fbpx
Wikipedia

Schröder–Hipparchus number

In combinatorics, the Schröder–Hipparchus numbers form an integer sequence that can be used to count the number of plane trees with a given set of leaves, the number of ways of inserting parentheses into a sequence, and the number of ways of dissecting a convex polygon into smaller polygons by inserting diagonals. These numbers begin

Schröder–Hipparchus number
Named afterErnst Schröder, Hipparchus, Eugène Charles Catalan
Publication year1870 (Schröder)
No. of known termsinfinity
Formula
First terms1, 1, 3, 11, 45, 197, 903
OEIS index
  • A001003
  • Little Schroeder numbers,
    Super Catalan
Eleven subdivisions of a pentagon
1, 1, 3, 11, 45, 197, 903, 4279, 20793, 103049, ... (sequence A001003 in the OEIS).

They are also called the super-Catalan numbers, the little Schröder numbers, or the Hipparchus numbers, after Eugène Charles Catalan and his Catalan numbers, Ernst Schröder and the closely related Schröder numbers, and the ancient Greek mathematician Hipparchus who appears from evidence in Plutarch to have known of these numbers.

Combinatorial enumeration applications edit

 
Combinatorial equivalence between subdivisions of a polygon, plane trees, and parenthesizations

The Schröder–Hipparchus numbers may be used to count several closely related combinatorial objects:[1][2][3][4]

  • The nth number in the sequence counts the number of different ways of subdividing of a polygon with n + 1 sides into smaller polygons by adding diagonals of the original polygon.
  • The nth number counts the number of different plane trees with n leaves and with all internal vertices having two or more children.
  • The nth number counts the number of different ways of inserting parentheses into a sequence of n + 1 symbols, with each pair of parentheses surrounding two or more symbols or parenthesized groups, and without any parentheses surrounding the entire sequence.
  • The nth number counts the number of faces of all dimensions of an associahedron Kn + 1 of dimension n − 1, including the associahedron itself as a face, but not including the empty set. For instance, the two-dimensional associahedron K4 is a pentagon; it has five vertices, five faces, and one whole associahedron, for a total of 11 faces.

As the figure shows, there is a simple combinatorial equivalence between these objects: a polygon subdivision has a plane tree as a form of its dual graph, the leaves of the tree correspond to the symbols in a parenthesized sequence, and the internal nodes of the tree other than the root correspond to parenthesized groups. The parenthesized sequence itself may be written around the perimeter of the polygon with its symbols on the sides of the polygon and with parentheses at the endpoints of the selected diagonals. This equivalence provides a bijective proof that all of these kinds of objects are counted by a single integer sequence.[2]

The same numbers also count the number of double permutations (sequences of the numbers from 1 to n, each number appearing twice, with the first occurrences of each number in sorted order) that avoid the permutation patterns 12312 and 121323.[5]

Related sequences edit

The closely related large Schröder numbers are equal to twice the Schröder–Hipparchus numbers, and may also be used to count several types of combinatorial objects including certain kinds of lattice paths, partitions of a rectangle into smaller rectangles by recursive slicing, and parenthesizations in which a pair of parentheses surrounding the whole sequence of elements is also allowed. The Catalan numbers also count closely related sets of objects including subdivisions of a polygon into triangles, plane trees in which all internal nodes have exactly two children, and parenthesizations in which each pair of parentheses surrounds exactly two symbols or parenthesized groups.[3]

The sequence of Catalan numbers and the sequence of Schröder–Hipparchus numbers, viewed as infinite-dimensional vectors, are the unique eigenvectors for the first two in a sequence of naturally defined linear operators on number sequences.[6][7] More generally, the kth sequence in this sequence of integer sequences is (x1, x2, x3, ...) where the numbers xn are calculated as the sums of Narayana numbers multiplied by powers of k. This can be expressed as a hypergeometric function:

 

Substituting k = 1 into this formula gives the Catalan numbers and substituting k = 2 into this formula gives the Schröder–Hipparchus numbers.[7]

In connection with the property of Schröder–Hipparchus numbers of counting faces of an associahedron, the number of vertices of the associahedron is given by the Catalan numbers. The corresponding numbers for the permutohedron are respectively the ordered Bell numbers and the factorials.

