fbpx
Wikipedia

Ensifer meliloti

Ensifer meliloti (formerly Rhizobium meliloti and Sinorhizobium meliloti)[10] are an aerobic, Gram-negative, and diazotrophic species of bacteria. S. meliloti are motile and possess a cluster of peritrichous flagella.[11] S. meliloti fix atmospheric nitrogen into ammonia for their legume hosts, such as alfalfa. S. meliloti forms a symbiotic relationship with legumes from the genera Medicago, Melilotus and Trigonella, including the model legume Medicago truncatula. This symbiosis promotes the development of a plant organ, termed a root nodule. Because soil often contains a limited amount of nitrogen for plant use, the symbiotic relationship between S. meliloti and their legume hosts has agricultural applications.[12] These techniques reduce the need for inorganic nitrogenous fertilizers.[13]

Ensifer meliloti
Sinorhizobium meliloti strain Rm1021 on an agar plate.
Scientific classification
Domain: Bacteria
Phylum: Pseudomonadota
Class: Alphaproteobacteria
Order: Hyphomicrobiales
Family: Rhizobiaceae
Genus: Ensifer
Species:
E. meliloti
Binomial name
Ensifer meliloti
(Dangeard, 1926) Young, 2003
Type strain
ATCC 9930

CCUG 27879
CFBP 5561
CIP 107332
DSM 30135
HAMBI 2148
IAM 12611
ICMP 12623
IFO 14782
JCM 20682
LMG 6133
NBRC 14782
NCAIM B.01520
NCIMB 12075
NRRL L-45
NZP 4027
OUT 30010
USDA 1002

Biovars
  • S. m. bv. acaciae[1]
  • S. m. bv. ciceri[2][3]
  • S. m. bv. lancerottense[4]
  • S. m. bv. medicaginis[5]
  • S. m. bv. mediterranense[6]
  • S. m. bv. meliloti
  • S. m. bv. rigiduloides[7]
  • S. m. ecotype NRR[8]
Synonyms[9]
  • Rhizobium meliloti Dangeard, 1926
  • Sinorhizobium meliloti (Dangeard, 1926) De Lajudie et al., 1994

Symbiosis edit

 
Indeterminate nodule

Symbiosis between S. meliloti and its legume hosts begins when the plant secretes an array of betaines and flavonoids into the rhizosphere: 4,4′-dihydroxy-2′-methoxychalcone,[14] chrysoeriol,[15] cynaroside,[15] 4′,7-dihydroxyflavone,[14] 6′′-O-malonylononin,[16] liquiritigenin,[14] luteolin,[17] 3′,5-dimethoxyluteolin,[15] 5-methoxyluteolin,[15] medicarpin,[16] stachydrine,[18] and trigonelline.[18] These compounds attract S. meliloti to the surface of the root hairs of the plant where the bacteria begin secreting nod factors. This initiates root hair curling. The rhizobia then penetrate the root hairs and proliferate to form an infection thread. Through the infection thread, the bacteria move toward the main root. The bacteria develop into bacteroids within newly formed root nodules and perform nitrogen fixation for the plant. A S. meliloti bacterium does not perform nitrogen fixation until it differentiates into a endosymbiotic bacteroid. A bacteroid depends on the plant for survival.[19]

Leghemoglobin, produced by leguminous plants after colonization of S. meliloti, interacts with the free oxygen in the root nodule where the rhizobia reside. Rhizobia are contained within symbiosomes in the root nodules of leguminous plants. The leghemoglobin reduces the amount of free oxygen present. Oxygen disrupts the function of the nitrogenase enzyme in the rhizobia, which is responsible for nitrogen fixation.[20]

Genome edit

The S. meliloti genome contains four genes coding for flagellin. These include fliC1C2–fliC3C4.[11] The genome contains three replicons: a chromosome (~3.7 megabases), a chromid (pSymB; ~1.7 megabases), and a plasmid (pSymA; ~1.4 megabases). Individual strains may possess additional, accessory plasmids. Five S. meliloti genomes have been sequenced to date: Rm1021,[21] AK83,[22] BL225C,[22] Rm41,[23] and SM11[24] with 1021 considered to be the wild type. Indeterminate nodule symbiosis by S. meliloti is conferred by genes residing on pSymA.[25]

DNA repair edit

The proteins encoded by E. meliloti genes uvrA, uvrB and uvrC are employed in the repair of DNA damages by the process of nucleotide excision repair. E. meliloti is a desiccation tolerant bacterium. However, E. meliloti mutants defective in either genes uvrA, uvrB or uvrC are sensitive to desiccation, as well as to UV light.[26] This finding indicates that the desiccation tolerance of wild-type E. meliloti depends on the repair of DNA damages that can be caused by desiccation.

Bacteriophage edit

 
Plaques in S. meliloti caused by ΦM12.

