fbpx
Wikipedia

Slater-type orbital

Slater-type orbitals (STOs) are functions used as atomic orbitals in the linear combination of atomic orbitals molecular orbital method. They are named after the physicist John C. Slater, who introduced them in 1930.[1]

They possess exponential decay at long range and Kato's cusp condition at short range (when combined as hydrogen-like atom functions, i.e. the analytical solutions of the stationary Schrödinger equation for one electron atoms). Unlike the hydrogen-like ("hydrogenic") Schrödinger orbitals, STOs have no radial nodes (neither do Gaussian-type orbitals).

Definition edit

STOs have the following radial part:

 

where

The normalization constant is computed from the integral

 

Hence

 

It is common to use the spherical harmonics   depending on the polar coordinates of the position vector   as the angular part of the Slater orbital.

Derivatives edit

The first radial derivative of the radial part of a Slater-type orbital is

 

The radial Laplace operator is split in two differential operators

 

The first differential operator of the Laplace operator yields

 

The total Laplace operator yields after applying the second differential operator

 

the result

 

Angular dependent derivatives of the spherical harmonics don't depend on the radial function and have to be evaluated separately.

Integrals edit

The fundamental mathematical properties are those associated with the kinetic energy, nuclear attraction and Coulomb repulsion integrals for placement of the orbital at the center of a single nucleus. Dropping the normalization factor N, the representation of the orbitals below is

 

The Fourier transform is[2]

 

where the   are defined by

 

The overlap integral is

 

of which the normalization integral is a special case. The superscript star denotes complex-conjugation.

The kinetic energy integral is

 
a sum over three overlap integrals already computed above.

The Coulomb repulsion integral can be evaluated using the Fourier representation (see above)

 

which yields

 
These are either individually calculated with the law of residues or recursively as proposed by Cruz et al. (1978).[3]

STO software edit

Some quantum chemistry software uses sets of Slater-type functions (STF) analogous to Slater type orbitals, but with variable exponents chosen to minimize the total molecular energy (rather than by Slater's rules as above). The fact that products of two STOs on distinct atoms are more difficult to express than those of Gaussian functions (which give a displaced Gaussian) has led many to expand them in terms of Gaussians.[4]

Analytical ab initio software for polyatomic molecules has been developed, e.g., STOP: a Slater Type Orbital Package in 1996.[5]

SMILES uses analytical expressions when available and Gaussian expansions otherwise. It was first released in 2000.

Various grid integration schemes have been developed, sometimes after analytical work for quadrature (Scrocco), most famously in the ADF suite of DFT codes.

After the work of John Pople, Warren. J. Hehre and Robert F. Stewart, a least squares representation of the Slater atomic orbitals as a sum of Gaussian-type orbitals is used. In their 1969 paper, the fundamentals of this principle are discussed and then further improved and used in the GAUSSIAN DFT code. [6]

