fbpx
Wikipedia

Isotopes of ruthenium

Naturally occurring ruthenium (44Ru) is composed of seven stable isotopes (of which two may in the future be found radioactive). Additionally, 27 radioactive isotopes have been discovered. Of these radioisotopes, the most stable are 106Ru, with a half-life of 373.59 days; 103Ru, with a half-life of 39.26 days and 97Ru, with a half-life of 2.9 days.

Isotopes of ruthenium (44Ru)
Main isotopes[1] Decay
abun­dance half-life (t1/2) mode pro­duct
96Ru 5.54% stable
97Ru synth 2.9 d ε 97Tc
γ
98Ru 1.87% stable
99Ru 12.8% stable
100Ru 12.6% stable
101Ru 17.1% stable
102Ru 31.6% stable
103Ru synth 39.26 d β 103Rh
γ
104Ru 18.6% stable
106Ru synth 373.59 d β 106Rh
Standard atomic weight Ar°(Ru)

Twenty-four other radioisotopes have been characterized with atomic weights ranging from 86.95 u (87Ru) to 119.95 u (120Ru). Most of these have half-lives that are less than five minutes, except 94Ru (half-life: 51.8 minutes), 95Ru (half-life: 1.643 hours), and 105Ru (half-life: 4.44 hours).

The primary decay mode before the most abundant isotope, 102Ru, is electron capture and the primary mode after is beta emission. The primary decay product before 102Ru is technetium and the primary product after is rhodium.

Because of the very high volatility of ruthenium tetroxide (RuO
4
) ruthenium radioactive isotopes with their relative short half-life are considered as the second most hazardous gaseous isotopes after iodine-131 in case of release by a nuclear accident.[4][5][6] The two most important isotopes of ruthenium in case of nuclear accident are these with the longest half-life: 103Ru (39.26 days) and 106Ru (373.59 days).[5]