Several bacteriophages that infect Sinorhizobium meliloti have been described:[27] Φ1,[28] Φ1A,[29] Φ2A,[29] Φ3A,[30] Φ4 (=ΦNM8),[31] Φ5t (=ΦNM3),[31] Φ6 (=ΦNM4),[31] Φ7 (=ΦNM9),[31] Φ7a,[28] Φ9 (=ΦCM2),[31] Φ11 (=ΦCM9),[31] Φ12 (=ΦCM6),[31] Φ13,[32] Φ16,[32] Φ16-3,[33] Φ16a,[32] Φ16B,[30] Φ27,[28] Φ32,[33] Φ36,[33] Φ38,[33] Φ43,[28] Φ70,[28] Φ72,[33] Φ111,[33] Φ143,[33] Φ145,[33] Φ147,[33] Φ151,[33] Φ152,[33] Φ160,[33] Φ161,[33] Φ166,[33] Φ2011,[34] ΦA3,[28] ΦA8,[28] ΦA161,[34] ΦAL1,[35] ΦCM1,[34] ΦCM3,[34] ΦCM4,[34] ΦCM5,[34] ΦCM7,[34] ΦCM8,[34] ΦCM20,[34] ΦCM21,[34] ΦDF2,[35] Φf2D,[35] ΦF4,[36] ΦFAR,[35] ΦFM1,[34] ΦK1,[37] ΦL1,[32] ΦL3,[32] ΦL5,[32] ΦL7,[32] ΦL10,[32] ΦL20,[32] ΦL21,[32] ΦL29,[32] ΦL31,[32] ΦL32,[32] ΦL53,[32] ΦL54,[32] ΦL55,[32] ΦL56,[32] ΦL57,[32] ΦL60,[32] ΦL61,[32] ΦL62,[32] ΦLO0,[35] ΦLS5B,[34] ΦM1,[27][38] ΦM1,[27][39] ΦM1-5,[34] ΦM2,[40] ΦM3,[28] ΦM4,[28] ΦM5,[27][28][41] ΦM5 (=ΦF20),[27][38] ΦM5N1,[34] ΦM6,[38] ΦM7,[38] ΦM8,[40] ΦM9,[38] ΦM10,[38] ΦM11,[38] ΦM11S,[34] ΦM12,[38][42] ΦM14,[38] ΦM14S,[34] ΦM19,[43] ΦM20S,[34][44] ΦM23S,[34] ΦM26S,[34] ΦM27S,[34] ΦMl,[45] ΦMM1C,[34] ΦMM1H,[34] ΦMP1,[46] ΦMP2,[46] ΦMP3,[46] ΦMP4,[46] ΦN2,[28] ΦN3,[28] ΦN4,[28] ΦN9,[28] ΦNM1,[34][44] ΦNM2,[34][44] ΦNM6,[34][44] ΦNM7,[34][44] ΦP6,[36] ΦP10,[36] ΦP33,[36] ΦP45,[36] ΦPBC5,[47] ΦRm108,[48] ΦRmp26,[49] ΦRmp36,[49] ΦRmp38,[49] ΦRmp46,[49] ΦRmp50,[49] ΦRmp52,[49] ΦRmp61,[49] ΦRmp64,[49] ΦRmp67,[49] ΦRmp79,[49] ΦRmp80,[49] ΦRmp85,[49] ΦRmp86,[49] ΦRmp88,[49] ΦRmp90,[49] ΦRmp145,[49] ΦSP,[28] ΦSSSS304,[50] ΦSSSS305,[50] ΦSSSS307,[50] ΦSSSS308,[50] and ΦT1.[28] Of these, ΦM5,[41] ΦM12,[42] Φ16-3[51] and ΦPBC5[47] have been sequenced.

As of March 2020 the International Committee on Taxonomy of Viruses (ICTV) has accepted the following species in its Master Species List 2019.v1 (#35):

  • Species: Sinorhizobium virus M7 (alias ΦM7)[38]
  • Species: Sinorhizobium virus M12 (alias DNA phage ΦM12, type species)[38]
  • Species: Sinorhizobium virus N3 (alias ΦN3)[28]

