantic Ridge. If the rocks came directly out of the mantle it would have lost most of its isotopic lead. Ice-rafted dropstones commonly show sign of rounding.[9]

Hydrothermal circulation at mid-ocean ridges can, however, bring intrusive rocks into the shallow mantle, and it is possibly a good candidate in this case. Most rocks in Africa facing the SWIR are Archean cratons. The Neoproterozoic Pan-African Orogenic Belt, however, was accreted during the closure of the Mozambique Ocean and some rocks from eastern Africa, Madagascar, and Antarctica are associated with this event. During the break-up of Gondwana the Karoo volcanics intruded the Pan-African rocks and it is possible, rather than evident, that these rock found their way to the SWIR this way. Because spreading in the SWIR is ultra-slow, the mantle beneath should be abnormally cool, which could prevent melting of the rocks.[9]

Subsections edit

Bouvet TJ–Andrew Bain TF edit

The western end of the SWIR, known as the Bouvet Ridge, is bounded by the Bouvet and Moshesh transforms north and south of it respectively.[10] The Bouvet Ridge is 110 km (68 mi)-long with a full spreading rate of 14.5 mm/a (0.57 in/year) during the last 3 Ma. The axial valley is a kilometres deep, typical of slow-spreading ridges, and 16 km wide, which is unusually wide. The zero-age axis lies 2,000 m (6,600 ft) below sea level in the central segment, but deeper closer to the two transforms: This is roughly a kilometre shallower than similar slow-spreading ridges, probably because of the vicinity to the BTJ.[11]

Between 9 and 25°E, the SWIR trends E-W and lacks transforms. This section is composed of orthogonal magmatic accretionary segments linked by oblique amagmatic accretionary segments.[1]

The oblique portion of this area (9 to 16°E), the "oblique supersegment" is highly variable in axial orientation, ranging from orthogonal to 56°, and its series of magmatic and amagmatic segments results in abruptly fluctuating magmatism and ultra-slow spreading.[12] West of a discontinuity at 16°E axial depth drops 500 m and there is an abrupt change in morphology and magnetism. In the western end of this area (9°30'–11°45') a short magmatic ridge segment intersects the Shaka FZ. The rough topography here obscures the SWIR which runs into the western flank of the Joseph Mayes Seamount, one of few volcanic centres along the oblique supersegment. The seamount splits an old peridotite block, the remains of which project on either side of the ridge, and fills the rift valley in between, resulting in a double-peaked volcano sitting on the SWIR. East of the seamount (11°30'-10°24'E) there is a 180 km-long and 4,200 m-deep amagmatic segment. Reaching a maximum depth of 4,700 m, its deepest part has a rough floor void of signs of recent volcanism but filled with irregular horst blocks partially made of serpentinised peridotite.[4]

The "orthogonal supersegment" (16 to 25°E), in contrast, is almost perfectly orthogonal relative to the spreading direction and is composed of magmatic accretionary segments linked by short non-transform offsets. Where the obliquity of the SWIR increases so does its length. This lengthening results in a decrease in mantle upwelling and a ridge geometry characteristic of ultra-slow spreading ridges (<12 mm/yr).[12] The orthogonal supersegment is similar to larger ridge segments of the Mid-Atlantic Ridge.[4]

Andrew Bain TF edit

A series of fracture zones — Du Toit, Andrew Bain, Marion, and Prince Edward — offsets the SWIR 1,230 km (760 mi) between 45°S,35°E—53°S,27°E.[13][14] The largest of these, the 750 km long-long Andrew Bain FZ, is where the Nubia-Somalia boundary intersects the SWIR.[14] The active section of the Andrew Bain TF represents the largest age-offset (65 Ma) of any oceanic transform fault and it's also the widest (120 km). Its extension extends south from the Mozambique Escarpment (between the Mozambique Ridge and Basin) to the Astrid Ridge off Antarctica. East of the Andrew Bain TF is the "Marion Swell", the geoid high of the Southern Ocean, between 35°E and 50.5°E, and the Madagascar Plateau and the Del Cano Rise.[15] The SWIR crosses the flank of the swell before reaching the Marion hotspot at 36°E.[16]

Marion Island, where the Marion hotspot is located, lies 250 km (160 mi) from the SWIR on 28 Ma crust. Bouvet Island, located 300 km (190 mi) from the Bouvet triple junction and 55 km (34 mi) from the SWIR, is located on 7 Ma crust, though the exact location of the Bouvet hotspot has not been determined.[17]

Andrew Bain TF–Melville FZ edit

Between the Marion hotspot and Gallieni FZ there is an irregular segmentation with relatively shallow axial depth.[17] Between Prince Edward FZ and Atlantis II FZ (35–57°E), all major transform faults (and their 35 Ma associated magnetic anomalies) are increasingly trending more directly north–south. Magnetic anomalies in the Mozambique Basin indicate this is the dominant spreading direction for the past 80 Ma.[18]

Major changes at Discovery FZ (42°E), Galliene FZ (52°E), and Melville FZ (60°E) define large-scale segmentation of the SWIR. Mean axial depth varies between 4,730 m (15,520 ft) between Melville FZ and Rodrigues TJ, a section underlain by either thin crust or cold mantle, to 3,050 m (10,010 ft) between Andrew Bain FZ and Discovery FZ, a section affected by the Marion hotspot.[19]

