fbpx
Wikipedia

Significand

The significand[1] (also mantissa[2] or coefficient,[1] sometimes also argument, or ambiguously fraction[3][4][nb 1] or characteristic[5][2]) is part of a number in scientific notation or in floating-point representation, consisting of its significant digits. Depending on the interpretation of the exponent, the significand may represent an integer or a fraction.

Example

The number 123.45 can be represented as a decimal floating-point number with the integer 12345 as the significand and a 10−2 power term, also called characteristics,[6][7][8] where −2 is the exponent (and 10 is the base). Its value is given by the following arithmetic:

123.45 = 12345 × 10−2.

The same value can also be represented in normalized form with 1.2345 as the fractional coefficient, and +2 as the exponent (and 10 as the base):

123.45 = 1.2345 × 10+2.

Schmid, however, called this representation with a significand ranging between 1.0 and 10 a modified normalized form.[7][8]

For base 2, this 1.xxxx form is also called a normalized significand.

Finally, the value can be represented in the format given by the Language Independent Arithmetic standard and several programming language standards, including Ada, C, Fortran and Modula-2, as

123.45 = 0.12345 × 10+3.

Schmid called this representation with a significand ranging between 0.1 and 1.0 the true normalized form.[7][8]

For base 2, this 0.xxxx form is also called a normed significand.[citation needed]

Significands and the hidden bit

For a normalized number, the most significant digit is always non-zero. When working in binary, this constraint uniquely determines this digit to always be 1; as such, it does not need to be explicitly stored, being called the hidden bit. The significand is characterized by its width in (binary) digits, and depending on the context, the hidden bit may or may not be counted towards the width of the significand. For example, the same IEEE 754 double-precision format is commonly described as having either a 53-bit significand, including the hidden bit, or a 52-bit significand, excluding the hidden bit. IEEE 754 defines the precision p to be the number of digits in the significand, including any implicit leading bit (e.g., p = 53 for the double-precision format), thus in a way independent from the encoding, and the term to express what is encoded (that is, the significand without its leading bit) is trailing significand field.

Terminology

The term significand was introduced by George Forsythe and Cleve Moler in 1967[9][10][11][4] and is the word used in the IEEE standard.[12] However, in 1946 Arthur Burks used the terms mantissa and characteristic to describe the two parts of a floating-point number (Burks[6] et al.) and that usage remains common among computer scientists today. Mantissa and characteristic have long described the two parts of the logarithm found on tables of common logarithms. While the two meanings of exponent are analogous, the two meanings of mantissa are not equivalent. For this reason, the use of mantissa for significand is discouraged by some including the creator of the standard, William Kahan[1] and prominent computer programmer and author of The Art of Computer Programming, Donald E. Knuth.[5]

The confusion is because scientific notation and floating-point representation are log-linear, not logarithmic. To multiply two numbers, given their logarithms, one just adds the characteristic (integer part) and the mantissa (fractional part). By contrast, to multiply two floating-point numbers, one adds the exponent (which is logarithmic) and multiplies the significand (which is linear).

See also

Notes

  1. ^ The term fraction is used in IEEE 754-1985 with a different meaning: it is the fractional part of the significand, i.e. the significand without its explicit or implicit leading bit.