References edit

  1. ^ Ba S, Willems A, de Lajudie P, Roche P, Jeder H, Quatrini P, Neyra M, Ferro M, Promé JC, Gillis M, Boivin-Masson C, Lorquin J (April 2002). "Symbiotic and taxonomic diversity of rhizobia isolated from Acacia tortilis subsp. raddiana in Africa". Systematic and Applied Microbiology. 25 (1): 130–45. doi:10.1078/0723-2020-00091. PMID 12086180.
  2. ^ Maâtallah J, Berraho EB, Muñoz S, Sanjuan J, Lluch C (2002). "Phenotypic and molecular characterization of chickpea rhizobia isolated from different areas of Morocco". Journal of Applied Microbiology. 93 (4): 531–40. doi:10.1046/j.1365-2672.2002.01718.x. PMID 12234335. S2CID 598579.
  3. ^ Rogel MA, Ormeño-Orrillo E, Martinez Romero E (April 2011). "Symbiovars in rhizobia reflect bacterial adaptation to legumes". Systematic and Applied Microbiology. 34 (2): 96–104. doi:10.1016/j.syapm.2010.11.015. PMID 21306854.
  4. ^ León-Barrios M, Lorite MJ, Donate-Correa J, Sanjuán J (September 2009). "Ensifer meliloti bv. lancerottense establishes nitrogen-fixing symbiosis with Lotus endemic to the Canary Islands and shows distinctive symbiotic genotypes and host range". Systematic and Applied Microbiology. 32 (6): 413–20. doi:10.1016/j.syapm.2009.04.003. PMID 19477097.
  5. ^ Villegas Mdel C, Rome S, Mauré L, Domergue O, Gardan L, Bailly X, Cleyet-Marel JC, Brunel B (November 2006). "Nitrogen-fixing sinorhizobia with Medicago laciniata constitute a novel biovar (bv. medicaginis) of S. meliloti". Systematic and Applied Microbiology. 29 (7): 526–38. doi:10.1016/j.syapm.2005.12.008. PMID 16413160.
  6. ^ Mnasri B, Mrabet M, Laguerre G, Aouani ME, Mhamdi R (January 2007). "Salt-tolerant rhizobia isolated from a Tunisian oasis that are highly effective for symbiotic N2-fixation with Phaseolus vulgaris constitute a novel biovar (bv. mediterranense) of Sinorhizobium meliloti". Archives of Microbiology. 187 (1): 79–85. doi:10.1007/s00203-006-0173-x. PMID 17019605. S2CID 24133146.
  7. ^ Gubry-Rangin C, Béna G, Cleyet-Marel JC, Brunel B (October 2013). "Definition and evolution of a new symbiovar, sv. rigiduloides, among Ensifer meliloti efficiently nodulating Medicago species". Systematic and Applied Microbiology. 36 (7): 490–6. doi:10.1016/j.syapm.2013.06.004. PMID 23871297.
  8. ^ Bailly X, Olivieri I, Brunel B, Cleyet-Marel JC, Béna G (July 2007). "Horizontal gene transfer and homologous recombination drive the evolution of the nitrogen-fixing symbionts of Medicago species". Journal of Bacteriology. 189 (14): 5223–36. doi:10.1128/JB.00105-07. PMC 1951869. PMID 17496100.
  9. ^ "Ensifer meliloti". Integrated Taxonomic Information System. Retrieved 4 October 2021.
  10. ^ Nelson, Matthew; Guhlin, Joseph; Epstein, Brendan; Tiffin, Peter; Sadowsky, Michael J. (May 2018). "The complete replicons of 16 Ensifer meliloti strains offer insights into intra- and inter-replicon gene transfer, transposon-associated loci, and repeat elements". Microbial Genomics. 4 (5). doi:10.1099/mgen.0.000174. ISSN 2057-5858. PMC 5994717. PMID 29671722.
  11. ^ a b Aizawa, Shin-Ichi (2014-01-01). "Sinorhizobium meliloti — Nitrogen–Fixer in the Grassland". The Flagellar World. Academic Press. pp. 82–83. doi:10.1016/B978-0-12-417234-0.00026-8. ISBN 9780124172340.
  12. ^ Adjei, M.B. (July 2006). (PDF). Uf/Ifas. Archived from the original (PDF) on 2016-12-02.
  13. ^ Bederska-Błaszczyk, Magdalena; Sujkowska-Rybkowska, Marzena; Borucki, Wojciech (2021-01-04). "Sinorhizobium medicae 419 vs S. meliloti 1021: differences in root nodules induced by these two strains on the Medicago truncatula host". Acta Physiologiae Plantarum. 43 (1): 7. doi:10.1007/s11738-020-03166-1. ISSN 1861-1664. S2CID 230717774.
  14. ^ a b c Maxwell CA, Hartwig UA, Joseph CM, Phillips DA (November 1989). "A Chalcone and Two Related Flavonoids Released from Alfalfa Roots Induce nod Genes of Rhizobium meliloti". Plant Physiology. 91 (3): 842–7. doi:10.1104/pp.91.3.842. PMC 1062085. PMID 16667146.
  15. ^ a b c d Hartwig UA, Maxwell CA, Joseph CM, Phillips DA (January 1990). "Chrysoeriol and Luteolin Released from Alfalfa Seeds Induce nod Genes in Rhizobium meliloti". Plant Physiology. 92 (1): 116–22. doi:10.1104/pp.92.1.116. PMC 1062256. PMID 16667231.
  16. ^ a b Dakora FD, Joseph CM, Phillips DA (March 1993). "Alfalfa (Medicago sativa L.) Root Exudates Contain Isoflavonoids in the Presence of Rhizobium meliloti". Plant Physiology. 101 (3): 819–824. doi:10.1104/pp.101.3.819. PMC 158695. PMID 12231731.
  17. ^ Peters NK, Frost JW, Long SR (August 1986). "A plant flavone, luteolin, induces expression of Rhizobium meliloti nodulation genes". Science. 233 (4767): 977–80. Bibcode:1986Sci...233..977P. doi:10.1126/science.3738520. PMID 3738520.
  18. ^ a b Phillips DA, Joseph CM, Maxwell CA (August 1992). "Trigonelline and Stachydrine Released from Alfalfa Seeds Activate NodD2 Protein in Rhizobium meliloti". Plant Physiology. 99 (4): 1526–31. doi:10.1104/pp.99.4.1526. PMC 1080658. PMID 16669069.
  19. ^ Oldroyd, Giles E.D.; Downie, J. Allan (June 2008). "Coordinating Nodule Morphogenesis with Rhizobial Infection in Legumes". Annual Review of Plant Biology. 59 (1): 519–546. doi:10.1146/annurev.arplant.59.032607.092839. ISSN 1543-5008. PMID 18444906.
  20. ^ Nadler, Kenneth D.; Avissar, Yeal J. (1977-09-01). "Heme Synthesis in Soybean Root Nodules: I. On the Role of Bacteroid δ-Aminolevulinic Acid Synthase and δ-Aminolevulinic Acid Dehydrase in the Synthesis of the Heme of Leghemoglobin". Plant Physiology. 60 (3): 433–436. doi:10.1104/pp.60.3.433. ISSN 0032-0889. PMC 542631. PMID 16660108.
  21. ^ Galibert F, Finan TM, Long SR, Puhler A, Abola P, Ampe F, et al. (July 2001). "The composite genome of the legume symbiont Sinorhizobium meliloti". Science. 293 (5530): 668–72. doi:10.1126/science.1060966. PMID 11474104. S2CID 18580010.
  22. ^ a b Galardini M, Mengoni A, Brilli M, Pini F, Fioravanti A, Lucas S, et al. (May 2011). "Exploring the symbiotic pangenome of the nitrogen-fixing bacterium Sinorhizobium meliloti". BMC Genomics. 12: 235. doi:10.1186/1471-2164-12-235. PMC 3164228. PMID 21569405.
  23. ^ The sequence hasn't been officially announced, but is available at NCBI: chromosome, pSymA, pSymB, and pRM41a.
  24. ^ Schneiker-Bekel S, Wibberg D, Bekel T, Blom J, Linke B, Neuweger H, Stiens M, Vorhölter FJ, Weidner S, Goesmann A, Pühler A, Schlüter A (August 2011). "The complete genome sequence of the dominant Sinorhizobium meliloti field isolate SM11 extends the S. meliloti pan-genome". Journal of Biotechnology. 155 (1): 20–33. doi:10.1016/j.jbiotec.2010.12.018. PMID 21396969.
  25. ^ DiCenzo, George; Wellappili, Deelaka; Brian Golding, G; Finan, Turlough (2018-03-21). "Inter-replicon Gene Flow Contributes to Transcriptional Integration in the Sinorhizobium meliloti Multipartite Genome". G3: Genes, Genomes, Genetics. 8 (5): 1711–1720. doi:10.1534/g3.117.300405. PMC 5940162. PMID 29563186.