List of isotopes edit

Nuclide
[n 1]
Z N Isotopic mass (Da)
[n 2][n 3]
Half-life
[n 4]
Decay
mode

[n 5]
Daughter
isotope

[n 6]
Spin and
parity
[n 7][n 4]
Natural abundance (mole fraction)
Excitation energy[n 4] Normal proportion Range of variation
87Ru 44 43 86.94918(64)# 50# ms [>1.5 µs] β+ 87Tc 1/2−#
88Ru 44 44 87.94026(43)# 1.3(3) s [1.2(+3−2) s] β+ 88Tc 0+
89Ru 44 45 88.93611(54)# 1.38(11) s β+ 89Tc (7/2)(+#)
90Ru 44 46 89.92989(32)# 11.7(9) s β+ 90Tc 0+
91Ru 44 47 90.92629(63)# 7.9(4) s β+ 91Tc (9/2+)
91mRu 80(300)# keV 7.6(8) s β+ (>99.9%) 91Tc (1/2−)
IT (<.1%) 91Ru
β+, p (<.1%) 90Mo
92Ru 44 48 91.92012(32)# 3.65(5) min β+ 92Tc 0+
93Ru 44 49 92.91705(9) 59.7(6) s β+ 93Tc (9/2)+
93m1Ru 734.40(10) keV 10.8(3) s β+ (78%) 93Tc (1/2)−
IT (22%) 93Ru
β+, p (.027%) 92Mo
93m2Ru 2082.6(9) keV 2.20(17) µs (21/2)+
94Ru 44 50 93.911360(14) 51.8(6) min β+ 94Tc 0+
94mRu 2644.55(25) keV 71(4) µs (8+)
95Ru 44 51 94.910413(13) 1.643(14) h β+ 95Tc 5/2+
96Ru 44 52 95.907598(8) Observationally Stable[n 8] 0+ 0.0554(14)
97Ru 44 53 96.907555(9) 2.791(4) d β+ 97mTc 5/2+
98Ru 44 54 97.905287(7) Stable 0+ 0.0187(3)
99Ru 44 55 98.9059393(22) Stable 5/2+ 0.1276(14)
100Ru 44 56 99.9042195(22) Stable 0+ 0.1260(7)
101Ru[n 9] 44 57 100.9055821(22) Stable 5/2+ 0.1706(2)
101mRu 527.56(10) keV 17.5(4) µs 11/2−
102Ru[n 9] 44 58 101.9043493(22) Stable 0+ 0.3155(14)
103Ru[n 9] 44 59 102.9063238(22) 39.26(2) d β 103Rh 3/2+
103mRu 238.2(7) keV 1.69(7) ms IT 103Ru 11/2−
104Ru[n 9] 44 60 103.905433(3) Observationally Stable[n 10] 0+ 0.1862(27)
105Ru[n 9] 44 61 104.907753(3) 4.44(2) h β 105Rh 3/2+
106Ru[n 9] 44 62 105.907329(8) 373.59(15) d β 106Rh 0+
107Ru 44 63 106.90991(13) 3.75(5) min β 107Rh (5/2)+
108Ru 44 64 107.91017(12) 4.55(5) min β 108Rh 0+
109Ru 44 65 108.91320(7) 34.5(10) s β 109Rh (5/2+)#
110Ru 44 66 109.91414(6) 11.6(6) s β 110Rh 0+
111Ru 44 67 110.91770(8) 2.12(7) s β 111Rh (5/2+)
112Ru 44 68 111.91897(8) 1.75(7) s β 112Rh 0+
113Ru 44 69 112.92249(8) 0.80(5) s β 113Rh (5/2+)
113mRu 130(18) keV 510(30) ms (11/2−)
114Ru 44 70 113.92428(25)# 0.53(6) s β (>99.9%) 114Rh 0+
β, n (<.1%) 113Rh
115Ru 44 71 114.92869(14) 740(80) ms β (>99.9%) 115Rh
β, n (<.1%) 114Rh
116Ru 44 72 115.93081(75)# 400# ms [>300 ns] β 116Rh 0+
117Ru 44 73 116.93558(75)# 300# ms [>300 ns] β 117Rh
118Ru 44 74 117.93782(86)# 200# ms [>300 ns] β 118Rh 0+
119Ru 44 75 118.94284(75)# 170# ms [>300 ns]
120Ru 44 76 119.94531(86)# 80# ms [>300 ns] 0+
This table header & footer:
  1. ^ mRu – Excited nuclear isomer.
  2. ^ ( ) – Uncertainty (1σ) is given in concise form in parentheses after the corresponding last digits.
  3. ^ # – Atomic mass marked #: value and uncertainty derived not from purely experimental data, but at least partly from trends from the Mass Surface (TMS).
  4. ^ a b c # – Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).
  5. ^ Modes of decay:
  6. ^ Bold symbol as daughter – Daughter product is stable.
  7. ^ ( ) spin value – Indicates spin with weak assignment arguments.
  8. ^ Believed to undergo β+β+ decay to 96Mo with a half-life over 6.7×1016 years
  9. ^ a b c d e f Fission product
  10. ^ Believed to undergo ββ decay to 104Pd
  • Geologically exceptional samples are known in which the isotopic composition lies outside the reported range. The uncertainty in the atomic mass may exceed the stated value for such specimens.[citation needed]
  • In September 2017 an estimated amount of 100 to 300 TBq (0.3 to 1 g) of 106Ru was released in Russia, probably in the Ural region. It was, after ruling out release from a reentering satellite, concluded that the source is to be found either in nuclear fuel cycle facilities or radioactive source production. In France levels up to 0.036mBq/m3 of air were measured. It is estimated that over distances of the order of a few tens of kilometres around the location of the release levels may exceed the limits for non-dairy foodstuffs.[7]
 