Between Indomed and Gallieni FZs the SWIR is more shallow and has a higher magma supply than neighbouring deeper sections; the crust is also thicker and/or the mantle hotter. This is probably due to the interaction with the Crozet hotspot, the increased magmatism of which resulted in the large Crozet volcanic plateau at c. 10 Ma. The hotspot also triggers thermal plumes and incorporates small amounts of lower mantle material (resulting in a mixed Ocean Island Basalt (OIB)/Mid-ocean ridge basalt (MORB) signature). The Crozet hotspot/Bank is, however, located more than 1000 km from the SWIR and ridge-hotspot interaction at distances beyond 500 km is, theoretically, supposed to be insignificant. The Kerguelen and Réunion hotspots are, however, probably interacting with the Southeast Indian Ridge and Central Indian Ridge over similar distances, as suggested by volcanic chains and lineaments connecting those ridges and hotspots. The absence of such lineaments between the SWIR and Crozet can be explained by plate age and thickness — plates older than 25 Ma are thought to be to thick for plumes to penetrate.[20]

Between the Gallieni and Melville FZs the SWIR was originally roughly perpendicular to the spreading direction with few and small offsets. About 40 Ma a clock-wise change in spreading direction quickly resulted in evenly spaced offsets and a more rugged terrain. Since then, the Atlantis II transform fault has grown while the offsets west and east of it have begun to disappear. About 40 Ma in the future the Gallieni, Atlantis II, and Melvilles transform faults will continue to grow while the SWIR segments between them will keep most of their present length and shape.[21]

Melville FZ–Rodrigues TJ edit

East of the Indomed FZ (south of Madagascar) the SWIR is the product of the 64 million years of eastward propagation of the Rodriguez triple junction. This section is composed of regularly spaced non-transform discontinuities, short oblique amagmatic segments, and the Atlantis II, Novara, and Melville transforms.[16] An increase in axial depth east of 49°E reflects non-magmatic extension.[17]

The segmentation and morphology in the axial valley of the easternmost SWIR is unique to ultra-slow spreading ridges. 3000 m-high ridge segments are linked by more than 100 km-long axial segments. There is no volcanism along this section. The flanks of the ridge axis are wide and lack a volcanic crustal layer. These flanks are rounded and smooth and lack the corrugated pattern associated with oceanic core complexes. This non-volcanic sea-floor is made of seawater-altered mantle-derived rocks brought to the surface by large-scale detachment faults. During the last 10 Ma these detachment faults have flipped back and forth across the ridge axis and produced almost all the divergence along this section of the SWIR.[22]

In the easternmost SWIR, east of Melville FZ (60°45' E), the mantle is unusually cold and the crust thin (3.7 km in average) resulting in only partial melting in the mantle and a decrease in melt supply to the SWIR in this region.[22] This shortage in magma supply has resulted in fewer but taller seamounts east of Melville; there are more than 100 seamounts per 103 km2 about 50 m tall west of Melville whereas east of Melville there are fewer than 10 seamounts per 103 km2 more than 100 m tall.[23]

Tectonic history edit

The SWIR is characterised by deep, sub-parallel, and well-delineated fracture zones, sometimes deeper than 6,000 km (3,700 mi), delineated by elevated rims, sometimes reaching up to 2,000 m (6,600 ft) below sea level. These fracture zones are very long and often align with older structures near the continental shelves.[13] These fracture zones, and their extensions into the Agulhas Basin, are flow-lines describing the motion of Africa and Antarctica since break-up of Gondwana in the Late Cretaceous.[13][24]

The SWIR opened during the break-up of Gondwana when Antarctica broke off from Africa during the Permian-Triassic Karoo large igneous province c. 185–180 Ma in what is now the Mozambique Basin and the Riiser-Larsen Sea.[25] The spreading direction between the continents started to change around 74 Ma and 69–64 Ma spreading slowed (c. 1 cm/yr) then changed orientation to NE-SW. Fracture zones near Prince Edward FZ are from the Eocene, much younger than could be assumed from their length.[26]

See also edit

References edit

Notes edit

  1. ^ a b Standish et al. 2008, Regional setting, p. 3:5
  2. ^ Patriat et al. 1997, Abstract
  3. ^ Sauter et al. 2011, Introduction, p. 911
  4. ^ a b c Dick, Lin & Schouten 2003, The SWIR from 9° to 25°E, pp. 406-409
  5. ^ Chu & Gordon 1999, pp. 64–67
  6. ^ DeMets, Gordon & Argus 2010, Southwest Indian ridge plate motions, p. 38; Fig. 29, p. 37
  7. ^ Horner-Johnson et al. 2005, Abstract
  8. ^ Cheng et al. 2016, Samples and results, p. 1
  9. ^ a b Cheng et al. 2016, Discussion, pp. 4–7
  10. ^ Trukhin et al. 1999, Introduction, pp. 1–2
  11. ^ Ligi et al. 1999, Westernmost Southwest Indian Ridge, pp. 29372–29375
  12. ^ a b Standish et al. 2008, Regional setting, p. 6:6–7
  13. ^ a b c Royer et al. 1988, Fracture zones, pp. 240–241
  14. ^ a b Sclater et al. 2005, Abstract
  15. ^ Sclater et al. 2005, Introduction, p. 3:8
  16. ^ a b Zhou & Dick 2013, Tectonic setting, p. 196
  17. ^ a b c Georgen, Lin & Dick 2001, Geological setting, pp. 11–12
  18. ^ Fisher & Sclater 1983, p. 561
  19. ^ Mendel et al. 2003, Regional setting, pp. 3–4
  20. ^ Sauter et al. 2009, Hotter mantle temperatures between the Indomed and Gallieni TFs than in the neighbouring ridge sections: influence of the Crozet hotspot?, pp. 695–696
  21. ^ Baines et al. 2007, Growth of the Atlantis II Transform Fault and the Causes of Plate Boundary Reorganization, pp. 24–26; Fig. 12, p. 25
  22. ^ a b Bronner et al. 2014, Geological setting, p. 340
  23. ^ Mendel & Sauter 1997, Abstract
  24. ^ Fisher & Sclater 1983, p. 557
  25. ^ Seton et al. 2012, East African margins, pp. 239–240
  26. ^ Royer et al. 1988, Abstract

