fbpx
Wikipedia

Trigonometric integral

In mathematics, trigonometric integrals are a family of integrals involving trigonometric functions.

Plot of the hyperbolic sine integral function Shi(z) in the complex plane from -2-2i to 2+2i with colors created with Mathematica 13.1 function ComplexPlot3D

Si(x) (blue) and Ci(x) (green) plotted on the same plot.
Integral sine in the complex plane, plotted with a variant of domain coloring.
Integral cosine in the complex plane. Note the branch cut along the negative real axis.

Sine integral Edit

 
Plot of Si(x) for 0 ≤ x ≤ 8 π.
 
Plot of the cosine integral function Ci(z) in the complex plane from -2-2i to 2+2i with colors created with Mathematica 13.1 function ComplexPlot3D

The different sine integral definitions are

 
 

Note that the integrand   is the sinc function, and also the zeroth spherical Bessel function. Since sinc is an even entire function (holomorphic over the entire complex plane), Si is entire, odd, and the integral in its definition can be taken along any path connecting the endpoints.

By definition, Si(x) is the antiderivative of sin x / x whose value is zero at x = 0, and si(x) is the antiderivative whose value is zero at x = ∞. Their difference is given by the Dirichlet integral,

 

In signal processing, the oscillations of the sine integral cause overshoot and ringing artifacts when using the sinc filter, and frequency domain ringing if using a truncated sinc filter as a low-pass filter.

Related is the Gibbs phenomenon: If the sine integral is considered as the convolution of the sinc function with the heaviside step function, this corresponds to truncating the Fourier series, which is the cause of the Gibbs phenomenon.

Cosine integral Edit

 
Plot of Ci(x) for 0 < x ≤ 8π .

The different cosine integral definitions are

 
 
where γ ≈ 0.57721566 ... is the Euler–Mascheroni constant. Some texts use ci instead of Ci.

Ci(x) is the antiderivative of cos x / x (which vanishes as  ). The two definitions are related by

 

Cin is an even, entire function. For that reason, some texts treat Cin as the primary function, and derive Ci in terms of Cin.

Hyperbolic sine integral Edit

The hyperbolic sine integral is defined as

 

It is related to the ordinary sine integral by

 

Hyperbolic cosine integral Edit

The hyperbolic cosine integral is

 
Plot of the hyperbolic cosine integral function Chi(z) in the complex plane from -2-2i to 2+2i with colors created with Mathematica 13.1 function ComplexPlot3D
 
where   is the Euler–Mascheroni constant.

It has the series expansion

 

Auxiliary functions Edit

Trigonometric integrals can be understood in terms of the so-called "auxiliary functions"

 
Using these functions, the trigonometric integrals may be re-expressed as (cf. Abramowitz & Stegun, p. 232)
 

Nielsen's spiral Edit

 
Nielsen's spiral.

The spiral formed by parametric plot of si , ci is known as Nielsen's spiral.

 
 

The spiral is closely related to the Fresnel integrals and the Euler spiral. Nielsen's spiral has applications in vision processing, road and track construction and other areas.[1]

Expansion Edit

Various expansions can be used for evaluation of trigonometric integrals, depending on the range of the argument.

Asymptotic series (for large argument) Edit

 
 

These series are asymptotic and divergent, although can be used for estimates and even precise evaluation at ℜ(x) ≫ 1.

Convergent series Edit

 
 

These series are convergent at any complex x, although for |x| ≫ 1, the series will converge slowly initially, requiring many terms for high precision.

Derivation of series expansion Edit

From the Maclaurin series expansion of sine:

 
 
 

Relation with the exponential integral of imaginary argument Edit

The function

 
is called the exponential integral. It is closely related to Si and Ci,
 

As each respective function is analytic except for the cut at negative values of the argument, the area of validity of the relation should be extended to (Outside this range, additional terms which are integer factors of π appear in the expression.)