  26. ^ Humann JL, Ziemkiewicz HT, Yurgel SN, Kahn ML. Regulatory and DNA repair genes contribute to the desiccation resistance of Sinorhizobium meliloti Rm1021. Appl Environ Microbiol. 2009 Jan;75(2):446-53. doi: 10.1128/AEM.02207-08. Epub 2008 Nov 21. PMID 19028909; PMCID: PMC2620701
  27. ^ a b c d e Systematic naming of bacteriophages is rarely followed in the scientific literature, and a variety of phages can share the same name. While there exists an RNA phage called ΦM12, which infects enterobacteria, it is not synonymous with the DNA phage ΦM12 listed here. The same may be true for other phages in this list. Within this list, two phages have independently been named ΦM5.
  28. ^ a b c d e f g h i j k l m n o p q Lesley SM (1982). "A bacteriophage typing system for Rhizobium meliloti". Canadian Journal of Microbiology. 28 (2): 180–189. doi:10.1139/m82-024.
  29. ^ a b Singh RB, Dhar B, Singh BD (1986). "Morphology and general characteristics of viruses active against cowpea Rhizobium CB756 and 32H1". Archives of Virology. 64 (1): 17–24. doi:10.1002/jobm.3620270309. PMID 7377972. S2CID 84732610.
  30. ^ a b Handelsman J, Ugalde RA, Brill WJ (March 1984). "Rhizobium meliloti competitiveness and the alfalfa agglutinin". Journal of Bacteriology. 157 (3): 703–7. doi:10.1128/JB.157.3.703-707.1984. PMC 215314. PMID 6698937.
  31. ^ a b c d e f g Krsmanovi-Simic D, Werquin M (1977). "Etude des bactériophages de Rhizobium meliloti" [Study of bacteriophages of Rhizobium meliloti]. Comptes Rendus de l'Académie des Sciences, Série D (in French). 284: 1851–1854. and Krsmanovi-Simic D, Werquin M (1973). "Etude des bactériophages de Rhizobium meliloti" [Study of bacteriophages of Rhizobium meliloti]. Comptes Rendus de l'Académie des Sciences, Série D (in French). 276 (19): 2745–8. PMID 4198859.
  32. ^ a b c d e f g h i j k l m n o p q r s t u Kowalski M (1967). "Transduction in Rhizobium meliloti". Acta Microbiologica Polonica. 16 (1): 7–11. doi:10.1007/BF02661838. PMID 4166074. S2CID 10908418. Note that this article was reprinted in Plant and Soil (1971) 35 (1): 63—66, which is where the URL and doi direct to.
  33. ^ a b c d e f g h i j k l m n Szende K, Ördögh F (1960). "Die Lysogenie von Rhizobium meliloti". Naturwissenschaften. 47 (17): 404–405. Bibcode:1960NW.....47..404S. doi:10.1007/BF00631269. S2CID 44438409.
    The full genome of this phage is available at NCBI
  34. ^ a b c d e f g h i j k l m n o p q r s t u v w x y z Werquin M, Ackermann HW, Levesque RC (January 1988). "A Study of 33 Bacteriophages of Rhizobium meliloti". Applied and Environmental Microbiology. 54 (1): 188–196. doi:10.1128/AEM.54.1.188-196.1988. PMC 202420. PMID 16347525.
  35. ^ a b c d e Corral E, Montoya E, Olivares J (1978). "Sensitivity to phages in Rhizobium meliloti as a plasmid consequence". Microbios Letters. 5: 77–80.
  36. ^ a b c d e Kowalski M, Małek W, Czopska-Dolecka J, Szlachetka M (2004). "The effect of rhizobiophages on Sinorhizobium melilotiMedicago sativa symbiosis". Biology and Fertility of Soils. 39 (4): 292–294. doi:10.1007/s00374-004-0721-y. S2CID 26352194.
  37. ^ Wdowiak S, Małek W, Grzadka M (February 2000). "Morphology and general characteristics of phages specific for Astragalus cicer rhizobia". Current Microbiology. 40 (2): 110–3. doi:10.1007/s002849910021. PMID 10594224. S2CID 5181655.
  38. ^ a b c d e f g h i j k Finan TM, Hartweig E, LeMieux K, Bergman K, Walker GC, Signer ER (July 1984). "General transduction in Rhizobium meliloti". Journal of Bacteriology. 159 (1): 120–4. doi:10.1128/JB.159.1.120-124.1984. PMC 215601. PMID 6330024.
  39. ^ Małek W (1990). "Properties of the transducing phage M1 of Rhizobium meliloti". Journal of Basic Microbiology. 30 (1): 43–50. doi:10.1002/jobm.3620300114. S2CID 86226063.
  40. ^ a b Johansen E, Finan TM, Gefter ML, Signer ER (October 1984). "Monoclonal antibodies to Rhizobium meliloti and surface mutants insensitive to them". Journal of Bacteriology. 160 (1): 454–7. doi:10.1128/JB.160.1.454-457.1984. PMC 214744. PMID 6480561.
  41. ^ a b Johnson MC, Sena-Veleza M, Washburn BK, Platta GN, Lua S, Brewer TE, Lynna JS, Stroupe ME, Jones KM (December 2017). "Structure, proteome and genome of Sinorhizobium meliloti phage ΦM5: A virus with LUZ24-like morphology and a highly mosaic genome". Journal of Structural Biology. 200 (3): 343–359. doi:10.1016/j.jsb.2017.08.005. PMID 28842338.
  42. ^ a b Brewer Tess E, Elizabeth Stroupe M, Jones Kathryn M (Dec 25, 2013). "The genome, proteome and phylogenetic analysis of Sinorhizobium meliloti phage ΦM12, the founder of a new group of T4-superfamily phages". Virology. 450–451: 84–97. doi:10.1016/j.virol.2013.11.027. PMID 24503070.
  43. ^ Campbell GR, Reuhs BL, Walker GC (October 1998). "Different phenotypic classes of Sinorhizobium meliloti mutants defective in synthesis of K antigen". Journal of Bacteriology. 180 (20): 5432–6. doi:10.1128/JB.180.20.5432-5436.1998. PMC 107593. PMID 9765576.
  44. ^ a b c d e Werquin M, Ackermann HW, Levesque RC (1989). "Characteristics and comparative study of five Rhizobium meliloti bacteriophages". Current Microbiol. 18 (5): 307–311. doi:10.1007/BF01575946. S2CID 11937563.
  45. ^ Małek W (1990). "Properties of the transducing phage Ml of Rhizobium meliloti". Journal of Basic Microbiology. 30 (1): 43–50. doi:10.1002/jobm.3620300114. S2CID 86226063. Archived from the original on 2013-01-05.
  46. ^ a b c d Martin MO, Long SR (July 1984). "Generalized transduction in Rhizobium meliloti". Journal of Bacteriology. 159 (1): 125–9. doi:10.1128/JB.159.1.125-129.1984. PMC 215602. PMID 6330025.
  47. ^ a b This phage has never been formally reported in the scientific literature. However, the full genomic sequence has been uploaded to NCBI, available here.
  48. ^ Novikova NI, Bazenova OV, Simarov BV (1987). "Phage sensitivity of natural and mutant strains of alfalfa nodule bacteria differing by cultural and symbiotic properties. (Summary in English)". Agric. Biol. 2: 35–39.
  49. ^ a b c d e f g h i j k l m n o p Khanuja SP, Kumar S (1989). "Symbiotic and galactose utilization properties of phage RMP64-resistant mutants affecting three complementation groups in Rhizobium meliloti". Journal of Genetics. 68 (2): 93–108. doi:10.1007/BF02927852. S2CID 25258531.
  50. ^ a b c d Sharma RS, Mishra V, Mohmmed A, Babu CR (April 2008). "Phage specificity and lipopolysaccarides of stem- and root-nodulating bacteria (Azorhizobium caulinodans, Sinorhizobium spp., and Rhizobium spp.) of Sesbania spp". Archives of Microbiology. 189 (4): 411–8. doi:10.1007/s00203-007-0322-x. PMID 17989956. S2CID 5746480.
  51. ^ Φ16-3 Complete Genome

