fbpx
Wikipedia

Solid harmonics

In physics and mathematics, the solid harmonics are solutions of the Laplace equation in spherical polar coordinates, assumed to be (smooth) functions . There are two kinds: the regular solid harmonics , which are well-defined at the origin and the irregular solid harmonics , which are singular at the origin. Both sets of functions play an important role in potential theory, and are obtained by rescaling spherical harmonics appropriately:

Derivation, relation to spherical harmonics edit

Introducing r, θ, and φ for the spherical polar coordinates of the 3-vector r, and assuming that   is a (smooth) function  , we can write the Laplace equation in the following form

 
where l2 is the square of the nondimensional angular momentum operator,
 

It is known that spherical harmonics Ym
are eigenfunctions of l2:

 

Substitution of Φ(r) = F(r) Ym
into the Laplace equation gives, after dividing out the spherical harmonic function, the following radial equation and its general solution,

 

The particular solutions of the total Laplace equation are regular solid harmonics:

 
and irregular solid harmonics:
 
The regular solid harmonics correspond to harmonic homogeneous polynomials, i.e. homogeneous polynomials which are solutions to Laplace's equation.

Racah's normalization edit

Racah's normalization (also known as Schmidt's semi-normalization) is applied to both functions

 
(and analogously for the irregular solid harmonic) instead of normalization to unity. This is convenient because in many applications the Racah normalization factor appears unchanged throughout the derivations.

Addition theorems edit

The translation of the regular solid harmonic gives a finite expansion,

 
where the Clebsch–Gordan coefficient is given by
 

The similar expansion for irregular solid harmonics gives an infinite series,

 
with  . The quantity between pointed brackets is again a Clebsch-Gordan coefficient,
 

The addition theorems were proved in different manners by several authors.[1][2]

Complex form edit

The regular solid harmonics are homogeneous, polynomial solutions to the Laplace equation  . Separating the indeterminate   and writing  , the Laplace equation is easily seen to be equivalent to the recursion formula

 
so that any choice of polynomials   of degree   and   of degree   gives a solution to the equation. One particular basis of the space of homogeneous polynomials (in two variables) of degree   is  . Note that it is the (unique up to normalization) basis of eigenvectors of the rotation group  : The rotation   of the plane by   acts as multiplication by   on the basis vector  .

If we combine the degree   basis and the degree   basis with the recursion formula, we obtain a basis of the space of harmonic, homogeneous polynomials (in three variables this time) of degree   consisting of eigenvectors for   (note that the recursion formula is compatible with the  -action because the Laplace operator is rotationally invariant). These are the complex solid harmonics:

 
and in general
 
for  .

Plugging in spherical coordinates  ,  ,   and using   one finds the usual relationship to spherical harmonics   with a polynomial  , which is (up to normalization) the associated Legendre polynomial, and so   (again, up to the specific choice of normalization).

Real form edit

By a simple linear combination of solid harmonics of ±m these functions are transformed into real functions, i.e. functions  . The real regular solid harmonics, expressed in Cartesian coordinates, are real-valued homogeneous polynomials of order   in x, y, z. The explicit form of these polynomials is of some importance. They appear, for example, in the form of spherical atomic orbitals and real multipole moments. The explicit Cartesian expression of the real regular harmonics will now be derived.

Linear combination edit

We write in agreement with the earlier definition

 
with
 
where   is a Legendre polynomial of order . The m dependent phase is known as the Condon–Shortley phase.

The following expression defines the real regular solid harmonics:

 
and for m = 0:
 
Since the transformation is by a unitary matrix the normalization of the real and the complex solid harmonics is the same.

z-dependent part edit

Upon writing u = cos θ the m-th derivative of the Legendre polynomial can be written as the following expansion in u

 
with
 
Since z = r cos θ it follows that this derivative, times an appropriate power of r, is a simple polynomial in z,
 

(x,y)-dependent part edit

Consider next, recalling that x = r sin θ cos φ and y = r sin θ sin φ,

 
Likewise
 
Further
 
and
 

In total edit

 
 

List of lowest functions edit

We list explicitly the lowest functions up to and including = 5. Here  

 