Sources edit

  • Baines, A. G.; Cheadle, M. J.; Dick, H. J.; Scheirer, A. H.; John, B. E.; Kusznir, N. J.; Matsumoto, T. (2007). "Evolution of the Southwest Indian Ridge from 55 45′ E to 62 E: Changes in plate‐boundary geometry since 26 Ma" (PDF). Geochemistry, Geophysics, Geosystems. 8 (6): Q06022. Bibcode:2007GGG.....8.6022B. doi:10.1029/2006GC001559. hdl:1912/1790. Retrieved 16 August 2016.
  • Bronner, A.; Sauter, D.; Munschy, M.; Carlut, J.; Searle, R.; Cannat, M.; Manatschal, G. (2014). "Magnetic signature of large exhumed mantle domains of the Southwest Indian Ridge-results from a deep-tow geophysical survey over 0 to 11 Ma old seafloor". Solid Earth. 5 (1): 339–354. Bibcode:2014SolE....5..339B. doi:10.5194/se-5-339-2014.
  • Cheng, H.; Zhou, H.; Yang, Q.; Zhang, L.; Ji, F.; Dick, H. (2016). "Jurassic zircons from the Southwest Indian Ridge". Scientific Reports. 6: 26260. Bibcode:2016NatSR...626260C. doi:10.1038/srep26260. PMC 4869104. PMID 27185575.
  • Chu, D.; Gordon, R. G. (1999). "Evidence for motion between Nubia and Somalia along the Southwest Indian Ridge". Nature. 398 (6722): 64–67. Bibcode:1999Natur.398...64C. doi:10.1038/18014. S2CID 4403043. Retrieved 30 July 2016.
  • DeMets, C.; Gordon, R. G.; Argus, D. F. (2010). "Geologically current plate motions" (PDF). Geophysical Journal International. 181 (1): 1–80. Bibcode:2010GeoJI.181....1D. doi:10.1111/j.1365-246x.2009.04491.x. Retrieved 11 August 2016.
  • Dick, H. J.; Lin, J.; Schouten, H. (2003). "An ultraslow-spreading class of ocean ridge" (PDF). Nature. 426 (6965): 405–412. Bibcode:2003Natur.426..405D. doi:10.1038/nature02128. PMID 14647373. S2CID 4376557. Retrieved 10 September 2016.
  • Fisher, R. L.; Sclater, J. G. (1983). "Tectonic evolution of the Southwest Indian Ocean since the Mid‐Cretaceous: plate motions and stability of the pole of Antarctica/Africa for at least 80 Myr". Geophysical Journal International. 73 (2): 553–576. Bibcode:1983GeoJ...73..553F. doi:10.1111/j.1365-246X.1983.tb03330.x.
  • Georgen, J. E.; Lin, J.; Dick, H. J. (2001). "Evidence from gravity anomalies for interactions of the Marion and Bouvet hotspots with the Southwest Indian Ridge: Effects of transform offsets" (PDF). Earth and Planetary Science Letters. 187 (3): 283–300. Bibcode:2001E&PSL.187..283G. doi:10.1016/s0012-821x(01)00293-x. Retrieved 30 July 2016.
  • Horner-Johnson, B. C.; Gordon, R. G.; Cowles, S. M.; Argus, D. F. (2005). "The angular velocity of Nubia relative to Somalia and the location of the Nubia—Somalia–Antarctica triple junction". Geophysical Journal International. 162 (1): 221–238. Bibcode:2005GeoJI.162..221H. doi:10.1111/j.1365-246X.2005.02608.x.
  • Ligi, M.; Bonatti, E.; Bortoluzzi, G.; Carrara, G.; Fabretti, P.; Gilod, D.; Peyve, A. A.; Skolotnev, S.; Turko, N. (1999). "Bouvet Triple Junction in the South Atlantic: Geology and evolution". Journal of Geophysical Research. 104 (B12): 29365–29385. Bibcode:1999JGR...10429365L. doi:10.1029/1999JB900192.
  • Mendel, V.; Sauter, D. (1997). "Seamount volcanism at the super slow-spreading Southwest Indian Ridge between 57° and 70°". Geology. 25 (2): 99–102. Bibcode:1997Geo....25...99M. doi:10.1130/0091-7613(1997)025<0099:svatss>2.3.co;2. Retrieved 18 September 2016.