External links edit

  • Sinorhizobium meliloti 1021 Genome Page

Further reading edit

  • Chi F, Shen SH, Cheng HP, Jing YX, Yanni YG, Dazzo FB (November 2005). "Ascending migration of endophytic rhizobia, from roots to leaves, inside rice plants and assessment of benefits to rice growth physiology". Applied and Environmental Microbiology. 71 (11): 7271–8. doi:10.1128/AEM.71.11.7271-7278.2005. PMC 1287620. PMID 16269768.
  • Chi F, Yang P, Han F, Jing Y, Shen S (May 2010). "Proteomic analysis of rice seedlings infected by Sinorhizobium meliloti 1021". Proteomics. 10 (9): 1861–74. doi:10.1002/pmic.200900694. PMID 20213677. S2CID 22652087.

ensifer, meliloti, formerly, rhizobium, meliloti, sinorhizobium, meliloti, aerobic, gram, negative, diazotrophic, species, bacteria, meliloti, motile, possess, cluster, peritrichous, flagella, meliloti, atmospheric, nitrogen, into, ammonia, their, legume, host. Ensifer meliloti formerly Rhizobium meliloti and Sinorhizobium meliloti 10 are an aerobic Gram negative and diazotrophic species of bacteria S meliloti are motile and possess a cluster of peritrichous flagella 11 S meliloti fix atmospheric nitrogen into ammonia for their legume hosts such as alfalfa S meliloti forms a symbiotic relationship with legumes from the genera Medicago Melilotus and Trigonella including the model legume Medicago truncatula This symbiosis promotes the development of a plant organ termed a root nodule Because soil often contains a limited amount of nitrogen for plant use the symbiotic relationship between S meliloti and their legume hosts has agricultural applications 12 These techniques reduce the need for inorganic nitrogenous fertilizers 13 Ensifer melilotiSinorhizobium meliloti strain Rm1021 on an agar plate Scientific classificationDomain BacteriaPhylum PseudomonadotaClass AlphaproteobacteriaOrder HyphomicrobialesFamily RhizobiaceaeGenus EnsiferSpecies E melilotiBinomial nameEnsifer meliloti Dangeard 1926 Young 2003Type strainATCC 9930 CCUG 27879 CFBP 5561 CIP 107332 DSM 30135 HAMBI 2148IAM 12611ICMP 12623IFO 14782JCM 20682 LMG 6133 NBRC 14782 NCAIM B 01520NCIMB 12075NRRL L 45 NZP 4027 OUT 30010 USDA 1002BiovarsS m bv acaciae 1 S m bv ciceri 2 3 S m bv lancerottense 4 S m bv medicaginis 5 S m bv mediterranense 6 S m bv meliloti S m bv rigiduloides 7 S m ecotype NRR 8 Synonyms 9 Rhizobium meliloti Dangeard 1926Sinorhizobium meliloti Dangeard 1926 De Lajudie et al 1994 Contents 1 Symbiosis 2 Genome 2 1 DNA repair 3 Bacteriophage 4 References 5 External links 6 Further readingSymbiosis edit nbsp Indeterminate noduleSymbiosis between S meliloti and its legume hosts begins when the plant secretes an array of betaines and flavonoids into the rhizosphere 4 4 dihydroxy 2 methoxychalcone 14 chrysoeriol 15 cynaroside 15 4 7 dihydroxyflavone 14 6 O malonylononin 16 liquiritigenin 14 luteolin 17 3 5 dimethoxyluteolin 15 5 methoxyluteolin 15 medicarpin 16 stachydrine 18 and trigonelline 18 These compounds attract S meliloti to the surface of the root hairs of the plant where the bacteria begin secreting nod factors This initiates root hair curling The rhizobia then penetrate the root hairs and proliferate to form an infection thread Through the infection thread the bacteria move toward the main root The bacteria develop into bacteroids within newly formed root nodules and perform nitrogen fixation for the plant A S meliloti bacterium does not perform nitrogen fixation until it differentiates into a endosymbiotic bacteroid A bacteroid depends on the plant for survival 19 Leghemoglobin produced by leguminous plants after colonization of S meliloti interacts with the free oxygen in the root nodule where the rhizobia reside Rhizobia are contained within symbiosomes in the root nodules of leguminous plants The leghemoglobin reduces the amount of free oxygen present Oxygen disrupts the function of the nitrogenase enzyme in the rhizobia which is responsible for nitrogen fixation 20 Genome editThe S meliloti genome contains four genes coding for flagellin These include fliC1C2 fliC3C4 11 The genome contains three replicons a chromosome 3 7 megabases a chromid pSymB 1 7 megabases and a plasmid pSymA 1 4 megabases Individual strains may possess additional accessory plasmids Five S meliloti genomes have been sequenced to date Rm1021 21 AK83 22 BL225C 22 Rm41 23 and SM11 24 with 1021 considered to be the wild type Indeterminate nodule symbiosis by S meliloti is conferred by genes residing on pSymA 25 DNA repair edit The proteins encoded by E meliloti genes uvrA uvrB and uvrC are employed in the repair of DNA damages by the process of nucleotide excision repair E meliloti is a desiccation tolerant bacterium However E meliloti mutants defective in either genes uvrA uvrB or uvrC are sensitive to desiccation as well as to UV light 26 This finding indicates that the desiccation tolerance of wild type E meliloti depends on the repair of DNA damages that can be caused by desiccation Bacteriophage edit