The lowest functions   and   are:

m Am Bm
0    
1    
2    
3    
4    
5    

References edit

  1. ^ R. J. A. Tough and A. J. Stone, J. Phys. A: Math. Gen. Vol. 10, p. 1261 (1977)
  2. ^ M. J. Caola, J. Phys. A: Math. Gen. Vol. 11, p. L23 (1978)
  • Steinborn, E. O.; Ruedenberg, K. (1973). "Rotation and Translation of Regular and Irregular Solid Spherical Harmonics". In Lowdin, Per-Olov (ed.). Advances in quantum chemistry. Vol. 7. Academic Press. pp. 1–82. ISBN 9780080582320.
  • Thompson, William J. (2004). Angular momentum: an illustrated guide to rotational symmetries for physical systems. Weinheim: Wiley-VCH. pp. 143–148. ISBN 9783527617838.

solid, harmonics, physics, mathematics, solid, harmonics, solutions, laplace, equation, spherical, polar, coordinates, assumed, smooth, functions, displaystyle, mathbb, mathbb, there, kinds, regular, solid, harmonics, displaystyle, mathbf, which, well, defined. In physics and mathematics the solid harmonics are solutions of the Laplace equation in spherical polar coordinates assumed to be smooth functions R 3 C displaystyle mathbb R 3 to mathbb C There are two kinds the regular solid harmonics R ℓ m r displaystyle R ell m mathbf r which are well defined at the origin and the irregular solid harmonics I ℓ m r displaystyle I ell m mathbf r which are singular at the origin Both sets of functions play an important role in potential theory and are obtained by rescaling spherical harmonics appropriately R ℓ m r 4 p 2 ℓ 1 r ℓ Y ℓ m 8 f displaystyle R ell m mathbf r equiv sqrt frac 4 pi 2 ell 1 r ell Y ell m theta varphi I ℓ m r 4 p 2 ℓ 1 Y ℓ m 8 f r ℓ 1 displaystyle I ell m mathbf r equiv sqrt frac 4 pi 2 ell 1 frac Y ell m theta varphi r ell 1 Contents 1 Derivation relation to spherical harmonics 1 1 Racah s normalization 2 Addition theorems 3 Complex form 4 Real form 4 1 Linear combination 4 2 z dependent part 4 3 x y dependent part 4 4 In total 4 5 List of lowest functions 5 ReferencesDerivation relation to spherical harmonics editIntroducing r 8 and f for the spherical polar coordinates of the 3 vector r and assuming that F displaystyle Phi nbsp is a smooth function R 3 C displaystyle mathbb R 3 to mathbb C nbsp we can write the Laplace equation in the following form 2 F r 1 r 2 r 2 r l 2 r 2 F r 0 r 0 displaystyle nabla 2 Phi mathbf r left frac 1 r frac partial 2 partial r 2 r frac hat l 2 r 2 right Phi mathbf r 0 qquad mathbf r neq mathbf 0 nbsp where l2 is the square of the nondimensional angular momentum operator l i r displaystyle mathbf hat l i mathbf r times mathbf nabla nbsp It is known that spherical harmonics Ymℓ are eigenfunctions of l2 l 2 Y ℓ m l x 2 l y 2 l z 2 Y ℓ m ℓ ℓ 1 Y ℓ m displaystyle hat l 2 Y ell m equiv left hat l x 2 hat l y 2 hat l z 2 right Y ell m ell ell 1 Y ell m nbsp Substitution of F r F r Ymℓ into the Laplace equation gives after dividing out the spherical harmonic function the following radial equation and its general solution 1 r 2 r 2 r F r ℓ ℓ 1 r 2 F r F r A r ℓ B r ℓ 1 displaystyle frac 1 r frac partial 2 partial r 2 rF r frac ell ell 1 r 2 F r Longrightarrow F r Ar ell Br ell 1 nbsp The particular solutions of the total Laplace equation are regular solid harmonics R ℓ m r 4 p 2 ℓ 1 r ℓ Y ℓ m 8 f displaystyle R ell m