  • Mendel, V.; Sauter, D.; Rommevaux‐Jestin, C.; Patriat, P.; Lefebvre, F.; Parson, L. M. (2003). "Magmato‐tectonic cyclicity at the ultra‐slow spreading Southwest Indian Ridge: Evidence from variations of axial volcanic ridge morphology and abyssal hills pattern". Geochemistry, Geophysics, Geosystems. 4 (5): 1–23. Bibcode:2003GGG.....4.9102M. doi:10.1029/2002GC000417. Retrieved 30 July 2016.
  • Patriat, P.; Sauter, D.; Munschy, M.; Parson, L. (1997). "A survey of the Southwest Indian Ridge axis between Atlantis II Fracture Zone and the Indian Ocean Triple Junction: Regional setting and large scale segmentation". Marine Geophysical Researches. 19 (6): 457–480. Bibcode:1997MarGR..19..457P. doi:10.1023/A:1004312623534. S2CID 126942157.
  • Royer, J. Y.; Patriat, P.; Bergh, H. W.; Scotese, C. R. (1988). "Evolution of the Southwest Indian Ridge from the Late Cretaceous (anomaly 34) to the Middle Eocene (anomaly 20)". Tectonophysics. 155 (1–4): 235–260. Bibcode:1988Tectp.155..235R. doi:10.1016/0040-1951(88)90268-5. Retrieved 31 July 2016.
  • Sauter, D.; Cannat, M.; Meyzen, C.; Bezos, A.; Patriat, P.; Humler, E.; Debayle, E. (2009). "Propagation of a melting anomaly along the ultraslow Southwest Indian Ridge between 46° E and 52° 20′ E: interaction with the Crozet hotspot?". Geophysical Journal International. 179 (2): 687–699. Bibcode:2009GeoJI.179..687S. doi:10.1111/j.1365-246X.2009.04308.x.
  • Sauter, D.; Sloan, H.; Cannat, M.; Goff, J.; Patriat, P.; Schaming, M.; Roest, W. R. (2011). "From slow to ultra-slow: How does spreading rate affect seafloor roughness and crustal thickness?" (PDF). Geology. 39 (10): 911–914. Bibcode:2011Geo....39..911S. doi:10.1130/G32028.1. Retrieved 30 July 2016.
  • Sclater, J. G.; Grindlay, N. R.; Madsen, J. A.; Rommevaux‐Jestin, C. (2005). "Tectonic interpretation of the Andrew Bain transform fault: southwest Indian Ocean". Geochemistry, Geophysics, Geosystems. 6 (9): Q09K10. Bibcode:2005GGG.....6.9K10S. doi:10.1029/2005GC000951. Retrieved 13 August 2016.
  • Seton, M.; Müller, R. D.; Zahirovic, S.; Gaina, C.; Torsvik, T.; Shephard, G.; Talsma, A.; Gurnis, M.; Maus, S.; Chandler, M. (2012). "Global continental and ocean basin reconstructions since 200Ma". Earth-Science Reviews. 113 (3): 212–270. Bibcode:2012ESRv..113..212S. doi:10.1016/j.earscirev.2012.03.002. Retrieved 23 October 2016.
  • Standish, J. J.; Dick, H. J.; Michael, P. J.; Melson, W. G.; O'Hearn, T. (2008). "MORB generation beneath the ultraslow spreading Southwest Indian Ridge (9–25 E): Major element chemistry and the importance of process versus source" (PDF). Geochemistry, Geophysics, Geosystems. 9 (5): Q05004. Bibcode:2008GGG.....9.5004S. doi:10.1029/2008GC001959. hdl:1912/3274. Retrieved 16 August 2016.
  • Trukhin, V. I.; Bagin, V. I.; Bagina, O. L.; Zhilyaeva, V. A.; Bulychev, A. A.; Gilod, L. A.; Ligi, M.; Lodolo, E.; Sciuto, F.; Tomilin, E. F.; Shreider, A. A. (1999). "Magnetism of the Bouvet Mid-Ocean Ridge, South Atlantic" (PDF). Izvestiya, Physics of the Solid Earth. 35 (1): 1–15. Retrieved 21 August 2016.
  • Zhou, H.; Dick, H. J. (2013). (PDF). Nature. 494 (7436): 195–200. Bibcode:2013Natur.494..195Z. doi:10.1038/nature11842. hdl:1912/7142. PMID 23389441. S2CID 4149752. Archived from the original (PDF) on 21 August 2016. Retrieved 30 July 2016.