Recurrence edit

As well as the summation formula above, the Schröder–Hipparchus numbers may be defined by a recurrence relation:

 

Stanley proves this fact using generating functions[8] while Foata and Zeilberger provide a direct combinatorial proof.[9]

History edit

Plutarch's dialogue Table Talk contains the line:

Chrysippus says that the number of compound propositions that can be made from only ten simple propositions exceeds a million. (Hipparchus, to be sure, refuted this by showing that on the affirmative side there are 103,049 compound statements, and on the negative side 310,952.)[8]

This statement went unexplained until 1994, when David Hough, a graduate student at George Washington University, observed that there are 103049 ways of inserting parentheses into a sequence of ten items.[1][8][10] The historian of mathematics Fabio Acerbi (CNRS) has shown that a similar explanation can be provided for the other number: it is very close to the average of the tenth and eleventh Schröder–Hipparchus numbers, 310954, and counts bracketings of ten terms together with a negative particle.[10]

The problem of counting parenthesizations was introduced to modern mathematics by Schröder (1870).[11]

Plutarch's recounting of Hipparchus's two numbers records a disagreement between Hipparchus and the earlier Stoic philosopher Chrysippus, who had claimed that the number of compound propositions that can be made from 10 simple propositions exceeds a million. Contemporary philosopher Susanne Bobzien (2011) has argued that Chrysippus's calculation was the correct one, based on her analysis of Stoic logic. Bobzien reconstructs the calculations of both Chrysippus and Hipparchus, and says that showing how Hipparchus got his mathematics correct but his Stoic logic wrong can cast new light on the Stoic notions of conjunctions and assertibles.[12]

References edit

  1. ^ a b Stanley, Richard P. (1997, 1999), Enumerative Combinatorics, Cambridge University Press. Exercise 1.45, vol. I, p. 51; vol. II, pp. 176–178 and p. 213.
  2. ^ a b Shapiro, Louis W.; Sulanke, Robert A. (2000), "Bijections for the Schröder numbers", Mathematics Magazine, 73 (5): 369–376, doi:10.2307/2690814, JSTOR 2690814, MR 1805263.
  3. ^ a b Etherington, I. M. H. (1940), "Some problems of non-associative combinations (I)", Edinburgh Mathematical Notes, 32: 1–6, doi:10.1017/S0950184300002639.
  4. ^ Holtkamp, Ralf (2006), "On Hopf algebra structures over free operads", Advances in Mathematics, 207 (2): 544–565, arXiv:math/0407074, doi:10.1016/j.aim.2005.12.004, MR 2271016, S2CID 15908662.
  5. ^ Chen, William Y. C.; Mansour, Toufik; Yan, Sherry H. F. (2006), "Matchings avoiding partial patterns", Electronic Journal of Combinatorics, 13 (1): Research Paper 112, 17 pp. (electronic), doi:10.37236/1138, MR 2274327.
  6. ^ Bernstein, M.; Sloane, N. J. A. (1995), "Some canonical sequences of integers", Linear Algebra and Its Applications, 226/228: 57–72, arXiv:math/0205301, doi:10.1016/0024-3795(94)00245-9, MR 1344554, S2CID 14672360.
  7. ^ a b Coker, Curtis (2004), "A family of eigensequences", Discrete Mathematics, 282 (1–3): 249–250, doi:10.1016/j.disc.2003.12.008, MR 2059525.
  8. ^ a b c Stanley, Richard P. (1997), "Hipparchus, Plutarch, Schröder, and Hough" (PDF), American Mathematical Monthly, 104 (4): 344–350, doi:10.2307/2974582, JSTOR 2974582, MR 1450667.
  9. ^ Foata, Dominique; Zeilberger, Doron (1997), "A classic proof of a recurrence for a very classical sequence", Journal of Combinatorial Theory, Series A, 80 (2): 380–384, arXiv:math/9805015, doi:10.1006/jcta.1997.2814, MR 1485153, S2CID 537142.
  10. ^ a b Acerbi, F. (2003), (PDF), Archive for History of Exact Sciences, 57: 465–502, doi:10.1007/s00407-003-0067-0, S2CID 122758966, archived from the original (PDF) on 2011-07-21.
  11. ^ Schröder, Ernst (1870), "Vier kombinatorische Probleme", Zeitschrift für Mathematik und Physik, 15: 361–376.
  12. ^ Bobzien, Susanne (Summer 2011), "The Combinatorics of Stoic Conjunction: Hipparchus refuted, Chrysippus vindicated" (PDF), Oxford Studies in Ancient Philosophy, XL: 157–188.