Ruthenium-96

References edit

  1. ^ Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae.
  2. ^ "Standard Atomic Weights: Ruthenium". CIAAW. 1983.
  3. ^ Prohaska, Thomas; Irrgeher, Johanna; Benefield, Jacqueline; Böhlke, John K.; Chesson, Lesley A.; Coplen, Tyler B.; Ding, Tiping; Dunn, Philip J. H.; Gröning, Manfred; Holden, Norman E.; Meijer, Harro A. J. (2022-05-04). "Standard atomic weights of the elements 2021 (IUPAC Technical Report)". Pure and Applied Chemistry. doi:10.1515/pac-2019-0603. ISSN 1365-3075.
  4. ^ Ronneau, C., Cara, J., & Rimski-Korsakov, A. (1995). Oxidation-enhanced emission of ruthenium from nuclear fuel. Journal of Environmental Radioactivity, 26(1), 63-70.
  5. ^ a b Backman, U., Lipponen, M., Auvinen, A., Jokiniemi, J., & Zilliacus, R. (2004). Ruthenium behaviour in severe nuclear accident conditions. Final report (No. NKS–100). Nordisk Kernesikkerhedsforskning.
  6. ^ Beuzet, E., Lamy, J. S., Perron, H., Simoni, E., & Ducros, G. (2012). Ruthenium release modelling in air and steam atmospheres under severe accident conditions using the MAAP4 code[dead link]. Nuclear Engineering and Design, 246, 157-162.
  7. ^ [1] Detection of ruthenium 106 in France and in Europe, IRSN France (9 Nov 2017)
  • Isotope masses from:
    • Audi, Georges; Bersillon, Olivier; Blachot, Jean; Wapstra, Aaldert Hendrik (2003), "The NUBASE evaluation of nuclear and decay properties", Nuclear Physics A, 729: 3–128, Bibcode:2003NuPhA.729....3A, doi:10.1016/j.nuclphysa.2003.11.001
  • Isotopic compositions and standard atomic masses from:
    • de Laeter, John Robert; Böhlke, John Karl; De Bièvre, Paul; Hidaka, Hiroshi; Peiser, H. Steffen; Rosman, Kevin J. R.; Taylor, Philip D. P. (2003). "Atomic weights of the elements. Review 2000 (IUPAC Technical Report)". Pure and Applied Chemistry. 75 (6): 683–800. doi:10.1351/pac200375060683.
    • Wieser, Michael E. (2006). "Atomic weights of the elements 2005 (IUPAC Technical Report)". Pure and Applied Chemistry. 78 (11): 2051–2066. doi:10.1351/pac200678112051.
  • "News & Notices: Standard Atomic Weights Revised". International Union of Pure and Applied Chemistry. 19 October 2005.
  • Half-life, spin, and isomer data selected from the following sources.