42°S 41°E / 42°S 41°E / -42; 41

southwest, indian, ridge, swir, ocean, ridge, located, along, floors, south, west, indian, ocean, south, east, atlantic, ocean, divergent, tectonic, plate, boundary, separating, somali, plate, north, from, antarctic, plate, south, swir, characterised, ultra, s. The Southwest Indian Ridge SWIR is a mid ocean ridge located along the floors of the south west Indian Ocean and south east Atlantic Ocean A divergent tectonic plate boundary separating the Somali Plate to the north from the Antarctic Plate to the south the SWIR is characterised by ultra slow spreading rates only exceeding those of the Gakkel Ridge in the Arctic combined with a fast lengthening of its axis between the two flanking triple junctions Rodrigues 20 30 S 70 00 E 20 500 S 70 000 E 20 500 70 000 in the Indian Ocean and Bouvet 54 17 S 1 5 W 54 283 S 1 083 W 54 283 1 083 in the Atlantic Ocean 2 Approximate surface projection on southern oceans of Southwest Indian Ridge white and fracture zones shades of orange Click to expand map to obtain interactive details Separating the African or Nubian Somali plates and Antarctic plates the Southwest Indian Ridge SWIR stretches 7 700 km 4 800 mi from the Atlantic Ocean to the Indian Ocean With an average spreading rate of 14 15 millimetres per year 0 55 0 59 in year the SWIR is one of the slowest spreading mid ocean ridges on Earth Characterised by numerous large transform offsets most of the SWIR is highly segmented and oblique relative to the spreading direction 1 Contents 1 Geological setting 1 1 Spreading rates 1 2 Diffuse plate boundaries 1 3 In situ Jurassic rocks 2 Subsections 2 1 Bouvet TJ Andrew Bain TF 2 2 Andrew Bain TF 2 3 Andrew Bain TF Melville FZ 2 4 Melville FZ Rodrigues TJ 3 Tectonic history 4 See also 5 References 5 1 Notes 5 2 SourcesGeological setting edit nbsp Topography of the SWIR White dots are hotspots dashed lines are fracture zones Spreading rates edit The spreading rate along the SWIR varies the transition between slow 30 mm yr and ultra slow 15 mm yr spreading occur at magnetic anomaly C6C ca 24 Ma This occurs between 54 67 E the deepest and perhaps coldest and most melt poor part of Earth s mid ocean ridge system Crustal thickness decreases quickly as spreading rates drop below c 20 mm yr and in the SWIR there is an absence of volcanic activity along 100 km 62 mi stretches of ridge axis 3 Along large sections the SWIR runs obliquely relative to the spreading direction typically about 60 Because obliquity increases ridge length while decreasing mantle upwelling rates the SWIR is transitional between slow and ultra slow ridges The slow spreading sections of the SWIR have magmatic segments linked by transform faults while the ultra slow sections lack such transforms and have magmatic segments linked by amagmatic troughs 4 Diffuse plate boundaries edit Spreading in the SWIR is slow but the plate boundary is intersected by the much slower but more diffuse Nubian Somalian boundary 5 The variation in spreading rates indicate the SWIR is not a spreading centre between two rigid plates but that the previously assumed single African Plate north of the SWIR is in fact divided into three plates the Nubian Lwandle and Somalian plates 6 The location on the SWIR of this diffuse triple junction between the Nubian Somali and Antarctic plates has been estimated to between 26 E and 32 E or just west of the Andrew Bain transform fault This diffuse triple junction forms the southern end of the East African Rift system 7 In situ Jurassic rocks edit 180 Ma old rocks dated from zircons in diorite and gabbro were dredged from a location 60 km 37 mi south of the SWIR in 2010 8 This age is comparable to that of the break up of Gondwana the opening of the Indian Ocean and emplacement of the Karoo Large Igneous Province 179 183 Ma in sharp contrast the Neogene age of the ocean floor near the SWIR It can be assumed the rocks were deposited near the SWIR by an external force such as an ice rafting or a tsunami but the SWIR is located far away from any continental margin and rocks of similar age have been reported from the Mid Atlantic Ridge If the rocks came directly out of the mantle it would have lost most of its isotopic lead Ice rafted dropstones commonly show sign of rounding 9 Hydrothermal circulation at mid ocean ridges can however bring intrusive rocks into the shallow mantle and it is possibly a good candidate in this case Most rocks in Africa facing the SWIR are Archean cratons The Neoproterozoic Pan African Orogenic Belt however was accreted during the closure of the Mozambique Ocean and some rocks from eastern Africa Madagascar and Antarctica are associated with this event During the break up of Gondwana the Karoo volcanics intruded the Pan African rocks and it is possible rather than evident that these rock found their way to the SWIR this way Because spreading in the SWIR is ultra slow the mantle beneath should be abnormally cool which could prevent melting of the rocks 9 Subsections editBouvet TJ Andrew Bain TF edit The western end of the SWIR known as the Bouvet Ridge is bounded by the Bouvet and Moshesh transforms north and south of it respectively 10 The Bouvet Ridge is 110 km 68 mi long with a full spreading rate of 14 