See also edit

References edit

  1. ^ Slater, J. C. (1930). "Atomic Shielding Constants". Physical Review. 36 (1): 57. Bibcode:1930PhRv...36...57S. doi:10.1103/PhysRev.36.57.
  2. ^ Belkic, D.; Taylor, H. S. (1989). "A unified formula for the Fourier transform of Slater-type orbitals". Physica Scripta. 39 (2): 226–229. Bibcode:1989PhyS...39..226B. doi:10.1088/0031-8949/39/2/004. S2CID 250815940.
  3. ^ Cruz, S. A.; Cisneros, C.; Alvarez, I. (1978). "Individual orbit contribution to the electron stopping cross section in the low-velocity region". Physical Review A. 17 (1): 132–140. Bibcode:1978PhRvA..17..132C. doi:10.1103/PhysRevA.17.132.
  4. ^ Guseinov, I. I. (2002). "New complete orthonormal sets of exponential-type orbitals and their application to translation of Slater Orbitals". International Journal of Quantum Chemistry. 90 (1): 114–118. doi:10.1002/qua.927.
  5. ^ Bouferguene, A.; Fares, M.; Hoggan, P. E. (1996). "STOP: Slater Type Orbital Package for general molecular electronic structure calculations". International Journal of Quantum Chemistry. 57 (4): 801–810. doi:10.1002/(SICI)1097-461X(1996)57:4<801::AID-QUA27>3.0.CO;2-0.
  6. ^ Hehre, W. J.; Stewart, R. F.; Pople, J. A. (1969-09-15). "Self‐Consistent Molecular‐Orbital Methods. I. Use of Gaussian Expansions of Slater‐Type Atomic Orbitals". The Journal of Chemical Physics. 51 (6): 2657–2664. Bibcode:1969JChPh..51.2657H. doi:10.1063/1.1672392. ISSN 0021-9606.
  • Harris, F. E.; Michels, H. H. (1966). "Multicenter integrals in quantum mechanics. 2. Evaluation of electron-repulsion integrals for Slater-type orbitals". Journal of Chemical Physics. 45 (1): 116. Bibcode:1966JChPh..45..116H. doi:10.1063/1.1727293.
  • Filter, E.; Steinborn, E. O. (1978). "Extremely compact formulas for molecular two-center and one-electron integrals and Coulomb integrals over Slater-type atomic orbitals". Physical Review A. 18 (1): 1–11. Bibcode:1978PhRvA..18....1F. doi:10.1103/PhysRevA.18.1.
  • McLean, A. D.; McLean, R. S. (1981). "Roothaan-Hartree-Fock Atomic Wave Functions, Slater Basis-Set Expansions for Z = 55–92". Atomic Data and Nuclear Data Tables. 26 (3–4): 197–381. Bibcode:1981ADNDT..26..197M. doi:10.1016/0092-640X(81)90012-7.
  • Datta, S. (1985). "Evaluation of Coulomb integrals with hydrogenic and Slater-type orbitals". Journal of Physics B. 18 (5): 853–857. Bibcode:1985JPhB...18..853D. doi:10.1088/0022-3700/18/5/006.
  • Grotendorst, J.; Steinborn, E. O. (1985). "The Fourier transform of a two-center product of exponential-type functions and its efficient evaluation". Journal of Computational Physics. 61 (2): 195–217. Bibcode:1985JCoPh..61..195G. doi:10.1016/0021-9991(85)90082-8.
  • Tai, H. (1986). "Analytic evaluation of two-center molecular integrals". Physical Review A. 33 (6): 3657–3666. Bibcode:1986PhRvA..33.3657T. doi:10.1103/PhysRevA.33.3657. PMID 9897107.
  • Grotendorst, J.; Weniger, E. J.; Steinborn, E. O. (1986). "Efficient evaluation of infinite-series representations for overlap, two-center nuclear attraction, and Coulomb integrals using nonlinear convergence accelerators". Physical Review A. 33 (6): 3706–3726. Bibcode:1986PhRvA..33.3706G. doi:10.1103/PhysRevA.33.3706. PMID 9897112.