isotopes, ruthenium, naturally, occurring, ruthenium, 44ru, composed, seven, stable, isotopes, which, future, found, radioactive, additionally, radioactive, isotopes, have, been, discovered, these, radioisotopes, most, stable, 106ru, with, half, life, days, 10. Naturally occurring ruthenium 44Ru is composed of seven stable isotopes of which two may in the future be found radioactive Additionally 27 radioactive isotopes have been discovered Of these radioisotopes the most stable are 106Ru with a half life of 373 59 days 103Ru with a half life of 39 26 days and 97Ru with a half life of 2 9 days Isotopes of ruthenium 44Ru Main isotopes 1 Decay abun dance half life t1 2 mode pro duct 96Ru 5 54 stable 97Ru synth 2 9 d e 97Tc g 98Ru 1 87 stable 99Ru 12 8 stable 100Ru 12 6 stable 101Ru 17 1 stable 102Ru 31 6 stable 103Ru synth 39 26 d b 103Rh g 104Ru 18 6 stable 106Ru synth 373 59 d b 106RhStandard atomic weight Ar Ru 101 07 0 02 2 101 07 0 02 abridged 3 viewtalkedit Twenty four other radioisotopes have been characterized with atomic weights ranging from 86 95 u 87Ru to 119 95 u 120Ru Most of these have half lives that are less than five minutes except 94Ru half life 51 8 minutes 95Ru half life 1 643 hours and 105Ru half life 4 44 hours The primary decay mode before the most abundant isotope 102Ru is electron capture and the primary mode after is beta emission The primary decay product before 102Ru is technetium and the primary product after is rhodium Because of the very high volatility of ruthenium tetroxide RuO4 ruthenium radioactive isotopes with their relative short half life are considered as the second most hazardous gaseous isotopes after iodine 131 in case of release by a nuclear accident 4 5 6 The two most important isotopes of ruthenium in case of nuclear accident are these with the longest half life 103Ru 39 26 days and 106Ru 373 59 days 5 List of isotopes editNuclide n 1 Z N Isotopic mass Da n 2 n 3 Half life n 4 Decaymode n 5 Daughterisotope n 6 Spin andparity n 7 n 4 Natural abundance mole fraction Excitation energy n 4 Normal proportion Range of variation 87Ru 44 43 86 94918 64 50 ms gt 1 5 µs b 87Tc 1 2 88Ru 44 44 87 94026 43 1 3 3 s 1 2 3 2 s b 88Tc 0 89Ru 44 45 88 93611 54 1 38 11 s b 89Tc 7 2 90Ru 44 46 89 92989 32 11 7 9 s b 90Tc 0 91Ru 44 47 90 92629 63 7 9 4 s b 91Tc 9 2 91mRu 80 300 keV 7 6 8 s b gt 99 9 91Tc 1 2 IT lt 1 91Ru b p lt 1 90Mo 92Ru 44 48 91 92012 32 3 65 5 min b 92Tc 0 93Ru 44 49 92 91705 9 59 7 6 s b 93Tc 9 2 93m1Ru 734 40 10 keV 10 8 3 s b 78 93Tc 1 2 IT 22 93Ru b p 027 92Mo 93m2Ru 2082 6 9 keV 2 20 17 µs 21 2 94Ru 44 50 93 911360 14 51 8 6 min b 94Tc 0 94mRu 2644 55 25 keV 71 4 µs 8 95Ru 44 51 94 910413 13 1 643 14 h b 95Tc 5 2 96Ru 44 52 95 907598 8 Observationally Stable n 8 0 0 0554 14 97Ru 44 53 96 907555 9 2 791 4 d b 97mTc 5 2 98Ru 44 54 97 905287 7 Stable 0 0 0187 3 99Ru 44 55 98 9059393 22 Stable 5 2 0 1276 14 100Ru 44 56 99 9042195 22 Stable 0 0 1260 7 101Ru n 9 44 57 100 9055821 22 Stable 5 2 0 1706 2 101mRu 527 56 10 keV 17 5 4 µs 11 2 102Ru n 9 44 58 101 9043493 22 Stable 0 0 3155 14 103Ru n 9 44 59 102 9063238 22 39 26 2 d b 103Rh 3 2 103mRu 238 2 7 keV 1 69 7 ms IT 103Ru 11 2 104Ru n 9 44 60 103 905433 3 Observationally Stable n 10 0 0 1862 27 105Ru n 9 44 61 104 907753 3 4 44 2 h b 105Rh 3 2 106Ru n 9 44 62 105 907329 8 373 59 15 d b 106Rh 0 107Ru 44 63 106 90991 13 3 75 5 min b 107Rh 5 2 108Ru 44 64 107 91017 12 4 55 5 min b 108Rh 0 109Ru 44 65 108 91320 7 34 5 10 s b 109Rh 5 2 110Ru 44 66 109 91414 6 11 6 6 s b 110Rh 0 111Ru 44 67 110 91770 8 2 12 7 s b 111Rh 5 2 112Ru 44 68 111 91897 8 1 75 7 s b 112Rh 0 113Ru 44 69 112 92249 8 0 80 5 s b 113Rh 5 2 113mRu 130 18 keV 510 30 ms 11 2 114Ru 44 70 113 92428 25 0 53 6 s b gt 99 9 114Rh 0 b n lt 1 113Rh 115Ru 44 71 114 92869 14 740 80 ms b gt 99 9 115Rh b n lt 1 114Rh 116Ru 44 72 115 93081 75 400 ms gt 300 ns b 116Rh 0 117Ru 44 73 116 93558 75 300 ms gt 300 ns b 117Rh 118Ru 44 74 117 93782 86 200 ms gt 300 ns b 118Rh 0 119Ru 44 75 118 94284 75 170 ms gt 300 ns 120Ru 44 76 119 94531 86 80 ms gt 300 ns 0 This table header amp footer view mRu Excited nuclear