External links edit

schröder, hipparchus, number, combinatorics, form, integer, sequence, that, used, count, number, plane, trees, with, given, leaves, number, ways, inserting, parentheses, into, sequence, number, ways, dissecting, convex, polygon, into, smaller, polygons, insert. In combinatorics the Schroder Hipparchus numbers form an integer sequence that can be used to count the number of plane trees with a given set of leaves the number of ways of inserting parentheses into a sequence and the number of ways of dissecting a convex polygon into smaller polygons by inserting diagonals These numbers beginSchroder Hipparchus numberNamed afterErnst Schroder Hipparchus Eugene Charles CatalanPublication year1870 Schroder No of known termsinfinityFormulax n i 1 n 1 n n i n i 1 k i 1 displaystyle x n sum i 1 n frac 1 n n choose i n choose i 1 k i 1 First terms1 1 3 11 45 197 903OEIS indexA001003Little Schroeder numbers Super CatalanEleven subdivisions of a pentagon 1 1 3 11 45 197 903 4279 20793 103049 sequence A001003 in the OEIS They are also called the super Catalan numbers the little Schroder numbers or the Hipparchus numbers after Eugene Charles Catalan and his Catalan numbers Ernst Schroder and the closely related Schroder numbers and the ancient Greek mathematician Hipparchus who appears from evidence in Plutarch to have known of these numbers Contents 1 Combinatorial enumeration applications 2 Related sequences 3 Recurrence 4 History 5 References 6 External linksCombinatorial enumeration applications edit nbsp Combinatorial equivalence between subdivisions of a polygon plane trees and parenthesizationsThe Schroder Hipparchus numbers may be used to count several closely related combinatorial objects 1 2 3 4 The nth number in the sequence counts the number of different ways of subdividing of a polygon with n 1 sides into smaller polygons by adding diagonals of the original polygon The nth number counts the number of different plane trees with n leaves and with all internal vertices having two or more children The nth number counts the number of different ways of inserting parentheses into a sequence of n 1 symbols with each pair of parentheses surrounding two or more symbols or parenthesized groups and without any parentheses surrounding the entire sequence The nth number counts the number of faces of all dimensions of an associahedron Kn 1 of dimension n 1 including the associahedron itself as a face but not including the empty set For instance the two dimensional associahedron K4 is a pentagon it has five vertices five faces and one whole associahedron for a total of 11 faces As the figure shows there is a simple combinatorial equivalence between these objects a polygon subdivision has a plane tree as a form of its dual graph the leaves of the tree correspond to the symbols in a parenthesized sequence and the internal nodes of the tree other than the root correspond to parenthesized groups The parenthesized sequence itself may be written around the perimeter of the polygon with its symbols on the sides of the polygon and with parentheses at the endpoints of the selected diagonals This equivalence provides a bijective proof that all of these kinds of objects are counted by a single integer sequence 2 The same numbers also count the number of double permutations sequences of the numbers from 1 to n each number appearing twice with the first occurrences of each number in sorted order that avoid the permutation patterns 12312 and 121323 5 Related sequences editThe closely related large Schroder numbers are equal to twice the Schroder Hipparchus numbers and may also be used to count several types of combinatorial objects including certain kinds of lattice paths partitions of a rectangle into smaller rectangles by recursive slicing and parenthesizations in which a pair of parentheses surrounding the whole sequence of elements is also allowed The Catalan numbers also count closely related sets of objects including subdivisions of a polygon into triangles plane trees in which all internal nodes have exactly two children and parenthesizations in which each pair of parentheses surrounds exactly two symbols or parenthesized groups 3 The sequence of Catalan numbers and the sequence of Schroder Hipparchus numbers viewed as infinite dimensional vectors are the unique eigenvectors for the first two in a sequence of naturally defined linear operators on number sequences 6 7 More generally the kth sequence in this sequence of integer sequences is x1 x2 x3 where the numbers xn are calculated as the sums of Narayana numbers multiplied by powers of k This can be expressed as a hypergeometric function x n i 1 n N n i k i 1 i 1 n 1 n n i n i 1 k i 1 2 F 1 1 n n 2 k displaystyle