5 mm a 0 57 in year during the last 3 Ma The axial valley is a kilometres deep typical of slow spreading ridges and 16 km wide which is unusually wide The zero age axis lies 2 000 m 6 600 ft below sea level in the central segment but deeper closer to the two transforms This is roughly a kilometre shallower than similar slow spreading ridges probably because of the vicinity to the BTJ 11 Between 9 and 25 E the SWIR trends E W and lacks transforms This section is composed of orthogonal magmatic accretionary segments linked by oblique amagmatic accretionary segments 1 The oblique portion of this area 9 to 16 E the oblique supersegment is highly variable in axial orientation ranging from orthogonal to 56 and its series of magmatic and amagmatic segments results in abruptly fluctuating magmatism and ultra slow spreading 12 West of a discontinuity at 16 E axial depth drops 500 m and there is an abrupt change in morphology and magnetism In the western end of this area 9 30 11 45 a short magmatic ridge segment intersects the Shaka FZ The rough topography here obscures the SWIR which runs into the western flank of the Joseph Mayes Seamount one of few volcanic centres along the oblique supersegment The seamount splits an old peridotite block the remains of which project on either side of the ridge and fills the rift valley in between resulting in a double peaked volcano sitting on the SWIR East of the seamount 11 30 10 24 E there is a 180 km long and 4 200 m deep amagmatic segment Reaching a maximum depth of 4 700 m its deepest part has a rough floor void of signs of recent volcanism but filled with irregular horst blocks partially made of serpentinised peridotite 4 The orthogonal supersegment 16 to 25 E in contrast is almost perfectly orthogonal relative to the spreading direction and is composed of magmatic accretionary segments linked by short non transform offsets Where the obliquity of the SWIR increases so does its length This lengthening results in a decrease in mantle upwelling and a ridge geometry characteristic of ultra slow spreading ridges lt 12 mm yr 12 The orthogonal supersegment is similar to larger ridge segments of the Mid Atlantic Ridge 4 Andrew Bain TF edit A series of fracture zones Du Toit Andrew Bain Marion and Prince Edward offsets the SWIR 1 230 km 760 mi between 45 S 35 E 53 S 27 E 13 14 The largest of these the 750 km long long Andrew Bain FZ is where the Nubia Somalia boundary intersects the SWIR 14 The active section of the Andrew Bain TF represents the largest age offset 65 Ma of any oceanic transform fault and it s also the widest 120 km Its extension extends south from the Mozambique Escarpment between the Mozambique Ridge and Basin to the Astrid Ridge off Antarctica East of the Andrew Bain TF is the Marion Swell the geoid high of the Southern Ocean between 35 E and 50 5 E and the Madagascar Plateau and the Del Cano Rise 15 The SWIR crosses the flank of the swell before reaching the Marion hotspot at 36 E 16 Marion Island where the Marion hotspot is located lies 250 km 160 mi from the SWIR on 28 Ma crust Bouvet Island located 300 km 190 mi from the Bouvet triple junction and 55 km 34 mi from the SWIR is located on 7 Ma crust though the exact location of the Bouvet hotspot has not been determined 17 Andrew Bain TF Melville FZ edit Between the Marion hotspot and Gallieni FZ there is an irregular segmentation with relatively shallow axial depth 17 Between Prince Edward FZ and Atlantis II FZ 35 57 E all major transform faults and their 35 Ma associated magnetic anomalies are increasingly trending more directly north south Magnetic anomalies in the Mozambique Basin indicate this is the dominant spreading direction for the past 80 Ma 18 Major changes at Discovery FZ 42 E Galliene FZ 52 E and Melville FZ 60 E define large scale segmentation of the SWIR Mean axial depth varies between 4 730 m 15 520 ft between Melville FZ and Rodrigues TJ a section underlain by either thin crust or cold mantle to 3 050 m 10 010 ft between Andrew Bain FZ and Discovery FZ a section affected by the Marion hotspot 19 Between Indomed and Gallieni FZs the SWIR is more shallow and has a higher magma supply than neighbouring deeper sections the crust is also thicker and or the mantle hotter This is probably due to the interaction with the Crozet hotspot the increased magmatism of which resulted in the large Crozet volcanic plateau at c 10 Ma The hotspot also triggers thermal plumes and incorporates small amounts of lower mantle material resulting in a mixed Ocean Island Basalt OIB Mid ocean ridge basalt MORB signature The Crozet hotspot Bank is however located more than 1000 km from the SWIR and ridge hotspot interaction at distances beyond 500 km is theoretically supposed to be insignificant The Kerguelen and Reunion hotspots are however probably interacting with the Southeast Indian Ridge and Central Indian Ridge over similar distances as suggested by volcanic chains and lineaments connecting those ridges and hotspots The absence of such lineaments between the SWIR and Crozet can be explained by plate age and thickness plates older than 25 Ma are thought to be to thick for plumes to penetrate 20 Between the Gallieni and Melville FZs the SWIR was originally roughly perpendicular to