Cases of imaginary argument of the generalized integro-exponential function are

 
which is the real part of
 

Similarly

 

Efficient evaluation Edit

Padé approximants of the convergent Taylor series provide an efficient way to evaluate the functions for small arguments. The following formulae, given by Rowe et al. (2015),[2] are accurate to better than 10−16 for 0 ≤ x ≤ 4,

 

The integrals may be evaluated indirectly via auxiliary functions   and  , which are defined by

 
   
 
or equivalently
 
   
 


For   the Padé rational functions given below approximate   and   with error less than 10−16:[2]

 

See also Edit

References Edit

  1. ^ Gray (1993). Modern Differential Geometry of Curves and Surfaces. Boca Raton. p. 119.{{cite book}}: CS1 maint: location missing publisher (link)
  2. ^ a b Rowe, B.; et al. (2015). "GALSIM: The modular galaxy image simulation toolkit". Astronomy and Computing. 10: 121. arXiv:1407.7676. Bibcode:2015A&C....10..121R. doi:10.1016/j.ascom.2015.02.002. S2CID 62709903.

Further reading Edit

  • Mathar, R.J. (2009). "Numerical evaluation of the oscillatory integral over exp(iπxx1/x between 1 and ∞". Appendix B. arXiv:0912.3844 [math.CA].
  • Press, W.H.; Teukolsky, S.A.; Vetterling, W.T.; Flannery, B.P. (2007). "Section 6.8.2 – Cosine and Sine Integrals". Numerical Recipes: The Art of Scientific Computing (3rd ed.). New York: Cambridge University Press. ISBN 978-0-521-88068-8.
  • Sloughter, Dan. "Sine Integral Taylor series proof" (PDF). Difference Equations to Differential Equations.
  • Temme, N.M. (2010), "Exponential, Logarithmic, Sine, and Cosine Integrals", in Olver, Frank W. J.; Lozier, Daniel M.; Boisvert, Ronald F.; Clark, Charles W. (eds.), NIST Handbook of Mathematical Functions, Cambridge University Press, ISBN 978-0-521-19225-5, MR 2723248.