References

  1. ^ a b c Kahan, William Morton (2002-04-19), Names for Standardized Floating-Point Formats (PDF), […] m is the significand or coefficient or (wrongly) mantissa […]
  2. ^ a b Gosling, John B. (1980). "6.1 Floating-Point Notation / 6.8.5 Exponent Representation". In Sumner, Frank H. (ed.). Design of Arithmetic Units for Digital Computers. Macmillan Computer Science Series (1 ed.). Department of Computer Science, University of Manchester, Manchester, UK: The Macmillan Press Ltd. pp. 74, 91, 137–138. ISBN 0-333-26397-9. […] In floating-point representation, a number x is represented by two signed numbers m and e such that x = m · be where m is the mantissa, e the exponent and b the base. […] The mantissa is sometimes termed the characteristic and a version of the exponent also has this title from some authors. It is hoped that the terms here will be unambiguous. […] [w]e use a[n exponent] value which is shifted by half the binary range of the number. […] This special form is sometimes referred to as a biased exponent, since it is the conventional value plus a constant. Some authors have called it a characteristic, but this term should not be used, since CDC and others use this term for the mantissa. It is also referred to as an 'excess -' representation, where, for example, - is 64 for a 7-bit exponent (27−1 = 64). […] (NB. Gosling does not mention the term significand at all.)
  3. ^ English Electric KDF9: Very high speed data processing system for Commerce, Industry, Science (PDF) (Product flyer). English Electric. c. 1961. Publication No. DP/103. 096320WP/RP0961. (PDF) from the original on 2020-07-27. Retrieved 2020-07-27.
  4. ^ a b Savard, John J. G. (2018) [2005]. "Floating-Point Formats". quadibloc. A Note on Field Designations. from the original on 2018-07-16. Retrieved 2018-07-16.
  5. ^ a b Knuth, Donald E. The Art of Computer Programming. Vol. 2. p. 214. ISBN 0-201-89684-2. […] Other names are occasionally used for this purpose, notably 'characteristic' and 'mantissa'; but it is an abuse of terminology to call the fraction part a mantissa, since that term has quite a different meaning in connection with logarithms. Furthermore the English word mantissa means 'a worthless addition.' […]
  6. ^ a b Burks, Arthur Walter; Goldstine, Herman H.; von Neumann, John (1963) [1946]. "5.3.". In Taub, A. H. (ed.). Preliminary discussion of the logical design of an electronic computing instrument (PDF). Collected Works of John von Neumann (Technical report, Institute for Advanced Study, Princeton, New Jersey, USA). Vol. 5. New York, USA: The Macmillan Company. p. 42. Retrieved 2016-02-07. […] Several of the digital computers being built or planned in this country and England are to contain a so-called "floating decimal point". This is a mechanism for expressing each word as a characteristic and a mantissa—e.g. 123.45 would be carried in the machine as (0.12345,03), where the 3 is the exponent of 10 associated with the number. […]
  7. ^ a b c Schmid, Hermann (1974). Decimal Computation (1 ed.). Binghamton, New York, USA: John Wiley & Sons, Inc. p. 204-205. ISBN 0-471-76180-X. Retrieved 2016-01-03.
  8. ^ a b c Schmid, Hermann (1983) [1974]. Decimal Computation (1 (reprint) ed.). Malabar, Florida, USA: Robert E. Krieger Publishing Company. pp. 204–205. ISBN 0-89874-318-4. Retrieved 2016-01-03. (NB. At least some batches of this reprint edition were misprints with defective pages 115–146.)
  9. ^ Forsythe, George Elmer; Moler, Cleve Barry (September 1967). Computer Solution of Linear Algebraic Systems. Automatic Computation (1st ed.). New Jersey, USA: Prentice-Hall, Englewood Cliffs. ISBN 0-13-165779-8.
  10. ^ Sterbenz, Pat H. (1974-05-01). Floating-Point Computation. Prentice-Hall Series in Automatic Computation (1 ed.). Englewood Cliffs, New Jersey, USA: Prentice Hall. ISBN 0-13-322495-3.
  11. ^ Goldberg, David (March 1991). "What Every Computer Scientist Should Know About Floating-Point Arithmetic" (PDF). Computing Surveys. Xerox Palo Alto Research Center (PARC), Palo Alto, California, USA: Association for Computing Machinery, Inc. 23 (1): 7. (PDF) from the original on 2016-07-13. Retrieved 2016-07-13. […] This term was introduced by Forsythe and Moler [1967], and has generally replaced the older term mantissa. […] (NB. A newer edited version can be found here: [1])
  12. ^ 754-2019 - IEEE Standard for Floating-Point Arithmetic. IEEE. 2019. doi:10.1109/IEEESTD.2019.8766229. ISBN 978-1-5044-5924-2.