mathbf r equiv sqrt frac 4 pi 2 ell 1 r ell Y ell m theta varphi nbsp and irregular solid harmonics I ℓ m r 4 p 2 ℓ 1 Y ℓ m 8 f r ℓ 1 displaystyle I ell m mathbf r equiv sqrt frac 4 pi 2 ell 1 frac Y ell m theta varphi r ell 1 nbsp The regular solid harmonics correspond to harmonic homogeneous polynomials i e homogeneous polynomials which are solutions to Laplace s equation Racah s normalization edit Racah s normalization also known as Schmidt s semi normalization is applied to both functions 0 p sin 8 d 8 0 2 p d f R ℓ m r R ℓ m r 4 p 2 ℓ 1 r 2 ℓ displaystyle int 0 pi sin theta d theta int 0 2 pi d varphi R ell m mathbf r R ell m mathbf r frac 4 pi 2 ell 1 r 2 ell nbsp and analogously for the irregular solid harmonic instead of normalization to unity This is convenient because in many applications the Racah normalization factor appears unchanged throughout the derivations Addition theorems editThe translation of the regular solid harmonic gives a finite expansion R ℓ m r a l 0 ℓ 2 ℓ 2 l 1 2 m l l R l m r R ℓ l m m a l m ℓ l m m ℓ m displaystyle R ell m mathbf r mathbf a sum lambda 0 ell binom 2 ell 2 lambda 1 2 sum mu lambda lambda R lambda mu mathbf r R ell lambda m mu mathbf a langle lambda mu ell lambda m mu ell m rangle nbsp where the Clebsch Gordan coefficient is given by l m ℓ l m m ℓ m ℓ m l m 1 2 ℓ m l m 1 2 2 ℓ 2 l 1 2 displaystyle langle lambda mu ell lambda m mu ell m rangle binom ell m lambda mu 1 2 binom ell m lambda mu 1 2 binom 2 ell 2 lambda 1 2 nbsp The similar expansion for irregular solid harmonics gives an infinite series I ℓ m r a l 0 2 ℓ 2 l 1 2 l 1 2 m l l R l m r I ℓ l m m a l m ℓ l m m ℓ m displaystyle I ell m mathbf r mathbf a sum lambda 0 infty binom 2 ell 2 lambda 1 2 lambda 1 2 sum mu lambda lambda R lambda mu mathbf r I ell lambda m mu mathbf a langle lambda mu ell lambda m mu ell m rangle nbsp with r a displaystyle r leq a nbsp The quantity between pointed brackets is again a Clebsch Gordan coefficient l m ℓ l m m ℓ m 1 l m ℓ l m m l m 1 2 ℓ l m m l m 1 2 2 ℓ 2 l 1 2 l 1 2 displaystyle langle lambda mu ell lambda m mu ell m rangle 1 lambda mu binom ell lambda m mu lambda mu 1 2 binom ell lambda m mu lambda mu 1 2 binom 2 ell 2 lambda 1 2 lambda 1 2 nbsp The addition theorems were proved in different manners by several authors 1 2 Complex form editThe regular solid harmonics are homogeneous polynomial solutions to the Laplace equation D R 0 displaystyle Delta R 0 nbsp Separating the indeterminate z displaystyle z nbsp and writing R a p a x y z a textstyle R sum a p a x y z a nbsp the Laplace equation is easily seen to be equivalent to the recursion formulap a 2 x 2 y 2 p a a 2 a 1 displaystyle p a 2 frac left partial x 2 partial y 2 right p a left a 2 right left a 1 right nbsp so that any choice of polynomials p 0 x y displaystyle p 0 x y nbsp of degree ℓ displaystyle ell nbsp and p 1 x y displaystyle p 1 x y nbsp of degree ℓ 1 displaystyle ell 1 nbsp gives a solution to the equation One particular basis of the space of homogeneous polynomials in two variables of degree k displaystyle k nbsp is x 2 y 2 m x i y k 2 m 0 m k 2 displaystyle left x 2 y 2 m x pm iy k 2m mid 0 leq m leq k 2 right nbsp Note that it is the unique up to normalization basis of eigenvectors of the rotation