External links Edit

trigonometric, integral, simple, integrals, trigonometric, functions, list, integrals, trigonometric, functions, mathematics, trigonometric, integrals, family, integrals, involving, trigonometric, functions, plot, hyperbolic, sine, integral, function, complex,. For simple integrals of trigonometric functions see List of integrals of trigonometric functions In mathematics trigonometric integrals are a family of integrals involving trigonometric functions Plot of the hyperbolic sine integral function Shi z in the complex plane from 2 2i to 2 2i with colors created with Mathematica 13 1 function ComplexPlot3D Si x blue and Ci x green plotted on the same plot Integral sine in the complex plane plotted with a variant of domain coloring Integral cosine in the complex plane Note the branch cut along the negative real axis Contents 1 Sine integral 2 Cosine integral 3 Hyperbolic sine integral 4 Hyperbolic cosine integral 5 Auxiliary functions 6 Nielsen s spiral 7 Expansion 7 1 Asymptotic series for large argument 7 2 Convergent series 7 3 Derivation of series expansion 8 Relation with the exponential integral of imaginary argument 9 Efficient evaluation 10 See also 11 References 12 Further reading 13 External linksSine integral Edit nbsp Plot of Si x for 0 x 8 p nbsp Plot of the cosine integral function Ci z in the complex plane from 2 2i to 2 2i with colors created with Mathematica 13 1 function ComplexPlot3DThe different sine integral definitions areSi x 0 x sin t t d t displaystyle operatorname Si x int 0 x frac sin t t dt nbsp si x x sin t t d t displaystyle operatorname si x int x infty frac sin t t dt nbsp Note that the integrand sin t t displaystyle frac sin t t nbsp is the sinc function and also the zeroth spherical Bessel function Since sinc is an even entire function holomorphic over the entire complex plane Si is entire odd and the integral in its definition can be taken along any path connecting the endpoints By definition Si x is the antiderivative of sin x x whose value is zero at x 0 and si x is the antiderivative whose value is zero at x Their difference is given by the Dirichlet integral Si x si x 0 sin t t d t p 2 or Si x p 2 si x displaystyle operatorname Si x operatorname si x int 0 infty frac sin t t dt frac pi 2 quad text or quad operatorname Si x frac pi 2 operatorname si x nbsp In signal processing the oscillations of the sine integral cause overshoot and ringing artifacts when using the sinc filter and frequency domain ringing if using a truncated sinc filter as a low pass filter Related is the Gibbs phenomenon If the sine integral is considered as the convolution of the sinc function with the heaviside step function this corresponds to truncating the Fourier series which is the cause of the Gibbs phenomenon Cosine integral Edit nbsp Plot of Ci x for 0 lt x 8p The different cosine integral definitions areCin x 0 x 1 cos t t d t displaystyle operatorname Cin x int 0 x frac 1 cos t t dt nbsp Ci x x cos t t d t g ln x 0 x 1 cos t t d t for Arg x lt p displaystyle operatorname Ci x int x infty frac cos t t dt gamma ln x int 0 x frac 1 cos t t dt qquad text for left operatorname Arg x right lt pi nbsp where g 0 57721566 is the Euler Mascheroni constant Some texts use ci instead of Ci Ci x is the antiderivative of cos x x which vanishes as x displaystyle x to infty nbsp The two definitions are related byCi x g ln x Cin x displaystyle operatorname Ci x gamma ln x operatorname Cin x nbsp Cin is an even entire function For that reason some