x n sum i 1 n N n i k i 1 sum i 1 n frac 1 n n choose i n choose i 1 k i 1 2 F 1 1 n n 2 k nbsp Substituting k 1 into this formula gives the Catalan numbers and substituting k 2 into this formula gives the Schroder Hipparchus numbers 7 In connection with the property of Schroder Hipparchus numbers of counting faces of an associahedron the number of vertices of the associahedron is given by the Catalan numbers The corresponding numbers for the permutohedron are respectively the ordered Bell numbers and the factorials Recurrence editAs well as the summation formula above the Schroder Hipparchus numbers may be defined by a recurrence relation x n 1 n 6 n 9 x n 1 n 3 x n 2 displaystyle x n frac 1 n left 6n 9 x n 1 n 3 x n 2 right nbsp Stanley proves this fact using generating functions 8 while Foata and Zeilberger provide a direct combinatorial proof 9 History editPlutarch s dialogue Table Talk contains the line Chrysippus says that the number of compound propositions that can be made from only ten simple propositions exceeds a million Hipparchus to be sure refuted this by showing that on the affirmative side there are 103 049 compound statements and on the negative side 310 952 8 This statement went unexplained until 1994 when David Hough a graduate student at George Washington University observed that there are 103049 ways of inserting parentheses into a sequence of ten items 1 8 10 The historian of mathematics Fabio Acerbi CNRS has shown that a similar explanation can be provided for the other number it is very close to the average of the tenth and eleventh Schroder Hipparchus numbers 310954 and counts bracketings of ten terms together with a negative particle 10 The problem of counting parenthesizations was introduced to modern mathematics by Schroder 1870 11 Plutarch s recounting of Hipparchus s two numbers records a disagreement between Hipparchus and the earlier Stoic philosopher Chrysippus who had claimed that the number of compound propositions that can be made from 10 simple propositions exceeds a million Contemporary philosopher Susanne Bobzien 2011 has argued that Chrysippus s calculation was the correct one based on her analysis of Stoic logic Bobzien reconstructs the calculations of both Chrysippus and Hipparchus and says that showing how Hipparchus got his mathematics correct but his Stoic logic wrong can cast new light on the Stoic notions of conjunctions and assertibles 12 References edit a b Stanley Richard P 1997 1999 Enumerative Combinatorics Cambridge University Press Exercise 1 45 vol I p 51 vol II pp 176 178 and p 213 a b Shapiro Louis W Sulanke Robert A 2000 Bijections for the Schroder numbers Mathematics Magazine 73 5 369 376 doi 10 2307 2690814 JSTOR 2690814 MR 1805263 a b Etherington I M H 1940 Some problems of non associative combinations I Edinburgh Mathematical Notes 32 1 6 doi 10 1017 S0950184300002639 Holtkamp Ralf 2006 On Hopf algebra structures over free operads Advances in Mathematics 207 2 544 565 arXiv math 0407074 doi 10 1016 j aim 2005 12 004 MR 2271016 S2CID 15908662 Chen William Y C Mansour Toufik Yan Sherry H F 2006 Matchings avoiding partial patterns Electronic Journal of Combinatorics 13 1 Research Paper 112 17 pp electronic doi 10 37236 1138 MR 2274327 Bernstein M Sloane N J A 1995 Some canonical sequences of integers Linear Algebra and Its Applications 226 228 57 72 arXiv math 0205301 doi 10 1016 0024 3795 94 00245 9 MR 1344554 S2CID 14672360 a b Coker Curtis 2004 A family of eigensequences Discrete Mathematics 282 1 3 249 250 doi 10 1016 j disc 2003 12 008 MR 2059525 a b c Stanley Richard P 1997 Hipparchus Plutarch Schroder and Hough PDF American Mathematical Monthly 104 4 344 350 doi 10 2307 2974582 JSTOR 2974582 MR 1450667 Foata Dominique Zeilberger Doron 1997 A classic proof of a recurrence for a very classical sequence Journal of Combinatorial Theory Series A 80 2 380 384 arXiv math 9805015 doi 10 1006 jcta 1997 2814 MR 1485153 S2CID 537142 a b Acerbi F 2003 On the shoulders of Hipparchus A reappraisal of ancient Greek combinatorics PDF Archive for History of Exact Sciences 57 465 502 doi 10 1007 s00407 003 0067 0 S2CID 122758966 archived from the original PDF on 2011 07 21 Schroder Ernst 1870 Vier kombinatorische Probleme Zeitschrift fur Mathematik und Physik 15 361 376 Bobzien Susanne Summer 2011 The Combinatorics of Stoic Conjunction Hipparchus refuted Chrysippus vindicated PDF Oxford Studies in Ancient Philosophy XL 157 188 External links editWeisstein Eric W Super Catalan Number MathWorld The Hipparchus Operad The n Category Cafe April 1 2013 Retrieved from https en wikipedia org w index php title Schroder Hipparchus number amp oldid 1173974526, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.