group S O 2 displaystyle SO 2 nbsp The rotation r a displaystyle rho alpha nbsp of the plane by a 0 2 p displaystyle alpha in 0 2 pi nbsp acts as multiplication by e i k 2 m a displaystyle e pm i k 2m alpha nbsp on the basis vector x 2 y 2 m x i y k 2 m displaystyle x 2 y 2 m x iy k 2m nbsp If we combine the degree ℓ displaystyle ell nbsp basis and the degree ℓ 1 displaystyle ell 1 nbsp basis with the recursion formula we obtain a basis of the space of harmonic homogeneous polynomials in three variables this time of degree ℓ displaystyle ell nbsp consisting of eigenvectors for S O 2 displaystyle SO 2 nbsp note that the recursion formula is compatible with the S O 2 displaystyle SO 2 nbsp action because the Laplace operator is rotationally invariant These are the complex solid harmonics R ℓ ℓ x i y ℓ z 0 R ℓ ℓ 1 x i y ℓ 1 z 1 R ℓ ℓ 2 x 2 y 2 x i y ℓ 2 z 0 x 2 y 2 x 2 y 2 x i y ℓ 2 1 2 z 2 R ℓ ℓ 3 x 2 y 2 x i y ℓ 3 z 1 x 2 y 2 x 2 y 2 x i y ℓ 3 2 3 z 3 R ℓ ℓ 4 x 2 y 2 2 x i y ℓ 4 z 0 x 2 y 2 x 2 y 2 2 x i y ℓ 4 1 2 z 2 x 2 y 2 2 x 2 y 2 2 x i y ℓ 4 1 2 3 4 z 4 R ℓ ℓ 5 x 2 y 2 2 x i y ℓ 5 z 1 x 2 y 2 x 2 y 2 2 x i y ℓ 5 2 3 z 3 x 2 y 2 2 x 2 y 2 2 x i y ℓ 5 2 3 4 5 z 5 displaystyle begin aligned R ell pm ell amp x pm iy ell z 0 R ell pm ell 1 amp x pm iy ell 1 z 1 R ell pm ell 2 amp x 2 y 2 x pm iy ell 2 z 0 frac partial x 2 partial y 2 left x 2 y 2 x pm iy ell 2 right 1 cdot 2 z 2 R ell pm ell 3 amp x 2 y 2 x pm iy ell 3 z 1 frac partial x 2 partial y 2 left x 2 y 2 x pm iy ell 3 right 2 cdot 3 z 3 R ell pm ell 4 amp x 2 y 2 2 x pm iy ell 4 z 0 frac partial x 2 partial y 2 left x 2 y 2 2 x pm iy ell 4 right 1 cdot 2 z 2 frac partial x 2 partial y 2 2 left x 2 y 2 2 x pm iy ell 4 right 1 cdot 2 cdot 3 cdot 4 z 4 R ell pm ell 5 amp x 2 y 2 2 x pm iy ell 5 z 1 frac partial x 2 partial y 2 left x 2 y 2 2 x pm iy ell 5 right 2 cdot 3 z 3 frac partial x 2 partial y 2 2 left x 2 y 2 2 x pm iy ell 5 right 2 cdot 3 cdot 4 cdot 5 z 5 amp vdots end aligned nbsp and in general R ℓ m k x 2 y 2 k x 2 y 2 ℓ m 2 x i y m 1 k z 2 k 2 k ℓ m is even k x 2 y 2 k x 2 y 2 ℓ 1 m 2 x i y m 1 k z 2 k 1 2 k 1 ℓ m is odd displaystyle R ell pm m begin cases sum k partial x 2 partial y 2 k left x 2 y 2 ell m 2 x pm iy m right frac 1 k z 2k 2k amp ell m text is even sum k partial x 2 partial y 2 k left x 2 y 2 ell 1 m 2 x pm iy m right frac 1 k z 2k 1 2k 1 amp ell m text is odd end cases nbsp for 0 m ℓ displaystyle 0 leq m leq ell nbsp Plugging in spherical coordinates x r cos 8 sin f displaystyle x r cos theta sin varphi nbsp y r sin 8 sin f displaystyle y r sin theta sin varphi nbsp z r cos f displaystyle z r cos varphi nbsp and using x 2 y 2 r 2 sin f 2 r 2 1 cos f 2 displaystyle x 2 y 2 r 2 sin varphi 2 r 2 1 cos varphi 2 nbsp one finds the usual relationship to spherical harmonics R ℓ m r ℓ e i m ϕ P ℓ m cos ϑ displaystyle R ell m r ell e im phi P ell m cos vartheta nbsp with a polynomial P ℓ m displaystyle P ell m nbsp which is up to normalization the associated Legendre polynomial and so R ℓ m r ℓ Y ℓ m 8 f displaystyle R ell m r ell Y ell m theta varphi nbsp again up to the specific choice of normalization Real form editThis section does not cite any sources Please help improve this section by adding citations to reliable