  • Grotendorst, J.; Steinborn, E. O. (1988). "Numerical evaluation of molecular one- and two-electron multicenter integrals with exponential-type orbitals via the Fourier-transform method". Physical Review A. 38 (8): 3857–3876. Bibcode:1988PhRvA..38.3857G. doi:10.1103/PhysRevA.38.3857. PMID 9900838.
  • Bunge, C. F.; Barrientos, J. A.; Bunge, A. V. (1993). "Roothaan-Hartree-Fock Ground-State Atomic Wave Functions: Slater-Type Orbital Expansions and Expectation Values for Z=2–54". Atomic Data and Nuclear Data Tables. 53 (1): 113–162. Bibcode:1993ADNDT..53..113B. doi:10.1006/adnd.1993.1003.
  • Harris, F. E. (1997). "Analytic evaluation of three-electron atomic integrals with Slater wave functions". Physical Review A. 55 (3): 1820–1831. Bibcode:1997PhRvA..55.1820H. doi:10.1103/PhysRevA.55.1820.
  • Ema, I.; García de La Vega, J. M.; Miguel, B.; Dotterweich, J.; Meißner, H.; Steinborn, E. O. (1999). "Exponential-type basis functions: single- and double-zeta B function basis sets for the ground states of neutral atoms from Z=2 to Z=36". Atomic Data and Nuclear Data Tables. 72 (1): 57–99. Bibcode:1999ADNDT..72...57E. doi:10.1006/adnd.1999.0809.
  • Fernández Rico, J.; Fernández, J. J.; Ema, I.; López, R.; Ramírez, G. (2001). "Four-center integrals for Gaussian and Exponential Functions". International Journal of Quantum Chemistry. 81 (1): 16–28. doi:10.1002/1097-461X(2001)81:1<16::AID-QUA5>3.0.CO;2-A.
  • Guseinov, I. I.; Mamedov, B. A. (2001). "On the calculation of arbitrary multielectron molecular integrals over Slater-Type Orbitals using recurrence relations for overlap integrals: II. Two-center expansion method". International Journal of Quantum Chemistry. 81 (2): 117–125. doi:10.1002/1097-461X(2001)81:2<117::AID-QUA1>3.0.CO;2-L.
  • Guseinov, I. I. (2001). "Evaluation of expansion coefficients for translation of Slater-Type orbitals using complete orthonormal sets of Exponential-Type functions". International Journal of Quantum Chemistry. 81 (2): 126–129. doi:10.1002/1097-461X(2001)81:2<126::AID-QUA2>3.0.CO;2-K.
  • Guseinov, I. I.; Mamedov, B. A. (2002). "On the calculation of arbitrary multielectron molecular integrals over Slater-Type Orbitals using recurrence relations for overlap integrals: III. auxiliary functions Q1nn' and Gq−nn". International Journal of Quantum Chemistry. 86 (5): 440–449. doi:10.1002/qua.10045.
  • Guseinov, I. I.; Mamedov, B. A. (2002). "On the calculation of arbitrary multielectron molecular integrals over Slater-Type Orbitals using recurrence relations for overlap integrals: IV. Use of recurrence relations for basic two-center overlap and hybrid integrals". International Journal of Quantum Chemistry. 86 (5): 450–455. doi:10.1002/qua.10044.
  • Özdogan, T.; Orbay, M. (2002). "Evaluation of two-center overlap and nuclear attraction integrals over Slater-type orbitals with integer and non-integer principal quantum numbers". International Journal of Quantum Chemistry. 87 (1): 15–22. doi:10.1002/qua.10052.
  • Harris, F. E. (2003). "Comment on Computation of Two-Center Coulomb integrals over Slater-Type orbitals using elliptical coordinates". International Journal of Quantum Chemistry. 93 (5): 332–334. doi:10.1002/qua.10567.