significand, significand, also, mantissa, coefficient, sometimes, also, argument, ambiguously, fraction, characteristic, part, number, scientific, notation, floating, point, representation, consisting, significant, digits, depending, interpretation, exponent, . The significand 1 also mantissa 2 or coefficient 1 sometimes also argument or ambiguously fraction 3 4 nb 1 or characteristic 5 2 is part of a number in scientific notation or in floating point representation consisting of its significant digits Depending on the interpretation of the exponent the significand may represent an integer or a fraction Contents 1 Example 2 Significands and the hidden bit 3 Terminology 4 See also 5 Notes 6 ReferencesExample EditThe number 123 45 can be represented as a decimal floating point number with the integer 12345 as the significand and a 10 2 power term also called characteristics 6 7 8 where 2 is the exponent and 10 is the base Its value is given by the following arithmetic 123 45 12345 10 2 The same value can also be represented in normalized form with 1 2345 as the fractional coefficient and 2 as the exponent and 10 as the base 123 45 1 2345 10 2 Schmid however called this representation with a significand ranging between 1 0 and 10 a modified normalized form 7 8 For base 2 this 1 xxxx form is also called a normalized significand Finally the value can be represented in the format given by the Language Independent Arithmetic standard and several programming language standards including Ada C Fortran and Modula 2 as 123 45 0 12345 10 3 Schmid called this representation with a significand ranging between 0 1 and 1 0 the true normalized form 7 8 For base 2 this 0 xxxx form is also called a normed significand citation needed Significands and the hidden bit EditFor a normalized number the most significant digit is always non zero When working in binary this constraint uniquely determines this digit to always be 1 as such it does not need to be explicitly stored being called the hidden bit The significand is characterized by its width in binary digits and depending on the context the hidden bit may or may not be counted towards the width of the significand For example the same IEEE 754 double precision format is commonly described as having either a 53 bit significand including the hidden bit or a 52 bit significand excluding the hidden bit IEEE 754 defines the precision p to be the number of digits in the significand including any implicit leading bit e g p 53 for the double precision format thus in a way independent from the encoding and the term to express what is encoded that is the significand without its leading bit is trailing significand field Terminology EditThe term significand was introduced by George Forsythe and Cleve Moler in 1967 9 10 11 4 and is the word used in the IEEE standard 12 However in 1946 Arthur Burks used the terms mantissa and characteristic to describe the two parts of a floating point number Burks 6 et al and that usage remains common among computer scientists today Mantissa and characteristic have long described the two parts of the logarithm found on tables of common logarithms While the two meanings of exponent are analogous the two meanings of mantissa are not equivalent For this reason the use of mantissa for significand is discouraged by some including the creator of the standard William Kahan 1 and prominent computer programmer and author of The Art of Computer Programming Donald E Knuth 5 The confusion is because scientific notation and floating point representation are log linear not logarithmic To multiply two numbers given their logarithms one just adds the characteristic integer part and the mantissa fractional part By contrast to multiply two floating point numbers one adds the exponent which is logarithmic and multiplies the significand which is linear See also EditMantissa logarithm Notes Edit The term fraction is used in IEEE 754 1985 with a different meaning it is the fractional part of the significand i e the significand without its explicit or implicit leading bit References Edit a b c Kahan William Morton 2002 04 19 Names for Standardized Floating Point Formats PDF m is the significand or coefficient or wrongly mantissa a b Gosling John B 1980 6 1 Floating Point Notation 6 8 5 Exponent Representation In Sumner Frank H ed Design of Arithmetic Units for Digital Computers Macmillan Computer Science Series 1 ed Department of Computer Science University of Manchester Manchester UK The Macmillan Press Ltd pp 74 91 137 138 ISBN 0 333 26397 9 In floating point representation a number x is represented by two signed numbers m and e such that x m be where m is the mantissa e the exponent and b the base The mantissa is sometimes termed the characteristic and a version of the exponent also has this title from some authors It is hoped that the terms here will be unambiguous w e use a n exponent value which is shifted by half the binary range of the number This special form is sometimes referred to as a biased exponent since it is the conventional value plus a constant Some authors have called it a characteristic but this term should not be used since CDC and others use this term for the mantissa It is also referred to as an excess representation where for example is 64 for a 7 bit exponent 27 1 64 NB Gosling does not mention the term significand at all English Electric KDF9 Very high speed data processing system for Commerce Industry Science PDF Product flyer English Electric c 1961 Publication No DP 103 096320WP RP0961 Archived PDF from the original on 2020 07 27 Retrieved 2020 07 27 a b Savard John J G 2018 2005 Floating Point Formats quadibloc A Note on Field Designations Archived from the original on 2018 07 16 Retrieved 2018 07 16 a b Knuth Donald E The Art of Computer Programming Vol 2 p 214 ISBN 0 201 89684 2 Other names are occasionally used for this purpose notably characteristic and mantissa but it is an abuse of terminology to call the fraction part a mantissa since that term has quite a different meaning in connection with logarithms Furthermore the English word mantissa means a worthless addition a b Burks Arthur Walter Goldstine Herman H von Neumann John 1963 1946 5 3 In Taub A H ed Preliminary discussion of the logical design of an electronic computing instrument PDF Collected Works of John von Neumann Technical report Institute for Advanced Study Princeton New Jersey USA Vol 5 New York USA The Macmillan Company p 42 Retrieved 2016 02 07 Several of the digital computers being built or planned in this country and England are to contain a so called floating decimal point This is a mechanism for expressing each word as a characteristic and a mantissa e g 123 45 would be carried in the machine as 0 12345 03 where the 3 is the exponent of 10 associated with the number a b c Schmid Hermann 1974 Decimal Computation 1 ed Binghamton New York USA John Wiley amp Sons Inc p 204 205 ISBN 0 471 76180 X Retrieved 2016 01 03 a b c Schmid Hermann 1983 1974 Decimal Computation 1 reprint ed Malabar Florida USA Robert E Krieger Publishing Company pp 204 205 ISBN 0 89874 318 4 Retrieved 2016 01 03 NB At least some batches of this reprint edition were misprints with defective pages 115 146 Forsythe George Elmer Moler Cleve Barry September 1967 Computer Solution of Linear Algebraic Systems Automatic Computation 1st ed New Jersey USA Prentice Hall Englewood Cliffs ISBN 0 13 165779 8 Sterbenz Pat H 1974 05 01 Floating Point Computation Prentice Hall Series in Automatic Computation 1 ed Englewood Cliffs New Jersey USA Prentice Hall ISBN 0 13 322495 3 Goldberg David March 1991 What Every Computer Scientist Should Know About Floating Point Arithmetic PDF Computing Surveys Xerox Palo Alto Research Center PARC Palo Alto California USA Association for Computing Machinery Inc 23 1 7 Archived PDF from the original on 2016 07 13 Retrieved 2016 07 13 This term was introduced by Forsythe and Moler 1967 and has generally replaced the older term mantissa NB A newer edited version can be found here 1 754 2019 IEEE Standard for Floating Point Arithmetic IEEE 2019 doi 10 1109 IEEESTD 2019 8766229 ISBN 978 1 5044 5924 2 Retrieved from https en wikipedia org w index php title Significand amp oldid 1129956751, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.