sources Unsourced material may be challenged and removed October 2010 Learn how and when to remove this message By a simple linear combination of solid harmonics of m these functions are transformed into real functions i e functions R 3 R displaystyle mathbb R 3 to mathbb R nbsp The real regular solid harmonics expressed in Cartesian coordinates are real valued homogeneous polynomials of order ℓ displaystyle ell nbsp in x y z The explicit form of these polynomials is of some importance They appear for example in the form of spherical atomic orbitals and real multipole moments The explicit Cartesian expression of the real regular harmonics will now be derived Linear combination edit We write in agreement with the earlier definitionR ℓ m r 8 f 1 m m 2 r ℓ 8 ℓ m cos 8 e i m f ℓ m ℓ displaystyle R ell m r theta varphi 1 m m 2 r ell Theta ell m cos theta e im varphi qquad ell leq m leq ell nbsp with 8 ℓ m cos 8 ℓ m ℓ m 1 2 sin m 8 d m P ℓ cos 8 d cos m 8 m 0 displaystyle Theta ell m cos theta equiv left frac ell m ell m right 1 2 sin m theta frac d m P ell cos theta d cos m theta qquad m geq 0 nbsp where P ℓ cos 8 displaystyle P ell cos theta nbsp is a Legendre polynomial of order ℓ The m dependent phase is known as the Condon Shortley phase The following expression defines the real regular solid harmonics C ℓ m S ℓ m 2 r ℓ 8 ℓ m cos m f sin m f 1 2 1 m 1 1 m i i R ℓ m R ℓ m m gt 0 displaystyle begin pmatrix C ell m S ell m end pmatrix equiv sqrt 2 r ell Theta ell m begin pmatrix cos m varphi sin m varphi end pmatrix frac 1 sqrt 2 begin pmatrix 1 m amp quad 1 1 m i amp quad i end pmatrix begin pmatrix R ell m R ell m end pmatrix qquad m gt 0 nbsp and for m 0 C ℓ 0 R ℓ 0 displaystyle C ell 0 equiv R ell 0 nbsp Since the transformation is by a unitary matrix the normalization of the real and the complex solid harmonics is the same z dependent part edit Upon writing u cos 8 the m th derivative of the Legendre polynomial can be written as the following expansion in ud m P ℓ u d u m k 0 ℓ m 2 g ℓ k m u ℓ 2 k m displaystyle frac d m P ell u du m sum k 0 left lfloor ell m 2 right rfloor gamma ell k m u ell 2k m nbsp with g ℓ k m 1 k 2 ℓ ℓ k 2 ℓ 2 k ℓ ℓ 2 k ℓ 2 k m displaystyle gamma ell k m 1 k 2 ell binom ell k binom 2 ell 2k ell frac ell 2k ell 2k m nbsp Since z r cos 8 it follows that this derivative times an appropriate power of r is a simple polynomial in z P ℓ m z r ℓ m d m P ℓ u d u m k 0 ℓ m 2 g ℓ k m r 2 k z ℓ 2 k m displaystyle Pi ell m z equiv r ell m frac d m P ell u du m sum k 0 left lfloor ell m 2 right rfloor gamma ell k m r 2k z ell 2k m nbsp x y dependent part edit Consider next recalling that x r sin 8 cos f and y r sin 8 sin f r m sin m 8 cos m f 1 2 r sin 8 e i f m r sin 8 e i f m 1 2 x i y m x i y m displaystyle r m sin m theta cos m varphi frac 1 2 left r sin theta e i varphi m r sin theta e i varphi m right frac 1 2 left x iy m x iy m right nbsp Likewise r m sin m 8 sin m f 1 2 i r sin 8 e i f m r sin 8 e i f m 1 2 i x i y m x i y m displaystyle r m sin m theta sin m varphi frac 1 2i left r sin theta e i varphi m r sin theta e i varphi m right frac 1 2i left x iy m x iy m right nbsp Further A m x y 1 2 x i y m x i y m p 0 m m p x p y m p cos m p p 2 displaystyle A m x y equiv frac 1 2 left