slater, type, orbital, stos, functions, used, atomic, orbitals, linear, combination, atomic, orbitals, molecular, orbital, method, they, named, after, physicist, john, slater, introduced, them, 1930, they, possess, exponential, decay, long, range, kato, cusp, . Slater type orbitals STOs are functions used as atomic orbitals in the linear combination of atomic orbitals molecular orbital method They are named after the physicist John C Slater who introduced them in 1930 1 They possess exponential decay at long range and Kato s cusp condition at short range when combined as hydrogen like atom functions i e the analytical solutions of the stationary Schrodinger equation for one electron atoms Unlike the hydrogen like hydrogenic Schrodinger orbitals STOs have no radial nodes neither do Gaussian type orbitals Contents 1 Definition 2 Derivatives 3 Integrals 4 STO software 5 See also 6 ReferencesDefinition editSTOs have the following radial part R r Nrn 1e zr displaystyle R r Nr n 1 e zeta r nbsp where n is a natural number that plays the role of principal quantum number n 1 2 N is a normalizing constant r is the distance of the electron from the atomic nucleus and z displaystyle zeta nbsp is a constant related to the effective charge of the nucleus the nuclear charge being partly shielded by electrons Historically the effective nuclear charge was estimated by Slater s rules The normalization constant is computed from the integral 0 xne axdx n an 1 displaystyle int 0 infty x n e alpha x mathrm d x frac n alpha n 1 nbsp Hence N2 0 rn 1e zr 2r2dr 1 N 2z n2z 2n displaystyle N 2 int 0 infty left r n 1 e zeta r right 2 r 2 mathrm d r 1 Longrightarrow N 2 zeta n sqrt frac 2 zeta 2n nbsp It is common to use the spherical harmonics Ylm r displaystyle Y l m mathbf r nbsp depending on the polar coordinates of the position vector r displaystyle mathbf r nbsp as the angular part of the Slater orbital Derivatives editThe first radial derivative of the radial part of a Slater type orbital is R r r n 1 r z R r displaystyle partial R r over partial r left frac n 1 r zeta right R r nbsp The radial Laplace operator is split in two differential operators 2 1r2 r r2 r displaystyle nabla 2 1 over r 2 partial over partial r left r 2 partial over partial r right nbsp The first differential operator of the Laplace operator yields r2 r R r n 1 r zr2 R r displaystyle left r 2 partial over partial r right R r left n 1 r zeta r 2 right R r nbsp The total Laplace operator yields after applying the second differential operator 2R r 1r2 r n 1 r zr2 R r displaystyle nabla 2 R r left 1 over r 2 partial over partial r right left n 1 r zeta r 2 right R r nbsp the result 2R r n n 1 r2 2nzr z2 R r displaystyle nabla 2 R r left n n 1 over r 2 2n zeta over r zeta 2 right R r nbsp Angular dependent derivatives of the spherical harmonics don t depend on the radial function and have to be evaluated separately Integrals editThe fundamental mathematical properties are those associated with the kinetic energy nuclear attraction and Coulomb repulsion integrals for placement of the orbital at the center of a single nucleus Dropping the normalization factor N the representation of the orbitals below is xnℓm r rn 1 e zr Yℓm r displaystyle chi n ell m mathbf r r n 1 e zeta r Y ell m mathbf r nbsp The Fourier transform is 2 xnℓm k eik r xnℓm r d3r 4p n ℓ 2z n ik z ℓ Yℓm k s 0 n ℓ 2 wsnℓ k2 z2 n 1 s displaystyle begin aligned chi n ell m mathbf k amp int e i mathbf k cdot mathbf r chi n ell m mathbf r mathrm d 3 r amp 4 pi n ell 2 zeta n ik zeta ell Y ell m mathbf k sum s 0 lfloor n ell 2 rfloor frac omega s n ell k 2 zeta 2 n 1 s end aligned nbsp where the w displaystyle omega nbsp are defined by wsnℓ 14z2 s n s s n ℓ 2s displaystyle omega s n ell equiv left frac 1 4 zeta 2 right s frac n s s n ell 2s nbsp The overlap integral is xnℓm r xn ℓ m r d3r dℓℓ dmm n n z z n n 1 displaystyle int chi n ell m r chi n ell m r mathrm d 3 r delta ell ell delta mm frac n n zeta zeta n n 1 nbsp of which the normalization integral is a special case The superscript star denotes complex conjugation The kinetic energy integral is xnℓm r 12 2 xn ℓ m r d3r 12dℓℓ dmm 0 e z z r ℓ ℓ 1 n n 1 rn n 2 2z n rn n 1 z 2rn n dr