nbsp Plaques in S meliloti caused by FM12 Several bacteriophages that infect Sinorhizobium meliloti have been described 27 F1 28 F1A 29 F2A 29 F3A 30 F4 FNM8 31 F5t FNM3 31 F6 FNM4 31 F7 FNM9 31 F7a 28 F9 FCM2 31 F11 FCM9 31 F12 FCM6 31 F13 32 F16 32 F16 3 33 F16a 32 F16B 30 F27 28 F32 33 F36 33 F38 33 F43 28 F70 28 F72 33 F111 33 F143 33 F145 33 F147 33 F151 33 F152 33 F160 33 F161 33 F166 33 F2011 34 FA3 28 FA8 28 FA161 34 FAL1 35 FCM1 34 FCM3 34 FCM4 34 FCM5 34 FCM7 34 FCM8 34 FCM20 34 FCM21 34 FDF2 35 Ff2D 35 FF4 36 FFAR 35 FFM1 34 FK1 37 FL1 32 FL3 32 FL5 32 FL7 32 FL10 32 FL20 32 FL21 32 FL29 32 FL31 32 FL32 32 FL53 32 FL54 32 FL55 32 FL56 32 FL57 32 FL60 32 FL61 32 FL62 32 FLO0 35 FLS5B 34 FM1 27 38 FM1 27 39 FM1 5 34 FM2 40 FM3 28 FM4 28 FM5 27 28 41 FM5 FF20 27 38 FM5N1 34 FM6 38 FM7 38 FM8 40 FM9 38 FM10 38 FM11 38 FM11S 34 FM12 38 42 FM14 38 FM14S 34 FM19 43 FM20S 34 44 FM23S 34 FM26S 34 FM27S 34 FMl 45 FMM1C 34 FMM1H 34 FMP1 46 FMP2 46 FMP3 46 FMP4 46 FN2 28 FN3 28 FN4 28 FN9 28 FNM1 34 44 FNM2 34 44 FNM6 34 44 FNM7 34 44 FP6 36 FP10 36 FP33 36 FP45 36 FPBC5 47 FRm108 48 FRmp26 49 FRmp36 49 FRmp38 49 FRmp46 49 FRmp50 49 FRmp52 49 FRmp61 49 FRmp64 49 FRmp67 49 FRmp79 49 FRmp80 49 FRmp85 49 FRmp86 49 FRmp88 49 FRmp90 49 FRmp145 49 FSP 28 FSSSS304 50 FSSSS305 50 FSSSS307 50 FSSSS308 50 and FT1 28 Of these FM5 41 FM12 42 F16 3 51 and FPBC5 47 have been sequenced As of March 2020 the International Committee on Taxonomy of Viruses ICTV has accepted the following species in its Master Species List 2019 v1 35 Realm Duplodnaviria Kingdom Heunggongvirae Phylum UroviricotaOrder Caudovirales Family Myoviridae Genus Emdodecavirus formerly M12virus Species Sinorhizobium virus M7 alias FM7 38 Species Sinorhizobium virus M12 alias DNA phage FM12 type species 38 Species Sinorhizobium virus N3 alias FN3 28 dd References edit Ba S Willems A de Lajudie P Roche P Jeder H Quatrini P Neyra M Ferro M Prome JC Gillis M Boivin Masson C Lorquin J April 2002 Symbiotic and taxonomic diversity of rhizobia isolated from Acacia tortilis subsp raddiana in Africa Systematic and Applied Microbiology 25 1 130 45 doi 10 1078 0723 2020 00091 PMID 12086180 Maatallah J Berraho EB Munoz S Sanjuan J Lluch C 2002 Phenotypic and molecular characterization of chickpea rhizobia isolated from different areas of Morocco Journal of Applied Microbiology 93 4 531 40 doi 10 1046 j 1365 2672 2002 01718 x PMID 12234335 S2CID 598579 Rogel MA Ormeno Orrillo E Martinez Romero E April 2011 Symbiovars in rhizobia reflect bacterial adaptation to legumes Systematic and Applied Microbiology 34 2 96 104 doi 10 1016 j syapm 2010 11 015 PMID 21306854 Leon Barrios M Lorite MJ Donate Correa J Sanjuan J September 2009 Ensifer meliloti bv lancerottense establishes nitrogen fixing symbiosis with Lotus endemic to the Canary Islands and shows distinctive symbiotic genotypes and host range Systematic and Applied Microbiology 32 6 413 20 doi 10 1016 j syapm 2009 04 003 PMID 19477097 Villegas Mdel C Rome S Maure L Domergue O Gardan L Bailly X Cleyet Marel JC Brunel B November 2006 Nitrogen fixing sinorhizobia with Medicago laciniata constitute a novel biovar bv medicaginis of S meliloti Systematic and Applied Microbiology 29 7 526 38 doi 10 1016 j syapm 2005 12 008 PMID 16413160 Mnasri B Mrabet M Laguerre G Aouani ME Mhamdi R January 2007 Salt tolerant rhizobia isolated from a Tunisian oasis that are highly effective for symbiotic N2 fixation with Phaseolus vulgaris constitute a novel biovar bv mediterranense of Sinorhizobium meliloti Archives of Microbiology 187 1 79 85 doi 10 1007 s00203 006 0173 x PMID 17019605 S2CID 24133146 Gubry Rangin C Bena G Cleyet Marel JC Brunel B October 2013 Definition and evolution of a new symbiovar sv rigiduloides among Ensifer meliloti efficiently nodulating Medicago species Systematic and Applied Microbiology 36 7 490 6 doi 10 1016 j syapm 2013 06 004 PMID 23871297 Bailly X Olivieri I Brunel B Cleyet Marel JC Bena G July 2007 Horizontal gene transfer and homologous recombination drive the evolution of the nitrogen fixing symbionts of Medicago species Journal of Bacteriology 189 14 5223 36 doi 10 1128 JB 00105 07 PMC 1951869 PMID 17496100 Ensifer meliloti Integrated Taxonomic Information System Retrieved 4 October 2021 Nelson Matthew Guhlin Joseph Epstein Brendan Tiffin Peter Sadowsky Michael J May 2018 The complete replicons of 16 Ensifer meliloti strains offer insights into intra and inter replicon gene transfer transposon associated loci and repeat elements Microbial Genomics 4 5 doi 10 1099 mgen 0 000174 ISSN 2057 5858 PMC 5994717 PMID 29671722 a b Aizawa Shin Ichi 2014 01 01 Sinorhizobium meliloti Nitrogen Fixer in the Grassland The Flagellar World Academic Press pp 82 83 doi 10 1016 B978 0 12 417234 0 00026 8 ISBN 9780124172340 Adjei M B July 2006 Nitrogen Fixation and Inoculation of Forage Legumes PDF Uf Ifas Archived from the original PDF on 2016 12 02 Bederska Blaszczyk Magdalena Sujkowska Rybkowska Marzena