texts treat Cin as the primary function and derive Ci in terms of Cin Hyperbolic sine integral EditThe hyperbolic sine integral is defined asShi x 0 x sinh t t d t displaystyle operatorname Shi x int 0 x frac sinh t t dt nbsp It is related to the ordinary sine integral bySi i x i Shi x displaystyle operatorname Si ix i operatorname Shi x nbsp Hyperbolic cosine integral EditThe hyperbolic cosine integral is nbsp Plot of the hyperbolic cosine integral function Chi z in the complex plane from 2 2i to 2 2i with colors created with Mathematica 13 1 function ComplexPlot3DChi x g ln x 0 x cosh t 1 t d t for Arg x lt p displaystyle operatorname Chi x gamma ln x int 0 x frac cosh t 1 t dt qquad text for left operatorname Arg x right lt pi nbsp where g displaystyle gamma nbsp is the Euler Mascheroni constant It has the series expansionChi x g ln x x 2 4 x 4 96 x 6 4320 x 8 322560 x 10 36288000 O x 12 displaystyle operatorname Chi x gamma ln x frac x 2 4 frac x 4 96 frac x 6 4320 frac x 8 322560 frac x 10 36288000 O x 12 nbsp Auxiliary functions EditTrigonometric integrals can be understood in terms of the so called auxiliary functions f x 0 sin t t x d t 0 e x t t 2 1 d t Ci x sin x p 2 Si x cos x g x 0 cos t t x d t 0 t e x t t 2 1 d t Ci x cos x p 2 Si x sin x displaystyle begin array rcl f x amp equiv amp int 0 infty frac sin t t x dt amp amp int 0 infty frac e xt t 2 1 dt amp amp operatorname Ci x sin x left frac pi 2 operatorname Si x right cos x g x amp equiv amp int 0 infty frac cos t t x dt amp amp int 0 infty frac te xt t 2 1 dt amp amp operatorname Ci x cos x left frac pi 2 operatorname Si x right sin x end array nbsp Using these functions the trigonometric integrals may be re expressed as cf Abramowitz amp Stegun p 232 p 2 Si x si x f x cos x g x sin x and Ci x f x sin x g x cos x displaystyle begin array rcl frac pi 2 operatorname Si x operatorname si x amp amp f x cos x g x sin x qquad text and operatorname Ci x amp amp f x sin x g x cos x end array nbsp Nielsen s spiral Edit nbsp Nielsen s spiral The spiral formed by parametric plot of si ci is known as Nielsen s spiral x t a ci t displaystyle x t a times operatorname ci t nbsp y t a si t displaystyle y t a times operatorname si t nbsp The spiral is closely related to the Fresnel integrals and the Euler spiral Nielsen s spiral has applications in vision processing road and track construction and other areas 1 Expansion EditVarious expansions can be used for evaluation of trigonometric integrals depending on the range of the argument Asymptotic series for large argument Edit Si x p 2 cos x x 1 2 x 2 4 x 4 6 x 6 sin x x 1 x 3 x 3 5 x 5 7 x 7 displaystyle operatorname Si x sim frac pi 2 frac cos x x left 1 frac 2 x 2 frac 4 x 4 frac 6 x 6 cdots right frac sin x x left frac 1 x frac 3 x 3 frac 5 x 5 frac 7 x 7 cdots right nbsp Ci x sin x x 1 2 x 2 4 x 4 6 x 6 cos x x 1 x 3 x 3 5 x 5 7 x 7 displaystyle operatorname Ci x sim frac sin x x left 1 frac 2 x 2 frac 4 x 4 frac 6 x 6 cdots right frac cos x x left frac 1 x frac 3 x 3 frac 5 x 5 frac 7 x 7 cdots right nbsp These series are asymptotic and divergent although can be used for estimates and even precise evaluation at ℜ x 1 Convergent series Edit Si x n 0 1 n x 2 n 1 2 n 1 2 n 1 x x 3 3 3 x 5 5 5 x 7 7 7 displaystyle operatorname Si x sum n 0 infty frac 1 n x 2n 1 2n 1 2n 1 x frac x 3 3 cdot 3 frac x 5 5 cdot 5 frac x 7 7 cdot 7 pm cdots nbsp Ci x g ln x n 1 1 n x 2 n 2 n 2 n g ln x x 2 2 2 x 4 4 4 displaystyle operatorname Ci x gamma ln x sum n 1 infty frac 1 n x 