isomer Uncertainty 1s is given in concise form in parentheses after the corresponding last digits Atomic mass marked value and uncertainty derived not from purely experimental data but at least partly from trends from the Mass Surface TMS a b c Values marked are not purely derived from experimental data but at least partly from trends of neighboring nuclides TNN Modes of decay IT Isomeric transition n Neutron emission p Proton emission Bold symbol as daughter Daughter product is stable spin value Indicates spin with weak assignment arguments Believed to undergo b b decay to 96Mo with a half life over 6 7 1016 years a b c d e f Fission product Believed to undergo b b decay to 104Pd Geologically exceptional samples are known in which the isotopic composition lies outside the reported range The uncertainty in the atomic mass may exceed the stated value for such specimens citation needed In September 2017 an estimated amount of 100 to 300 TBq 0 3 to 1 g of 106Ru was released in Russia probably in the Ural region It was after ruling out release from a reentering satellite concluded that the source is to be found either in nuclear fuel cycle facilities or radioactive source production In France levels up to 0 036mBq m3 of air were measured It is estimated that over distances of the order of a few tens of kilometres around the location of the release levels may exceed the limits for non dairy foodstuffs 7 nbsp Ruthenium 96References edit Kondev F G Wang M Huang W J Naimi S Audi G 2021 The NUBASE2020 evaluation of nuclear properties PDF Chinese Physics C 45 3 030001 doi 10 1088 1674 1137 abddae Standard Atomic Weights Ruthenium CIAAW 1983 Prohaska Thomas Irrgeher Johanna Benefield Jacqueline Bohlke John K Chesson Lesley A Coplen Tyler B Ding Tiping Dunn Philip J H Groning Manfred Holden Norman E Meijer Harro A J 2022 05 04 Standard atomic weights of the elements 2021 IUPAC Technical Report Pure and Applied Chemistry doi 10 1515 pac 2019 0603 ISSN 1365 3075 Ronneau C Cara J amp Rimski Korsakov A 1995 Oxidation enhanced emission of ruthenium from nuclear fuel Journal of Environmental Radioactivity 26 1 63 70 a b Backman U Lipponen M Auvinen A Jokiniemi J amp Zilliacus R 2004 Ruthenium behaviour in severe nuclear accident conditions Final report No NKS 100 Nordisk Kernesikkerhedsforskning Beuzet E Lamy J S Perron H Simoni E amp Ducros G 2012 Ruthenium release modelling in air and steam atmospheres under severe accident conditions using the MAAP4 code dead link Nuclear Engineering and Design 246 157 162 1 Detection of ruthenium 106 in France and in Europe IRSN France 9 Nov 2017 Isotope masses from Audi Georges Bersillon Olivier Blachot Jean Wapstra Aaldert Hendrik 2003 The NUBASE evaluation of nuclear and decay properties Nuclear Physics A 729 3 128 Bibcode 2003NuPhA 729 3A doi 10 1016 j nuclphysa 2003 11 001 Isotopic compositions and standard atomic masses from de Laeter John Robert Bohlke John Karl De Bievre Paul Hidaka Hiroshi Peiser H Steffen Rosman Kevin J R Taylor Philip D P 2003 Atomic weights of the elements Review 2000 IUPAC Technical Report Pure and Applied Chemistry 75 6 683 800 doi 10 1351 pac200375060683 Wieser Michael E 2006 Atomic weights of the elements 2005 IUPAC Technical Report Pure and Applied Chemistry 78 11 2051 2066 doi 10 1351 pac200678112051 News amp Notices Standard Atomic Weights Revised International Union of Pure and Applied Chemistry 19 October 2005 Half life spin and isomer data selected from the following sources Audi Georges Bersillon Olivier Blachot Jean Wapstra Aaldert Hendrik 2003 The NUBASE evaluation of nuclear and decay properties Nuclear Physics A 729 3 128 Bibcode 2003NuPhA 729 3A doi 10 1016 j nuclphysa 2003 11 001 National Nuclear Data Center NuDat 2 x database Brookhaven National Laboratory Holden Norman E 2004 11 Table of the Isotopes In Lide David R ed CRC Handbook of Chemistry and Physics 85th ed Boca Raton Florida CRC Press ISBN 978 0 8493 0485 9 Retrieved from https en wikipedia org w index php title Isotopes of ruthenium amp oldid 1192207168 Ruthenium 98, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.