x iy m x iy m right sum p 0 m binom m p x p y m p cos m p frac pi 2 nbsp and B m x y 1 2 i x i y m x i y m p 0 m m p x p y m p sin m p p 2 displaystyle B m x y equiv frac 1 2i left x iy m x iy m right sum p 0 m binom m p x p y m p sin m p frac pi 2 nbsp In total edit C ℓ m x y z 2 d m 0 ℓ m ℓ m 1 2 P ℓ m z A m x y m 0 1 ℓ displaystyle C ell m x y z left frac 2 delta m0 ell m ell m right 1 2 Pi ell m z A m x y qquad m 0 1 ldots ell nbsp S ℓ m x y z 2 ℓ m ℓ m 1 2 P ℓ m z B m x y m 1 2 ℓ displaystyle S ell m x y z left frac 2 ell m ell m right 1 2 Pi ell m z B m x y qquad m 1 2 ldots ell nbsp List of lowest functions edit We list explicitly the lowest functions up to and including ℓ 5 Here P ℓ m z 2 d m 0 ℓ m ℓ m 1 2 P ℓ m z displaystyle bar Pi ell m z equiv left tfrac 2 delta m0 ell m ell m right 1 2 Pi ell m z nbsp P 0 0 1 P 3 1 1 4 6 5 z 2 r 2 P 4 4 1 8 35 P 1 0 z P 3 2 1 2 15 z P 5 0 1 8 z 63 z 4 70 z 2 r 2 15 r 4 P 1 1 1 P 3 3 1 4 10 P 5 1 1 8 15 21 z 4 14 z 2 r 2 r 4 P 2 0 1 2 3 z 2 r 2 P 4 0 1 8 35 z 4 30 r 2 z 2 3 r 4 P 5 2 1 4 105 3 z 2 r 2 z P 2 1 3 z P 4 1 10 4 z 7 z 2 3 r 2 P 5 3 1 16 70 9 z 2 r 2 P 2 2 1 2 3 P 4 2 1 4 5 7 z 2 r 2 P 5 4 3 8 35 z P 3 0 1 2 z 5 z 2 3 r 2 P 4 3 1 4 70 z P 5 5 3 16 14 displaystyle begin aligned bar Pi 0 0 amp 1 amp bar Pi 3 1 amp frac 1 4 sqrt 6 5z 2 r 2 amp bar Pi 4 4 amp frac 1 8 sqrt 35 bar Pi 1 0 amp z amp bar Pi 3 2 amp frac 1 2 sqrt 15 z amp bar Pi 5 0 amp frac 1 8 z 63z 4 70z 2 r 2 15r 4 bar Pi 1 1 amp 1 amp bar Pi 3 3 amp frac 1 4 sqrt 10 amp bar Pi 5 1 amp frac 1 8 sqrt 15 21z 4 14z 2 r 2 r 4 bar Pi 2 0 amp frac 1 2 3z 2 r 2 amp bar Pi 4 0 amp frac 1 8 35z 4 30r 2 z 2 3r 4 amp bar Pi 5 2 amp frac 1 4 sqrt 105 3z 2 r 2 z bar Pi 2 1 amp sqrt 3 z amp bar Pi 4 1 amp frac sqrt 10 4 z 7z 2 3r 2 amp bar Pi 5 3 amp frac 1 16 sqrt 70 9z 2 r 2 bar Pi 2 2 amp frac 1 2 sqrt 3 amp bar Pi 4 2 amp frac 1 4 sqrt 5 7z 2 r 2 amp bar Pi 5 4 amp frac 3 8 sqrt 35 z bar Pi 3 0 amp frac 1 2 z 5z 2 3r 2 amp bar Pi 4 3 amp frac 1 4 sqrt 70 z amp bar Pi 5 5 amp frac 3 16 sqrt 14 end aligned nbsp The lowest functions A m x y displaystyle A m x y nbsp and B m x y displaystyle B m x y nbsp are m Am Bm 0 1 displaystyle 1 nbsp 0 displaystyle 0 nbsp 1 x displaystyle x nbsp y displaystyle y nbsp 2 x 2 y 2 displaystyle x 2 y 2 nbsp 2 x y displaystyle 2xy nbsp 3 x 3 3 x y 2 displaystyle x 3 3xy 2 nbsp 3 x 2 y y 3 displaystyle 3x 2 y y 3 nbsp 4 x 4 6 x 2 y 2 y 4 displaystyle x 4 6x 2 y 2 y 4 nbsp 4 x 3 y 4 x y 3 displaystyle 4x 3 y 4xy 3 nbsp 5 x 5 10 x 3 y 2 5 x y 4 displaystyle x 5 10x 3 y 2 5xy 4 nbsp 5 x 4 y 10 x 2 y 3 y 5 displaystyle 5x 4 y 10x 2 y 3 y 5 nbsp References edit R J A Tough and A J Stone J Phys A Math Gen Vol 10 p 1261 1977 M J Caola J Phys A Math Gen Vol 11 p L23 1978 Steinborn E O Ruedenberg K 1973 Rotation and Translation of Regular and Irregular Solid Spherical Harmonics In Lowdin Per Olov ed Advances in quantum chemistry Vol 7 Academic Press pp 1 82 ISBN 9780080582320 Thompson William J 2004 Angular momentum an illustrated guide to rotational symmetries for physical systems Weinheim Wiley VCH pp 143 148 ISBN 9783527617838 Retrieved from https en wikipedia org w index php title Solid harmonics amp oldid 1122834863, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.