the spreading direction with few and small offsets About 40 Ma a clock wise change in spreading direction quickly resulted in evenly spaced offsets and a more rugged terrain Since then the Atlantis II transform fault has grown while the offsets west and east of it have begun to disappear About 40 Ma in the future the Gallieni Atlantis II and Melvilles transform faults will continue to grow while the SWIR segments between them will keep most of their present length and shape 21 Melville FZ Rodrigues TJ edit East of the Indomed FZ south of Madagascar the SWIR is the product of the 64 million years of eastward propagation of the Rodriguez triple junction This section is composed of regularly spaced non transform discontinuities short oblique amagmatic segments and the Atlantis II Novara and Melville transforms 16 An increase in axial depth east of 49 E reflects non magmatic extension 17 The segmentation and morphology in the axial valley of the easternmost SWIR is unique to ultra slow spreading ridges 3000 m high ridge segments are linked by more than 100 km long axial segments There is no volcanism along this section The flanks of the ridge axis are wide and lack a volcanic crustal layer These flanks are rounded and smooth and lack the corrugated pattern associated with oceanic core complexes This non volcanic sea floor is made of seawater altered mantle derived rocks brought to the surface by large scale detachment faults During the last 10 Ma these detachment faults have flipped back and forth across the ridge axis and produced almost all the divergence along this section of the SWIR 22 In the easternmost SWIR east of Melville FZ 60 45 E the mantle is unusually cold and the crust thin 3 7 km in average resulting in only partial melting in the mantle and a decrease in melt supply to the SWIR in this region 22 This shortage in magma supply has resulted in fewer but taller seamounts east of Melville there are more than 100 seamounts per 103 km2 about 50 m tall west of Melville whereas east of Melville there are fewer than 10 seamounts per 103 km2 more than 100 m tall 23 Tectonic history editThe SWIR is characterised by deep sub parallel and well delineated fracture zones sometimes deeper than 6 000 km 3 700 mi delineated by elevated rims sometimes reaching up to 2 000 m 6 600 ft below sea level These fracture zones are very long and often align with older structures near the continental shelves 13 These fracture zones and their extensions into the Agulhas Basin are flow lines describing the motion of Africa and Antarctica since break up of Gondwana in the Late Cretaceous 13 24 The SWIR opened during the break up of Gondwana when Antarctica broke off from Africa during the Permian Triassic Karoo large igneous province c 185 180 Ma in what is now the Mozambique Basin and the Riiser Larsen Sea 25 The spreading direction between the continents started to change around 74 Ma and 69 64 Ma spreading slowed c 1 cm yr then changed orientation to NE SW Fracture zones near Prince Edward FZ are from the Eocene much younger than could be assumed from their length 26 See also editCentral Indian Ridge Southeast Indian Ridge Rodrigues Triple JunctionReferences editNotes edit a b Standish et al 2008 Regional setting p 3 5 Patriat et al 1997 Abstract Sauter et al 2011 Introduction p 911 a b c Dick Lin amp Schouten 2003 The SWIR from 9 to 25 E pp 406 409 Chu amp Gordon 1999 pp 64 67 DeMets Gordon amp Argus 2010 Southwest Indian ridge plate motions p 38 Fig 29 p 37 Horner Johnson et al 2005 Abstract Cheng et al 2016 Samples and results p 1 a b Cheng et al 2016 Discussion pp 4 7 Trukhin et al 1999 Introduction pp 1 2 Ligi et al 1999 Westernmost Southwest Indian Ridge pp 29372 29375 a b Standish et al 2008 Regional setting p 6 6 7 a b c Royer et al 1988 Fracture zones pp 240 241 a b Sclater et al 2005 Abstract Sclater et al 2005 Introduction p 3 8 a b Zhou amp Dick 2013 Tectonic setting p 196 a b c Georgen Lin amp Dick 2001 Geological setting pp 11 12 Fisher amp Sclater 1983 p 561 Mendel et al 2003 Regional setting pp 3 4 Sauter et al 2009 Hotter mantle temperatures between the Indomed and Gallieni TFs than in the neighbouring ridge sections influence of the Crozet hotspot pp 695 696 Baines et al 2007 Growth of the Atlantis II Transform Fault and the Causes of Plate Boundary Reorganization pp 24 26 Fig 12 p 25 a b Bronner et al 2014 Geological setting p 340 Mendel amp Sauter 1997 Abstract Fisher amp Sclater 1983 p 557 Seton et al 2012 East African margins pp 239 240 Royer et al 1988 Abstract Sources edit Baines A G Cheadle M J Dick H J Scheirer A H John B E Kusznir N J Matsumoto T 2007 Evolution of the Southwest Indian Ridge from 55 45 E to 62 E Changes in plate boundary geometry since 26 Ma PDF Geochemistry Geophysics Geosystems 8 6 Q06022 Bibcode 2007GGG 8 6022B doi 10 1029 2006GC001559 hdl 1912 1790 Retrieved 16 August 2016 Bronner A Sauter D Munschy M Carlut J Searle R Cannat M Manatschal G 2014 Magnetic signature of large exhumed mantle domains of the Southwest Indian Ridge results from a deep tow geophysical survey over 0 to 11 Ma old seafloor Solid Earth 5 1 339 354 Bibcode 2014SolE 5 339B doi 10 5194 se 5 339 2014 Cheng H Zhou H Yang Q Zhang L Ji F Dick H 2016 Jurassic zircons from the