2n 2n 2n gamma ln x frac x 2 2 cdot 2 frac x 4 4 cdot 4 mp cdots nbsp These series are convergent at any complex x although for x 1 the series will converge slowly initially requiring many terms for high precision Derivation of series expansion Edit From the Maclaurin series expansion of sine sin x x x 3 3 x 5 5 x 7 7 x 9 9 x 11 11 displaystyle sin x x frac x 3 3 frac x 5 5 frac x 7 7 frac x 9 9 frac x 11 11 cdots nbsp sin x x 1 x 2 3 x 4 5 x 6 7 x 8 9 x 10 11 displaystyle frac sin x x 1 frac x 2 3 frac x 4 5 frac x 6 7 frac x 8 9 frac x 10 11 cdots nbsp sin x x d x x x 3 3 3 x 5 5 5 x 7 7 7 x 9 9 9 x 11 11 11 displaystyle therefore int frac sin x x dx x frac x 3 3 cdot 3 frac x 5 5 cdot 5 frac x 7 7 cdot 7 frac x 9 9 cdot 9 frac x 11 11 cdot 11 cdots nbsp Relation with the exponential integral of imaginary argument EditThe functionE 1 z 1 exp z t t d t for ℜ z 0 displaystyle operatorname E 1 z int 1 infty frac exp zt t dt qquad text for Re z geq 0 nbsp is called the exponential integral It is closely related to Si and Ci E 1 i x i p 2 Si x Ci x i si x ci x for x gt 0 displaystyle operatorname E 1 ix i left frac pi 2 operatorname Si x right operatorname Ci x i operatorname si x operatorname ci x qquad text for x gt 0 nbsp As each respective function is analytic except for the cut at negative values of the argument the area of validity of the relation should be extended to Outside this range additional terms which are integer factors of p appear in the expression Cases of imaginary argument of the generalized integro exponential function are 1 cos a x ln x x d x p 2 24 g g 2 ln a ln 2 a 2 n 1 a 2 n 2 n 2 n 2 displaystyle int 1 infty cos ax frac ln x x dx frac pi 2 24 gamma left frac gamma 2 ln a right frac ln 2 a 2 sum n geq 1 frac a 2 n 2n 2n 2 nbsp which is the real part of 1 e i a x ln x x d x p 2 24 g g 2 ln a ln 2 a 2 p 2 i g ln a n 1 i a n n n 2 displaystyle int 1 infty e iax frac ln x x dx frac pi 2 24 gamma left frac gamma 2 ln a right frac ln 2 a 2 frac pi 2 i left gamma ln a right sum n geq 1 frac ia n n n 2 nbsp Similarly 1 e i a x ln x x 2 d x 1 i a p 2 24 g g 2 ln a 1 ln 2 a 2 ln a 1 p a 2 g ln a 1 n 1 i a n 1 n 1 n 2 displaystyle int 1 infty e iax frac ln x x 2 dx 1 ia left frac pi 2 24 gamma left frac gamma 2 ln a 1 right frac ln 2 a 2 ln a 1 right frac pi a 2 Bigl gamma ln a 1 Bigr sum n geq 1 frac ia n 1 n 1 n 2 nbsp Efficient evaluation EditPade approximants of the convergent Taylor series provide an efficient way to evaluate the functions for small arguments The following formulae given by Rowe et al 2015 2 are accurate to better than 10 16 for 0 x 4 Si x x 1 4 54393409816329991 10 2 x 2 1 15457225751016682 10 3 x 4 1 41018536821330254 10 5 x 6 9 43280809438713025 10 8 x 8 3 53201978997168357 10 10 x 10 7 08240282274875911 10 13 x 12 6 05338212010422477 10 16 x 14 1 1 01162145739225565 10 2 x 2 4 99175116169755106 10 5 x 4 1 55654986308745614 10 7 x 6 3 28067571055789734 10 10 x 8 4 5049097575386581 10 13 x 10 3 21107051193712168 10 16 x 12 Ci x g ln x x 2 0 25 7 51851524438898291 10 3 x 2 1 27528342240267686 10 4 x 4 1 05297363846239184 10 6 x 6 4 68889508144848019 10 9 x 8 1 06480802891189243 10 11 x 10 9 93728488857585407 10 15 x 12 1 1 1592605689110735 10 2 x 2 6 72126800814254432 10 5 x 4 2 55533277086129636 10 7 x 6 6 97071295760958946 10 10 x 8 1 38536352772778619 10 12 x 10 1 89106054713059759 10 15 x 12 1 39759616731376855 10 18 x 14 displaystyle begin array rcl operatorname Si x amp approx amp x cdot left frac begin array l 1 4 54393409816329991 