Borucki Wojciech 2021 01 04 Sinorhizobium medicae 419 vs S meliloti 1021 differences in root nodules induced by these two strains on the Medicago truncatula host Acta Physiologiae Plantarum 43 1 7 doi 10 1007 s11738 020 03166 1 ISSN 1861 1664 S2CID 230717774 a b c Maxwell CA Hartwig UA Joseph CM Phillips DA November 1989 A Chalcone and Two Related Flavonoids Released from Alfalfa Roots Induce nod Genes of Rhizobium meliloti Plant Physiology 91 3 842 7 doi 10 1104 pp 91 3 842 PMC 1062085 PMID 16667146 a b c d Hartwig UA Maxwell CA Joseph CM Phillips DA January 1990 Chrysoeriol and Luteolin Released from Alfalfa Seeds Induce nod Genes in Rhizobium meliloti Plant Physiology 92 1 116 22 doi 10 1104 pp 92 1 116 PMC 1062256 PMID 16667231 a b Dakora FD Joseph CM Phillips DA March 1993 Alfalfa Medicago sativa L Root Exudates Contain Isoflavonoids in the Presence of Rhizobium meliloti Plant Physiology 101 3 819 824 doi 10 1104 pp 101 3 819 PMC 158695 PMID 12231731 Peters NK Frost JW Long SR August 1986 A plant flavone luteolin induces expression of Rhizobium meliloti nodulation genes Science 233 4767 977 80 Bibcode 1986Sci 233 977P doi 10 1126 science 3738520 PMID 3738520 a b Phillips DA Joseph CM Maxwell CA August 1992 Trigonelline and Stachydrine Released from Alfalfa Seeds Activate NodD2 Protein in Rhizobium meliloti Plant Physiology 99 4 1526 31 doi 10 1104 pp 99 4 1526 PMC 1080658 PMID 16669069 Oldroyd Giles E D Downie J Allan June 2008 Coordinating Nodule Morphogenesis with Rhizobial Infection in Legumes Annual Review of Plant Biology 59 1 519 546 doi 10 1146 annurev arplant 59 032607 092839 ISSN 1543 5008 PMID 18444906 Nadler Kenneth D Avissar Yeal J 1977 09 01 Heme Synthesis in Soybean Root Nodules I On the Role of Bacteroid d Aminolevulinic Acid Synthase and d Aminolevulinic Acid Dehydrase in the Synthesis of the Heme of Leghemoglobin Plant Physiology 60 3 433 436 doi 10 1104 pp 60 3 433 ISSN 0032 0889 PMC 542631 PMID 16660108 Galibert F Finan TM Long SR Puhler A Abola P Ampe F et al July 2001 The composite genome of the legume symbiont Sinorhizobium meliloti Science 293 5530 668 72 doi 10 1126 science 1060966 PMID 11474104 S2CID 18580010 a b Galardini M Mengoni A Brilli M Pini F Fioravanti A Lucas S et al May 2011 Exploring the symbiotic pangenome of the nitrogen fixing bacterium Sinorhizobium meliloti BMC Genomics 12 235 doi 10 1186 1471 2164 12 235 PMC 3164228 PMID 21569405 The sequence hasn t been officially announced but is available at NCBI chromosome pSymA pSymB and pRM41a Schneiker Bekel S Wibberg D Bekel T Blom J Linke B Neuweger H Stiens M Vorholter FJ Weidner S Goesmann A Puhler A Schluter A August 2011 The complete genome sequence of the dominant Sinorhizobium meliloti field isolate SM11 extends the S meliloti pan genome Journal of Biotechnology 155 1 20 33 doi 10 1016 j jbiotec 2010 12 018 PMID 21396969 DiCenzo George Wellappili Deelaka Brian Golding G Finan Turlough 2018 03 21 Inter replicon Gene Flow Contributes to Transcriptional Integration in the Sinorhizobium meliloti Multipartite Genome G3 Genes Genomes Genetics 8 5 1711 1720 doi 10 1534 g3 117 300405 PMC 5940162 PMID 29563186 Humann JL Ziemkiewicz HT Yurgel SN Kahn ML Regulatory and DNA repair genes contribute to the desiccation resistance of Sinorhizobium meliloti Rm1021 Appl Environ Microbiol 2009 Jan 75 2 446 53 doi 10 1128 AEM 02207 08 Epub 2008 Nov 21 PMID 19028909 PMCID PMC2620701 a b c d e Systematic naming of bacteriophages is rarely followed in the scientific literature and a variety of phages can share the same name While there exists an RNA phage called FM12 which infects enterobacteria it is not synonymous with the DNA phage FM12 listed here The same may be true for other phages in this list Within this list two phages have independently been named FM5 a b c d e f g h i j k l m n o p q Lesley SM 1982 A bacteriophage typing system for Rhizobium meliloti Canadian Journal of Microbiology 28 2 180 189 doi 10 1139 m82 024 a b Singh RB Dhar B Singh BD 1986 Morphology and general characteristics of viruses active against cowpea Rhizobium CB756 and 32H1 Archives of Virology 64 1 17 24 doi 10 1002 jobm 3620270309 PMID 7377972 S2CID 84732610 a b Handelsman J Ugalde RA Brill WJ March 1984 Rhizobium meliloti competitiveness and the alfalfa agglutinin Journal of Bacteriology 157 3 703 7 doi 10 1128 JB 157 3 703 707 1984 PMC 215314 PMID 6698937 a b c d e f g Krsmanovi Simic D Werquin M 1977 Etude des bacteriophages de Rhizobium meliloti Study of bacteriophages of Rhizobium meliloti Comptes Rendus de l Academie des Sciences Serie D in French 284 1851 1854 and Krsmanovi Simic D Werquin M 1973 Etude des bacteriophages de Rhizobium meliloti Study of bacteriophages of Rhizobium meliloti Comptes Rendus de l Academie des Sciences Serie D in French 276 19 2745 8 PMID 4198859 a b c d e f g h i j k l m n o p q r s t u Kowalski M 1967 Transduction in Rhizobium meliloti Acta Microbiologica Polonica 16 1 7 11 doi 10 1007 BF02661838 