displaystyle begin aligned amp int chi n ell m r left tfrac 1 2 nabla 2 right chi n ell m r mathrm d 3 r amp frac 1 2 delta ell ell delta mm int 0 infty e zeta zeta r left ell ell 1 n n 1 r n n 2 2 zeta n r n n 1 zeta 2 r n n right mathrm d r end aligned nbsp a sum over three overlap integrals already computed above The Coulomb repulsion integral can be evaluated using the Fourier representation see above xnℓm r eik r 2p 3 xnℓm k d3k displaystyle chi n ell m mathbf r int frac e i mathbf k cdot mathbf r 2 pi 3 chi n ell m mathbf k mathrm d 3 k nbsp which yields xnℓm r 1 r r xn ℓ m r d3r 4p 1 2p 3 xnℓm k 1k2 xn ℓ m k d3k 8dℓℓ dmm n ℓ n ℓ 2z nzℓ 2z n z ℓ 0 k2ℓ s 0 n ℓ 2 wsnℓ k2 z2 n 1 s s 0 n ℓ 2 ws n ℓ k2 z 2 n 1 s dk displaystyle begin aligned int chi n ell m mathbf r frac 1 left mathbf r mathbf r right chi n ell m mathbf r mathrm d 3 r amp 4 pi int frac 1 2 pi 3 chi n ell m mathbf k frac 1 k 2 chi n ell m mathbf k mathrm d 3 k amp 8 delta ell ell delta mm n ell n ell frac 2 zeta n zeta ell frac 2 zeta n zeta ell int 0 infty k 2 ell left sum s 0 lfloor n ell 2 rfloor frac omega s n ell k 2 zeta 2 n 1 s sum s 0 lfloor n ell 2 rfloor frac omega s n ell k 2 zeta 2 n 1 s right mathrm d k end aligned nbsp These are either individually calculated with the law of residues or recursively as proposed by Cruz et al 1978 3 STO software editSome quantum chemistry software uses sets of Slater type functions STF analogous to Slater type orbitals but with variable exponents chosen to minimize the total molecular energy rather than by Slater s rules as above The fact that products of two STOs on distinct atoms are more difficult to express than those of Gaussian functions which give a displaced Gaussian has led many to expand them in terms of Gaussians 4 Analytical ab initio software for polyatomic molecules has been developed e g STOP a Slater Type Orbital Package in 1996 5 SMILES uses analytical expressions when available and Gaussian expansions otherwise It was first released in 2000 Various grid integration schemes have been developed sometimes after analytical work for quadrature Scrocco most famously in the ADF suite of DFT codes After the work of John Pople Warren J Hehre and Robert F Stewart a least squares representation of the Slater atomic orbitals as a sum of Gaussian type orbitals is used In their 1969 paper the fundamentals of this principle are discussed and then further improved and used in the GAUSSIAN DFT code 6 See also editBasis sets used in computational chemistryReferences edit Slater J C 1930 Atomic Shielding Constants Physical Review 36 1 57 Bibcode 1930PhRv 36 57S doi 10 1103 PhysRev 36 57 Belkic D Taylor H S 1989 A unified formula for the Fourier transform of Slater type orbitals Physica Scripta 39 2 226 229 Bibcode 1989PhyS 39 226B doi 10 1088 0031 8949 39 2 004 S2CID 250815940 Cruz S A Cisneros C Alvarez I 1978 Individual orbit contribution to the electron stopping cross section in the low velocity region Physical Review A 17 1 132 140 Bibcode 1978PhRvA 17 132C doi 10 1103 PhysRevA 17 132 Guseinov I I 2002 New complete orthonormal sets of exponential type orbitals and their application to translation of Slater Orbitals International Journal of Quantum Chemistry 90 1 114 118 doi 10 1002 qua 927 Bouferguene A Fares M Hoggan P E 1996 STOP Slater Type Orbital Package for general molecular electronic structure calculations International Journal of Quantum Chemistry 57 4 801 810 doi 10 1002 SICI 1097 461X 1996 57 4 lt 801 AID QUA27 gt 3 0 CO 2 0 Hehre W J Stewart R F Pople J A 1969 09 15 Self Consistent Molecular Orbital Methods I Use of Gaussian Expansions of Slater Type Atomic Orbitals The Journal of Chemical Physics 51 6 2657 2664 Bibcode 1969JChPh 51 2657H doi 10 1063 1 1672392 ISSN 0021 9606 Harris F E Michels H H 1966 Multicenter integrals in quantum mechanics 2 Evaluation of electron repulsion integrals for Slater type orbitals Journal of Chemical Physics 45 1 116 Bibcode 1966JChPh 45 116H doi 10 1063 1 1727293 Filter E Steinborn E O 1978 Extremely compact formulas for molecular two center and one electron integrals and Coulomb integrals over Slater type atomic orbitals Physical Review A 18 1 1 11 Bibcode 1978PhRvA 18 1F doi 10 1103 