cdot 10 2 cdot x 2 1 15457225751016682 cdot 10 3 cdot x 4 1 41018536821330254 cdot 10 5 cdot x 6 9 43280809438713025 cdot 10 8 cdot x 8 3 53201978997168357 cdot 10 10 cdot x 10 7 08240282274875911 cdot 10 13 cdot x 12 6 05338212010422477 cdot 10 16 cdot x 14 end array begin array l 1 1 01162145739225565 cdot 10 2 cdot x 2 4 99175116169755106 cdot 10 5 cdot x 4 1 55654986308745614 cdot 10 7 cdot x 6 3 28067571055789734 cdot 10 10 cdot x 8 4 5049097575386581 cdot 10 13 cdot x 10 3 21107051193712168 cdot 10 16 cdot x 12 end array right amp amp operatorname Ci x amp approx amp gamma ln x amp amp x 2 cdot left frac begin array l 0 25 7 51851524438898291 cdot 10 3 cdot x 2 1 27528342240267686 cdot 10 4 cdot x 4 1 05297363846239184 cdot 10 6 cdot x 6 4 68889508144848019 cdot 10 9 cdot x 8 1 06480802891189243 cdot 10 11 cdot x 10 9 93728488857585407 cdot 10 15 cdot x 12 end array begin array l 1 1 1592605689110735 cdot 10 2 cdot x 2 6 72126800814254432 cdot 10 5 cdot x 4 2 55533277086129636 cdot 10 7 cdot x 6 6 97071295760958946 cdot 10 10 cdot x 8 1 38536352772778619 cdot 10 12 cdot x 10 1 89106054713059759 cdot 10 15 cdot x 12 1 39759616731376855 cdot 10 18 cdot x 14 end array right end array nbsp The integrals may be evaluated indirectly via auxiliary functions f x displaystyle f x nbsp and g x displaystyle g x nbsp which are defined by Si x p 2 f x cos x g x sin x displaystyle operatorname Si x frac pi 2 f x cos x g x sin x nbsp Ci x f x sin x g x cos x displaystyle operatorname Ci x f x sin x g x cos x nbsp or equivalentlyf x p 2 Si x cos x Ci x sin x displaystyle f x equiv left frac pi 2 operatorname Si x right cos x operatorname Ci x sin x nbsp g x p 2 Si x sin x Ci x cos x displaystyle g x equiv left frac pi 2 operatorname Si x right sin x operatorname Ci x cos x nbsp For x 4 displaystyle x geq 4 nbsp the Pade rational functions given below approximate f x displaystyle f x nbsp and g x displaystyle g x nbsp with error less than 10 16 2 f x 1 x 1 7 44437068161936700618 10 2 x 2 1 96396372895146869801 10 5 x 4 2 37750310125431834034 10 7 x 6 1 43073403821274636888 10 9 x 8 4 33736238870432522765 10 10 x 10 6 40533830574022022911 10 11 x 12 4 20968180571076940208 10 12 x 14 1 00795182980368574617 10 13 x 16 4 94816688199951963482 10 12 x 18 4 94701168645415959931 10 11 x 20 1 7 46437068161927678031 10 2 x 2 1 97865247031583951450 10 5 x 4 2 41535670165126845144 10 7 x 6 1 47478952192985464958 10 9 x 8 4 58595115847765779830 10 10 x 10 7 08501308149515401563 10 11 x 12 5 06084464593475076774 10 12 x 14 1 43468549171581016479 10 13 x 16 1 11535493509914254097 10 13 x 18 g x 1 x 2 1 8 1359520115168615 10 2 x 2 2 35239181626478200 10 5 x 4 3 12557570795778731 10 7 x 6 2 06297595146763354 10 9 x 8 6 83052205423625007 10 10 x 10 1 09049528450362786 10 12 x 12 7 57664583257834349 10 12 x 14 1 81004487464664575 10 13 x 16 6 43291613143049485 10 12 x 18 1 36517137670871689 10 12 x 20 1 8 19595201151451564 10 2 x 2 2 40036752835578777 10 5 x 4 3 26026661647090822 10 7 x 6 2 23355543278099360 10 9 x 8 7 87465017341829930 10 10 x 10 1 39866710696414565 10 12 x 12 1 17164723371736605 10 13 x 14 4 01839087307656620 10 13 x 16 3 99653257887490811 10 13 x 18 displaystyle begin array rcl f x amp approx amp dfrac 1 x cdot left frac begin array l 1 7 44437068161936700618 cdot 10 2 cdot x 2 1 96396372895146869801 cdot 10 5 cdot x 4 2 37750310125431834034 cdot 10 7 cdot x 6 1 43073403821274636888 cdot 10 9 cdot x 8 4 33736238870432522765 cdot 10 10 cdot x 10 6 40533830574022022911 cdot 