PMID 4166074 S2CID 10908418 Note that this article was reprinted in Plant and Soil 1971 35 1 63 66 which is where the URL and doi direct to a b c d e f g h i j k l m n Szende K Ordogh F 1960 Die Lysogenie von Rhizobium meliloti Naturwissenschaften 47 17 404 405 Bibcode 1960NW 47 404S doi 10 1007 BF00631269 S2CID 44438409 The full genome of this phage is available at NCBI a b c d e f g h i j k l m n o p q r s t u v w x y z Werquin M Ackermann HW Levesque RC January 1988 A Study of 33 Bacteriophages of Rhizobium meliloti Applied and Environmental Microbiology 54 1 188 196 doi 10 1128 AEM 54 1 188 196 1988 PMC 202420 PMID 16347525 a b c d e Corral E Montoya E Olivares J 1978 Sensitivity to phages in Rhizobium meliloti as a plasmid consequence Microbios Letters 5 77 80 a b c d e Kowalski M Malek W Czopska Dolecka J Szlachetka M 2004 The effect of rhizobiophages on Sinorhizobium meliloti Medicago sativa symbiosis Biology and Fertility of Soils 39 4 292 294 doi 10 1007 s00374 004 0721 y S2CID 26352194 Wdowiak S Malek W Grzadka M February 2000 Morphology and general characteristics of phages specific for Astragalus cicer rhizobia Current Microbiology 40 2 110 3 doi 10 1007 s002849910021 PMID 10594224 S2CID 5181655 a b c d e f g h i j k Finan TM Hartweig E LeMieux K Bergman K Walker GC Signer ER July 1984 General transduction in Rhizobium meliloti Journal of Bacteriology 159 1 120 4 doi 10 1128 JB 159 1 120 124 1984 PMC 215601 PMID 6330024 Malek W 1990 Properties of the transducing phage M1 of Rhizobium meliloti Journal of Basic Microbiology 30 1 43 50 doi 10 1002 jobm 3620300114 S2CID 86226063 a b Johansen E Finan TM Gefter ML Signer ER October 1984 Monoclonal antibodies to Rhizobium meliloti and surface mutants insensitive to them Journal of Bacteriology 160 1 454 7 doi 10 1128 JB 160 1 454 457 1984 PMC 214744 PMID 6480561 a b Johnson MC Sena Veleza M Washburn BK Platta GN Lua S Brewer TE Lynna JS Stroupe ME Jones KM December 2017 Structure proteome and genome of Sinorhizobium meliloti phage FM5 A virus with LUZ24 like morphology and a highly mosaic genome Journal of Structural Biology 200 3 343 359 doi 10 1016 j jsb 2017 08 005 PMID 28842338 a b Brewer Tess E Elizabeth Stroupe M Jones Kathryn M Dec 25 2013 The genome proteome and phylogenetic analysis of Sinorhizobium meliloti phage FM12 the founder of a new group of T4 superfamily phages Virology 450 451 84 97 doi 10 1016 j virol 2013 11 027 PMID 24503070 Campbell GR Reuhs BL Walker GC October 1998 Different phenotypic classes of Sinorhizobium meliloti mutants defective in synthesis of K antigen Journal of Bacteriology 180 20 5432 6 doi 10 1128 JB 180 20 5432 5436 1998 PMC 107593 PMID 9765576 a b c d e Werquin M Ackermann HW Levesque RC 1989 Characteristics and comparative study of five Rhizobium meliloti bacteriophages Current Microbiol 18 5 307 311 doi 10 1007 BF01575946 S2CID 11937563 Malek W 1990 Properties of the transducing phage Ml of Rhizobium meliloti Journal of Basic Microbiology 30 1 43 50 doi 10 1002 jobm 3620300114 S2CID 86226063 Archived from the original on 2013 01 05 a b c d Martin MO Long SR July 1984 Generalized transduction in Rhizobium meliloti Journal of Bacteriology 159 1 125 9 doi 10 1128 JB 159 1 125 129 1984 PMC 215602 PMID 6330025 a b This phage has never been formally reported in the scientific literature However the full genomic sequence has been uploaded to NCBI available here Novikova NI Bazenova OV Simarov BV 1987 Phage sensitivity of natural and mutant strains of alfalfa nodule bacteria differing by cultural and symbiotic properties Summary in English Agric Biol 2 35 39 a b c d e f g h i j k l m n o p Khanuja SP Kumar S 1989 Symbiotic and galactose utilization properties of phage RMP64 resistant mutants affecting three complementation groups in Rhizobium meliloti Journal of Genetics 68 2 93 108 doi 10 1007 BF02927852 S2CID 25258531 a b c d Sharma RS Mishra V Mohmmed A Babu CR April 2008 Phage specificity and lipopolysaccarides of stem and root nodulating bacteria Azorhizobium caulinodans Sinorhizobium spp and Rhizobium spp of Sesbania spp Archives of Microbiology 189 4 411 8 doi 10 1007 s00203 007 0322 x PMID 17989956 S2CID 5746480 F16 3 Complete GenomeExternal links editSinorhizobium meliloti Genome Project Sinorhizobium meliloti 1021 Genome PageFurther reading editChi F Shen SH Cheng HP Jing YX Yanni YG Dazzo FB November 2005 Ascending migration of endophytic rhizobia from roots to leaves inside rice plants and assessment of benefits to rice growth physiology Applied and Environmental Microbiology 71 11 7271 8 doi 10 1128 AEM 71 11 7271 7278 2005 PMC 1287620 PMID 16269768 Chi F Yang P Han F Jing Y Shen S May 2010 Proteomic analysis of rice seedlings infected by Sinorhizobium meliloti 1021 Proteomics 10 9 1861 74 doi 10 1002 pmic 200900694 PMID 20213677 S2CID 22652087 Retrieved from https en wikipedia org w index php title Ensifer meliloti amp oldid 1183026661, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.