Southwest Indian Ridge Scientific Reports 6 26260 Bibcode 2016NatSR 626260C doi 10 1038 srep26260 PMC 4869104 PMID 27185575 Chu D Gordon R G 1999 Evidence for motion between Nubia and Somalia along the Southwest Indian Ridge Nature 398 6722 64 67 Bibcode 1999Natur 398 64C doi 10 1038 18014 S2CID 4403043 Retrieved 30 July 2016 DeMets C Gordon R G Argus D F 2010 Geologically current plate motions PDF Geophysical Journal International 181 1 1 80 Bibcode 2010GeoJI 181 1D doi 10 1111 j 1365 246x 2009 04491 x Retrieved 11 August 2016 Dick H J Lin J Schouten H 2003 An ultraslow spreading class of ocean ridge PDF Nature 426 6965 405 412 Bibcode 2003Natur 426 405D doi 10 1038 nature02128 PMID 14647373 S2CID 4376557 Retrieved 10 September 2016 Fisher R L Sclater J G 1983 Tectonic evolution of the Southwest Indian Ocean since the Mid Cretaceous plate motions and stability of the pole of Antarctica Africa for at least 80 Myr Geophysical Journal International 73 2 553 576 Bibcode 1983GeoJ 73 553F doi 10 1111 j 1365 246X 1983 tb03330 x Georgen J E Lin J Dick H J 2001 Evidence from gravity anomalies for interactions of the Marion and Bouvet hotspots with the Southwest Indian Ridge Effects of transform offsets PDF Earth and Planetary Science Letters 187 3 283 300 Bibcode 2001E amp PSL 187 283G doi 10 1016 s0012 821x 01 00293 x Retrieved 30 July 2016 Horner Johnson B C Gordon R G Cowles S M Argus D F 2005 The angular velocity of Nubia relative to Somalia and the location of the Nubia Somalia Antarctica triple junction Geophysical Journal International 162 1 221 238 Bibcode 2005GeoJI 162 221H doi 10 1111 j 1365 246X 2005 02608 x Ligi M Bonatti E Bortoluzzi G Carrara G Fabretti P Gilod D Peyve A A Skolotnev S Turko N 1999 Bouvet Triple Junction in the South Atlantic Geology and evolution Journal of Geophysical Research 104 B12 29365 29385 Bibcode 1999JGR 10429365L doi 10 1029 1999JB900192 Mendel V Sauter D 1997 Seamount volcanism at the super slow spreading Southwest Indian Ridge between 57 and 70 Geology 25 2 99 102 Bibcode 1997Geo 25 99M doi 10 1130 0091 7613 1997 025 lt 0099 svatss gt 2 3 co 2 Retrieved 18 September 2016 Mendel V Sauter D Rommevaux Jestin C Patriat P Lefebvre F Parson L M 2003 Magmato tectonic cyclicity at the ultra slow spreading Southwest Indian Ridge Evidence from variations of axial volcanic ridge morphology and abyssal hills pattern Geochemistry Geophysics Geosystems 4 5 1 23 Bibcode 2003GGG 4 9102M doi 10 1029 2002GC000417 Retrieved 30 July 2016 Patriat P Sauter D Munschy M Parson L 1997 A survey of the Southwest Indian Ridge axis between Atlantis II Fracture Zone and the Indian Ocean Triple Junction Regional setting and large scale segmentation Marine Geophysical Researches 19 6 457 480 Bibcode 1997MarGR 19 457P doi 10 1023 A 1004312623534 S2CID 126942157 Royer J Y Patriat P Bergh H W Scotese C R 1988 Evolution of the Southwest Indian Ridge from the Late Cretaceous anomaly 34 to the Middle Eocene anomaly 20 Tectonophysics 155 1 4 235 260 Bibcode 1988Tectp 155 235R doi 10 1016 0040 1951 88 90268 5 Retrieved 31 July 2016 Sauter D Cannat M Meyzen C Bezos A Patriat P Humler E Debayle E 2009 Propagation of a melting anomaly along the ultraslow Southwest Indian Ridge between 46 E and 52 20 E interaction with the Crozet hotspot Geophysical Journal International 179 2 687 699 Bibcode 2009GeoJI 179 687S doi 10 1111 j 1365 246X 2009 04308 x Sauter D Sloan H Cannat M Goff J Patriat P Schaming M Roest W R 2011 From slow to ultra slow How does spreading rate affect seafloor roughness and crustal thickness PDF Geology 39 10 911 914 Bibcode 2011Geo 39 911S doi 10 1130 G32028 1 Retrieved 30 July 2016 Sclater J G Grindlay N R Madsen J A Rommevaux Jestin C 2005 Tectonic interpretation of the Andrew Bain transform fault southwest Indian Ocean Geochemistry Geophysics Geosystems 6 9 Q09K10 Bibcode 2005GGG 6 9K10S doi 10 1029 2005GC000951 Retrieved 13 August 2016 Seton M Muller R D Zahirovic S Gaina C Torsvik T Shephard G Talsma A Gurnis M Maus S Chandler M 2012 Global continental and ocean basin reconstructions since 200Ma Earth Science Reviews 113 3 212 270 Bibcode 2012ESRv 113 212S doi 10 1016 j earscirev 2012 03 002 Retrieved 23 October 2016 Standish J J Dick H J Michael P J Melson W G O Hearn T 2008 MORB generation beneath the ultraslow spreading Southwest Indian Ridge 9 25 E Major element chemistry and the importance of process versus source PDF Geochemistry Geophysics Geosystems 9 5 Q05004 Bibcode 2008GGG 9 5004S doi 10 1029 2008GC001959 hdl 1912 3274 Retrieved 16 August 2016 Trukhin V I Bagin V I Bagina O L Zhilyaeva V A Bulychev A A Gilod L A Ligi M Lodolo E Sciuto F Tomilin E F Shreider A A 1999 Magnetism of the Bouvet Mid Ocean Ridge South Atlantic PDF Izvestiya Physics of the Solid Earth 35 1 1 15 Retrieved 21 August 2016 Zhou H Dick H J 2013 Thin crust as evidence for depleted mantle supporting the Marion Rise PDF Nature 494 7436 195 200 Bibcode 2013Natur 494 195Z doi 10 1038 nature11842 hdl 1912 7142 PMID 23389441 S2CID 4149752 Archived from the original PDF on 21 August 2016 Retrieved 30 July 2016 42 S 41 E 42 S 41 E 42 41 Retrieved from https en wikipedia org w index php title Southwest Indian Ridge amp oldid 1183439599, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.