PhysRevA 18 1 McLean A D McLean R S 1981 Roothaan Hartree Fock Atomic Wave Functions Slater Basis Set Expansions for Z 55 92 Atomic Data and Nuclear Data Tables 26 3 4 197 381 Bibcode 1981ADNDT 26 197M doi 10 1016 0092 640X 81 90012 7 Datta S 1985 Evaluation of Coulomb integrals with hydrogenic and Slater type orbitals Journal of Physics B 18 5 853 857 Bibcode 1985JPhB 18 853D doi 10 1088 0022 3700 18 5 006 Grotendorst J Steinborn E O 1985 The Fourier transform of a two center product of exponential type functions and its efficient evaluation Journal of Computational Physics 61 2 195 217 Bibcode 1985JCoPh 61 195G doi 10 1016 0021 9991 85 90082 8 Tai H 1986 Analytic evaluation of two center molecular integrals Physical Review A 33 6 3657 3666 Bibcode 1986PhRvA 33 3657T doi 10 1103 PhysRevA 33 3657 PMID 9897107 Grotendorst J Weniger E J Steinborn E O 1986 Efficient evaluation of infinite series representations for overlap two center nuclear attraction and Coulomb integrals using nonlinear convergence accelerators Physical Review A 33 6 3706 3726 Bibcode 1986PhRvA 33 3706G doi 10 1103 PhysRevA 33 3706 PMID 9897112 Grotendorst J Steinborn E O 1988 Numerical evaluation of molecular one and two electron multicenter integrals with exponential type orbitals via the Fourier transform method Physical Review A 38 8 3857 3876 Bibcode 1988PhRvA 38 3857G doi 10 1103 PhysRevA 38 3857 PMID 9900838 Bunge C F Barrientos J A Bunge A V 1993 Roothaan Hartree Fock Ground State Atomic Wave Functions Slater Type Orbital Expansions and Expectation Values for Z 2 54 Atomic Data and Nuclear Data Tables 53 1 113 162 Bibcode 1993ADNDT 53 113B doi 10 1006 adnd 1993 1003 Harris F E 1997 Analytic evaluation of three electron atomic integrals with Slater wave functions Physical Review A 55 3 1820 1831 Bibcode 1997PhRvA 55 1820H doi 10 1103 PhysRevA 55 1820 Ema I Garcia de La Vega J M Miguel B Dotterweich J Meissner H Steinborn E O 1999 Exponential type basis functions single and double zeta B function basis sets for the ground states of neutral atoms from Z 2 to Z 36 Atomic Data and Nuclear Data Tables 72 1 57 99 Bibcode 1999ADNDT 72 57E doi 10 1006 adnd 1999 0809 Fernandez Rico J Fernandez J J Ema I Lopez R Ramirez G 2001 Four center integrals for Gaussian and Exponential Functions International Journal of Quantum Chemistry 81 1 16 28 doi 10 1002 1097 461X 2001 81 1 lt 16 AID QUA5 gt 3 0 CO 2 A Guseinov I I Mamedov B A 2001 On the calculation of arbitrary multielectron molecular integrals over Slater Type Orbitals using recurrence relations for overlap integrals II Two center expansion method International Journal of Quantum Chemistry 81 2 117 125 doi 10 1002 1097 461X 2001 81 2 lt 117 AID QUA1 gt 3 0 CO 2 L Guseinov I I 2001 Evaluation of expansion coefficients for translation of Slater Type orbitals using complete orthonormal sets of Exponential Type functions International Journal of Quantum Chemistry 81 2 126 129 doi 10 1002 1097 461X 2001 81 2 lt 126 AID QUA2 gt 3 0 CO 2 K Guseinov I I Mamedov B A 2002 On the calculation of arbitrary multielectron molecular integrals over Slater Type Orbitals using recurrence relations for overlap integrals III auxiliary functions Q1nn and Gq nn International Journal of Quantum Chemistry 86 5 440 449 doi 10 1002 qua 10045 Guseinov I I Mamedov B A 2002 On the calculation of arbitrary multielectron molecular integrals over Slater Type Orbitals using recurrence relations for overlap integrals IV Use of recurrence relations for basic two center overlap and hybrid integrals International Journal of Quantum Chemistry 86 5 450 455 doi 10 1002 qua 10044 Ozdogan T Orbay M 2002 Evaluation of two center overlap and nuclear attraction integrals over Slater type orbitals with integer and non integer principal quantum numbers International Journal of Quantum Chemistry 87 1 15 22 doi 10 1002 qua 10052 Harris F E 2003 Comment on Computation of Two Center Coulomb integrals over Slater Type orbitals using elliptical coordinates International Journal of Quantum Chemistry 93 5 332 334 doi 10 1002 qua 10567 Retrieved from https en wikipedia org w index php title Slater type orbital amp oldid 1185514653, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.