10 11 cdot x 12 4 20968180571076940208 cdot 10 12 cdot x 14 1 00795182980368574617 cdot 10 13 cdot x 16 4 94816688199951963482 cdot 10 12 cdot x 18 4 94701168645415959931 cdot 10 11 cdot x 20 end array begin array l 1 7 46437068161927678031 cdot 10 2 cdot x 2 1 97865247031583951450 cdot 10 5 cdot x 4 2 41535670165126845144 cdot 10 7 cdot x 6 1 47478952192985464958 cdot 10 9 cdot x 8 4 58595115847765779830 cdot 10 10 cdot x 10 7 08501308149515401563 cdot 10 11 cdot x 12 5 06084464593475076774 cdot 10 12 cdot x 14 1 43468549171581016479 cdot 10 13 cdot x 16 1 11535493509914254097 cdot 10 13 cdot x 18 end array right amp amp g x amp approx amp dfrac 1 x 2 cdot left frac begin array l 1 8 1359520115168615 cdot 10 2 cdot x 2 2 35239181626478200 cdot 10 5 cdot x 4 3 12557570795778731 cdot 10 7 cdot x 6 2 06297595146763354 cdot 10 9 cdot x 8 6 83052205423625007 cdot 10 10 cdot x 10 1 09049528450362786 cdot 10 12 cdot x 12 7 57664583257834349 cdot 10 12 cdot x 14 1 81004487464664575 cdot 10 13 cdot x 16 6 43291613143049485 cdot 10 12 cdot x 18 1 36517137670871689 cdot 10 12 cdot x 20 end array begin array l 1 8 19595201151451564 cdot 10 2 cdot x 2 2 40036752835578777 cdot 10 5 cdot x 4 3 26026661647090822 cdot 10 7 cdot x 6 2 23355543278099360 cdot 10 9 cdot x 8 7 87465017341829930 cdot 10 10 cdot x 10 1 39866710696414565 cdot 10 12 cdot x 12 1 17164723371736605 cdot 10 13 cdot x 14 4 01839087307656620 cdot 10 13 cdot x 16 3 99653257887490811 cdot 10 13 cdot x 18 end array right end array nbsp See also EditLogarithmic integral Tanc function Tanhc function Sinhc function Coshc functionReferences Edit Gray 1993 Modern Differential Geometry of Curves and Surfaces Boca Raton p 119 a href Template Cite book html title Template Cite book cite book a CS1 maint location missing publisher link a b Rowe B et al 2015 GALSIM The modular galaxy image simulation toolkit Astronomy and Computing 10 121 arXiv 1407 7676 Bibcode 2015A amp C 10 121R doi 10 1016 j ascom 2015 02 002 S2CID 62709903 Abramowitz Milton Stegun Irene Ann eds 1983 June 1964 Chapter 5 Handbook of Mathematical Functions with Formulas Graphs and Mathematical Tables Applied Mathematics Series Vol 55 Ninth reprint with additional corrections of tenth original printing with corrections December 1972 first ed Washington D C New York United States Department of Commerce National Bureau of Standards Dover Publications p 231 ISBN 978 0 486 61272 0 LCCN 64 60036 MR 0167642 LCCN 65 12253 Further reading EditMathar R J 2009 Numerical evaluation of the oscillatory integral over exp ip x x1 x between 1 and Appendix B arXiv 0912 3844 math CA Press W H Teukolsky S A Vetterling W T Flannery B P 2007 Section 6 8 2 Cosine and Sine Integrals Numerical Recipes The Art of Scientific Computing 3rd ed New York Cambridge University Press ISBN 978 0 521 88068 8 Sloughter Dan Sine Integral Taylor series proof PDF Difference Equations to Differential Equations Temme N M 2010 Exponential Logarithmic Sine and Cosine Integrals in Olver Frank W J Lozier Daniel M Boisvert Ronald F Clark Charles W eds NIST Handbook of Mathematical Functions Cambridge University Press ISBN 978 0 521 19225 5 MR 2723248 External links Edithttp mathworld wolfram com SineIntegral html Integral sine Encyclopedia of Mathematics EMS Press 2001 1994 Integral cosine Encyclopedia of Mathematics EMS Press 2001 1994 Retrieved from https en wikipedia org w index php title Trigonometric integral amp oldid 1148310503 Sine integral, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.